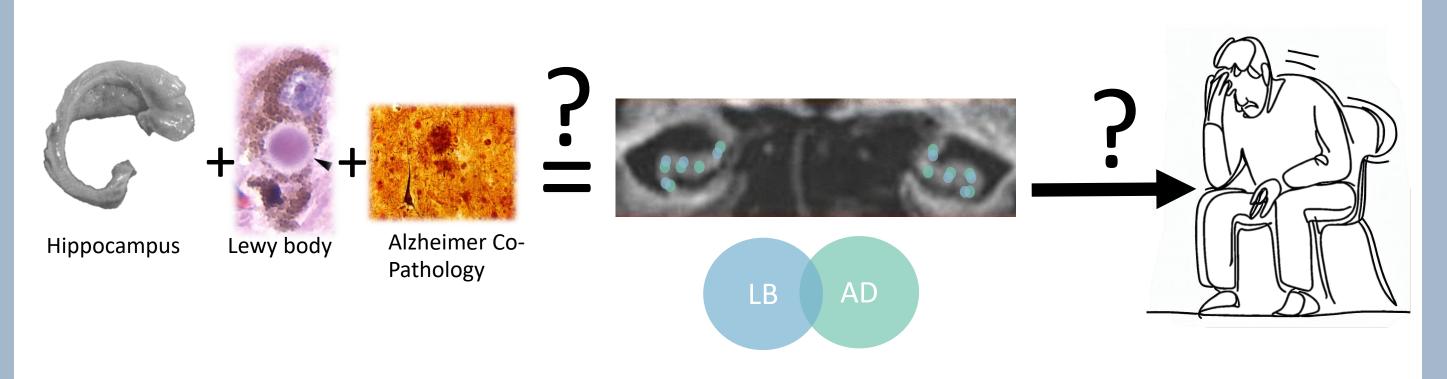
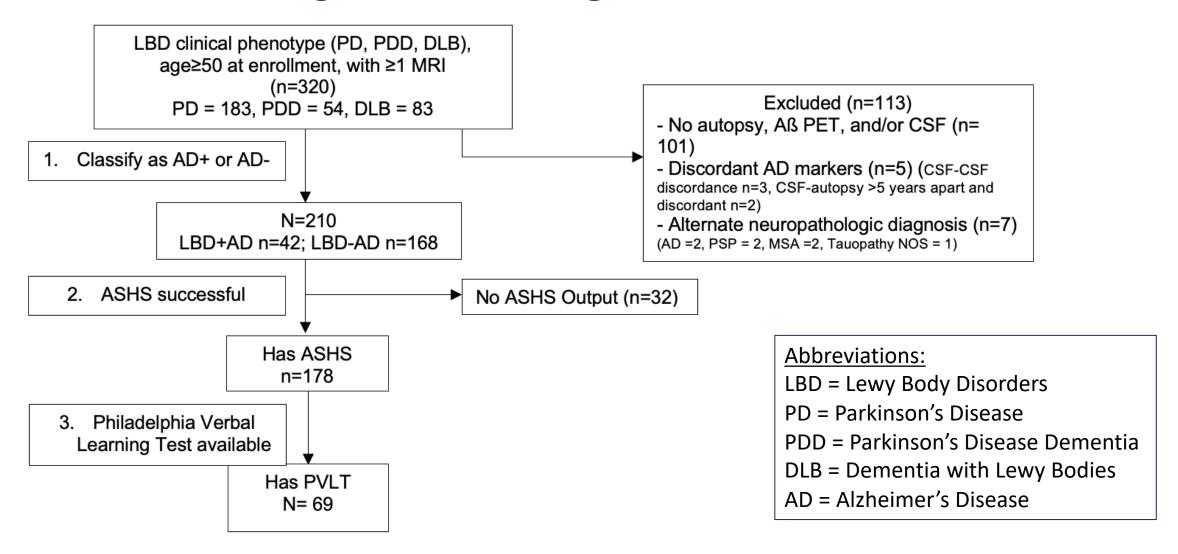


