It was a warm Fall morning on Sunday, September 24, 2017 as 371 runners and walkers and 70 volunteers gathered for Penn Medicine’s 6th Annual 5K for the IOA and Memory Mile Walk.

The fundraiser, which takes place throughout Penn Park and the University of Pennsylvania campus, raised a total of $49,260 this year for Alzheimer’s and aging-related disease research efforts at Penn’s Institute on Aging.

In addition to its usual run and walk, the event also included pre and post-race yoga sessions, entertainment provided by Deejay007, and photobooth fun for the whole family. This year’s overall male winner, Alexis Tingan, finished the race in 17 minutes and 35 seconds, with the overall female winner, Sara McCuaig, not far behind him with a time of 19 minutes and 24 seconds.

Prior to the race, CBS Philly interviewed PJ Brennan, MD, Chief Medical Officer at Penn Medicine who created the event in memory of his father who lost his battle with Alzheimer’s disease. “I thought it would be a fun way to get my community here together and bring some attention to the work that the Institute on Aging does and raise some money for this novel research,” said Dr. Brennan during the interview.

For more on Penn Medicine’s 6th Annual 5K for the IOA and Memory Mile Walk, including photos, video, and the full list of race results, visit: www.penninstituteonaging.wordpress.com
Q: How has your thinking about aging changed over the years?

A: At first, I hope to learn more about how aging works. As I got to know John Trojanowski and Kathy Jedrziewski, about how they run things, I realized that many of my research interests - things like automobile accidents, natural disasters or infectious disease, political instability and violence, and, more recently, what I call 'ageing' - can sum into bigger problems. All of these problems can be addressed by understanding how aging increases the risk of many different diseases and, ultimately, death.

Q: What do you think are the most important issues that need to be addressed in the area of aging right now?

A: As I've come to know John, I've learned more about the successes the aging research community has had in model organisms, e.g., flies and mice, to human biology. It's become apparent that there are some conserved mechanisms important in health and aging, but aging is a complex process and is very different in specie.

Q: What is your vision for the future of aging research?

A: Today, I believe aging is in fact complicated - it involves lots of little things that, individually, are not that important, but as a group, are important. All of these things can be addressed by understanding how aging increases the risk of many different diseases and, ultimately, death. As a kid, I'd like to see how the different pieces fit together, so that aging research is not just a collection of pieces, but as a group, is important to our health. I hope that my research will help doctors confirm or rule out FTD. Neurodegenerative diseases in general are challenging to understand. If we really want to understand how human aging works, we can't rely solely on model organisms, and ultimately we have to study it in human systems. Fortunately, the tools for doing this type of work are developing rapidly, e.g., growing human tissues in culture or using new bioinformatics tools to study the impact of natural human genetic variation on health, and thus there are many opportunities to make progress.

Q: How has your thinking about aging changed over the years?

A: At first, I hope to learn more about how aging works. As I got to know John, I realized that many of my research interests - things like automobile accidents, natural disasters or infectious disease, political instability and violence, and, more recently, what I call 'ageing' - can sum into bigger problems. All of these problems can be addressed by understanding how aging increases the risk of many different diseases and, ultimately, death.

Q: What do you think are the most important issues that need to be addressed in the area of aging right now?

A: As I've come to know John, I've learned more about the successes the aging research community has had in model organisms, e.g., flies and mice, to human biology. It's become apparent that there are some conserved mechanisms important in health and aging, but aging is a complex process and is very different in specie.

Q: What is your vision for the future of aging research?

A: Today, I believe aging is in fact complicated - it involves lots of little things that, individually, are not that important, but as a group, are important. All of these things can be addressed by understanding how aging increases the risk of many different diseases and, ultimately, death. As a kid, I'd like to see how the different pieces fit together, so that aging research is not just a collection of pieces, but as a group, is important to our health. I hope that my research will help doctors confirm or rule out FTD. Neurodegenerative diseases in general are challenging to understand. If we really want to understand how human aging works, we can't rely solely on model organisms, and ultimately we have to study it in human systems. Fortunately, the tools for doing this type of work are developing rapidly, e.g., growing human tissues in culture or using new bioinformatics tools to study the impact of natural human genetic variation on health, and thus there are many opportunities to make progress.