T1 MRI reveals differential hippocampal atrophy in Lewy Body Disorders with and without Alzheimer's copathology

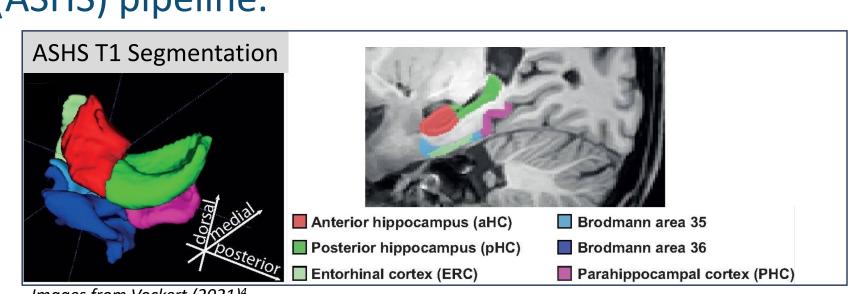


Jesse S Cohen, MD^{1,2}, Jeffrey S Phillips, PhD¹, Sandhitsu R. Das, PhD¹, Emma Rhodes, PhD¹, Katheryn A Q Cousins, PhD¹, Paul A. Yushkevich, PhD¹, David A. Wolk, MD¹, Daniel Weintraub, MD^{1,2}, David J. Irwin, MD¹ and Corey T McMillan, PhD¹

¹Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, ²Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA


Background

- ~50% of LBD patients have AD co-pathology (LBD+AD) which is associated with shorter time to dementia and death.
- However, little is known about the selective distribution of hippocampal atrophy associated with LBD+AD and its contribution to verbal memory performance.



Methods

• 178 patients with clinical diagnoses of LBD (PD, n = 111; PDD, n = 27; DLB, n = 40) with available T1 MRI and AD biomarkers or autopsy, were identified from the Penn Integrated Neurodegenerative Disease Database.

- Cognitively-normal historical controls from Alzheimer's Disease Neuroimaging Initiative³ were used for comparison (n=190).
- AD copathology was defined hierarchically by: a) AD "intermediate" or "high" by ABC neuropathologic criteria (n = 40); 2) positive amyloid PET (n=2); or 3) CSF total tau: β -amyloid1-42 ratio > 0.3 (autopsy-validated cutpoint) (n=136).
- T1 MRIs processed using the Automated Segmentation of Hippocampal Subfields (ASHS) pipeline.

- Hippocampal volume (HV) and adjacent cortical thickness was compared between controls, LBD-AD, and LBD+AD, and correlated with verbal memory scores.
- Linear regression was used to test the association of AD copathology and HV (dependent variable), covarying for age, sex, and intracranial volume.

Table 1: Demographics and Clinical Characteristics

	Control* (N=190)	. – –	LBD-AD (N=148)	LBD+AD (N=30)	AII LBD (N=178)	p
Age at MRI: Mean (SD)	72.3 (6.0)		66.7 (7.58)	72.1 (5.74)	67.6 (7.56)	<0.001
Sex: Males (%)	100 (52.6)		108 (73.0%)	19 (63.3%)	127 (71.3%)	0.4
Race: White (%)	-		142 (95.9%)	29 (96.7%)	171 (96.1%)	1
Education: (Years) Mean (SD)	16.9 (2.4)		16.0 (2.36)	15.0 (2.86)	15.8 (2.48)	0.066
Diagnosis						
DLB	-		27 (18.2%)	13 (43.3%)	40 (22.5%)	
PDD	-		20 (13.5%)	7 (23.3%)	27 (15.2%)	0.001
PD	-		101 (68.2%)	10 (33.3%)	111 (62.4%)	
AD Diagnostic						
Autopsy	-		29 (19.6%)	11 (36.7%)	40 (22.5%)	
PET	-	[1 (0.7%)	1 (3.3%)	2 (1.1%)	0.047
CSF	-		118 (79.7%)	18 (60.0%)	136 (76.4%)	

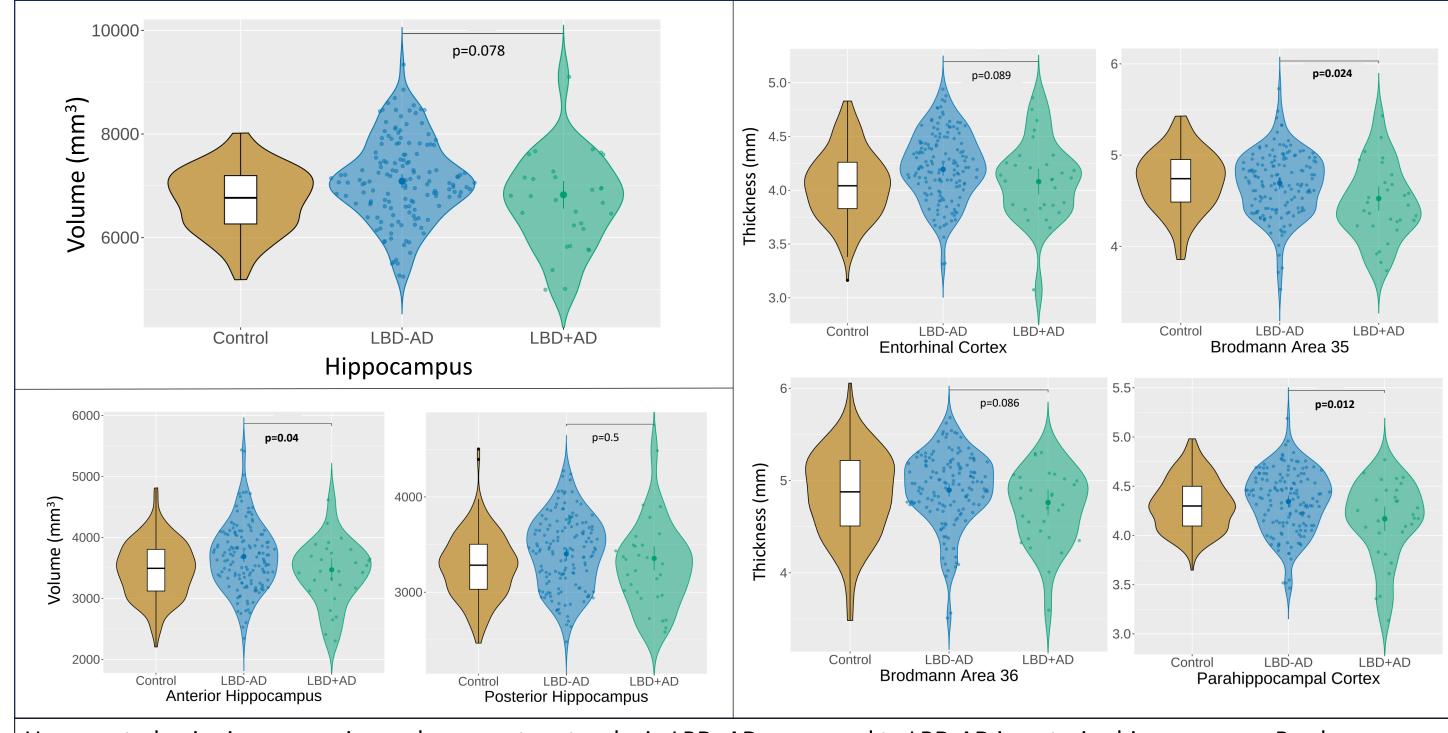
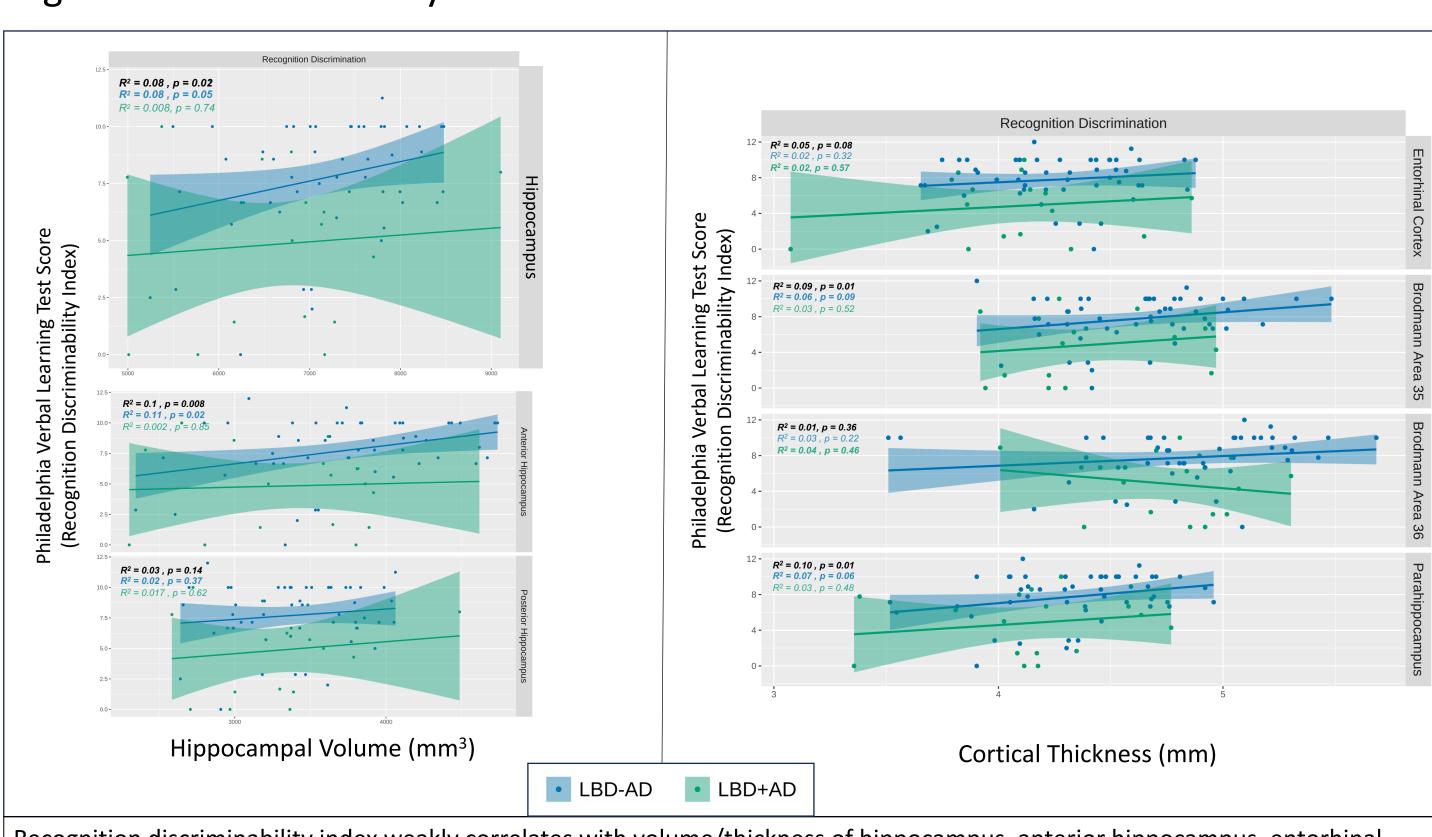

*Summary statistics for historical controls are included for reference but not tested in statistical comparisons as subject level data was unavailable. p values refer to pairwise comparisons between LBD-AD and LBD+AD only.

Table 2: Hippocampal Measures and Group Comparisons

(N=190)		(N=148)	(N=30)	<i>p</i> value (adjusted)	Cohen's d
6742.0 [618.0]		7090 [792]	6826 [891]	0.078 (0.104)	0.370
3449.0 [451.2]		3687.3 [541]	3470.6 [518]	0.040 (0.093)	0.433
3293.0 [320.2]		3402.4 [378]	3355.2 [429]	0.502 (0.502)	0.141
4.04 [0.323]		4.19 [0.318]	4.08 [0.365]	0.089 (0.104)	0.358
4.70 [0.321]		4.69 [0.348]	4.52 [0.407]	0.024 (0.084)	0.476
4.82 [0.428]		4.89 [0.394]	4.76 [0.401]	0.086 (0.104)	0.362
4.30 [0.280]		4.34 [0.314]	4.17 [0.402]	0.012 (0.084)	0.530
	(N=190) 6742.0 [618.0] 3449.0 [451.2] 3293.0 [320.2] 4.04 [0.323] 4.70 [0.321] 4.82 [0.428] 4.30	(N=190) 6742.0 [618.0] 3449.0 [451.2] 3293.0 [320.2] 4.04 [0.323] 4.70 [0.321] 4.82 [0.428] 4.30	(N=190)(N=148)6742.0 [618.0]7090 [792]3449.0 [451.2]3687.3 [541]3293.0 [320.2]3402.4 [378]4.04 [0.323]4.19 [0.318]4.70 [0.321]4.69 [0.348]4.82 [0.428]4.89 [0.394]4.304.34	(N=190) (N=148) (N=30) 6742.0 7090 6826 [618.0] 3687.3 3470.6 [451.2] 3687.3 3470.6 [541] [518] 3293.0 3402.4 3355.2 [320.2] [378] [429] 4.04 [0.323] 4.19 4.08 [0.318] [0.365] 4.70 4.69 4.52 [0.348] [0.407] 4.82 [0.394] [0.401] 4.30 4.34 4.17	(N=190) (N=148) (N=30) (adjusted) 6742.0 7090 6826 0.078 [618.0] [792] [891] (0.104) 3449.0 3687.3 3470.6 0.040 [451.2] [541] [518] (0.093) 3293.0 3402.4 3355.2 0.502 [320.2] [378] [429] (0.502) 4.04 4.19 4.08 0.089 [0.323] [0.318] [0.365] (0.104) 4.70 [0.348] [0.407] (0.084) 4.82 [0.394] [0.401] (0.104) 4.30 4.34 4.17 0.012

All LBD measures were adjusted for age, sex, and intracranial volume. *p* values and effect sizes refer to pairwise comparison between LBD-AD and LBD+AD and are uncorrected for multiple hypothesis testing. p value adjusted for multiple hypotheses is in parenthesis.


Figure 1: Hippocampal Volume and Adjacent Cortical Thickness

Uncorrected pairwise comparisons show greater atrophy in LBD+AD compared to LBD-AD in anterior hippocampus, Brodmann area 35 and parahippocampus. Volume and thickness measures are adjusted for age, sex, and intracranial volume. Historical controls' summary statistics were based upon a previously reported cohort³.

Figure 2: Verbal Memory Performance

Results

Recognition discriminability index weakly correlates with volume/thickness of hippocampus, anterior hippocampus, entorhinal cortex, Brodmann area 35 and parahippocampus (p-values unadjusted for multiple comparisons). No difference in effects are seen among LBD-AD and LBD+AD.

Conclusion

IPD AD IPD+AD pyolus Cohon's d

- LBD+AD trends toward greater hippocampal atrophy relative to LBD-AD.
- Among all LBD, hippocampal volume has a weak positive correlation with verbal memory performance.
- However, the correlation between hippocampus and memory measures does not significantly differ in the presence of AD-copathology.
- Thus, non-AD mechanisms may contribute to the correlation of hippocampal volume and verbal memory in LBD.

References

- 1. Irwin, et al. (2017). "Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis." Lancet Neurol 16(1): 55-65.
- 2. Coughlin, et al. (2020). "Pathological Influences on Clinical Heterogeneity in Lewy Body Diseases." Movement Disorders 35(1): 5-19.
- 3. Xie, et al. (2019). "Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease." Hum Brain Mapp 40(12): 3431-3451.
- 4. Vockert, et al. (2021) "Hippocampal vascularization patterns exert local and distant effects on brain structure but not vascular pathology in old age." Brain Commun. 3(3):fcab127.