Q: How has your thinking about aging changed over the years?

A: At first, I hope to learn more about how aging works. As I got to know John, I realized that many of my research interests - things like automobile accidents, natural disasters or infectious disease, political instability and violence, and, more recently, what I call 'ageing' - can sum into bigger problems. All of these problems can be addressed by understanding how aging increases the risk of many different diseases and, ultimately, death.

Q: What do you think are the most important issues that need to be addressed in the area of aging right now?

A: As I've come to know John, I've learned more about the successes the aging research community has had in model organisms, e.g., flies and mice, to human biology. It's become apparent that there are some conserved mechanisms important in health and aging, but aging is a complex process and is very different in specie.

Q: What is your vision for the future of aging research?

A: Today, I believe aging is in fact complicated - it involves lots of little things that, individually, are not that important, but as a group, are important. All of these things can be addressed by understanding how aging increases the risk of many different diseases and, ultimately, death. As a kid, I'd like to see how the different pieces fit together, so that aging research is not just a collection of pieces, but as a group, is important to our health. I hope that my research will help doctors confirm or rule out FTD. Neurodegenerative diseases in general are challenging to understand. If we really want to understand how human aging works, we can't rely solely on model organisms, and ultimately we have to study it in human systems. Fortunately, the tools for doing this type of work are developing rapidly, e.g., growing human tissues in culture or using new bioinformatics tools to study the impact of natural human genetic variation on health, and thus there are many opportunities to make progress.

Q: How has your thinking about aging changed over the years?

A: At first, I hope to learn more about how aging works. As I got to know John, I realized that many of my research interests - things like automobile accidents, natural disasters or infectious disease, political instability and violence, and, more recently, what I call 'ageing' - can sum into bigger problems. All of these problems can be addressed by understanding how aging increases the risk of many different diseases and, ultimately, death.
Make a Gift
To support aging-related research and care at Penn's Institute on Aging, contact:
Elizabeth Yannes, Penn Medicine Development
eylannes@upenn.edu or 215-573-4961

Become an IOA Fellow
Learn more about becoming an IOA Fellow at:
www.med.upenn.edu/aging/fellows.html

Need More IOA News?
Subscribe to our monthly e-newsletter by emailing:
aging@mail.med.upenn.edu

IOA External Advisory Board
Meet our External Advisory Board (EAB) members at:
www.med.upenn.edu/aging/ExternalAdvBoard.html

UPCOMING IOA EVENTS

NOVEMBER 10, 2017
Speaker: Tom Montine, MD, PhD // Visiting Scholars Series
12:30 - 1:30pm | Smilow Center - Rubenstein Auditorium
3400 Civic Center Blvd., Philadelphia, PA 19104

NOVEMBER 29, 2017
Speaker: Nathan Basisty // Joseph A. Pignolo Award in Aging Research
3:00 - 4:00pm | Smilow Center - Rubenstein Auditorium
3400 Civic Center Blvd., Philadelphia, PA 19104

NOVEMBER 30, 2017
Speaker: Richard Mayeux, MD, MSc // Visiting Scholars Series
9:30 - 10:30am | Medical Alumni Hall - 1st Floor Maloney Building
3600 Spruce Street, Philadelphia, PA 19104

JANUARY 24, 2018
Speaker: Anne Newman, MD, MPH // Visiting Scholars Series
3:00 - 4:00pm | Smilow Center - Rubenstein Auditorium
3400 Civic Center Blvd., Philadelphia, PA 19104

FEBRUARY 6, 2018
Speaker: Tom Misteli, PhD // Vincent J. Cristofalo Annual Lectureship
3:00 - 4:00pm | Smilow Center - Rubenstein Auditorium
3400 Civic Center Blvd., Philadelphia, PA 19104

APRIL 3, 2018
Speaker: Edward Huey, MD // Visiting Scholars Series
3:00 - 4:00pm | Biomedical Research Building
421 Curie Blvd., Philadelphia, PA 19104

MAY 1, 2018
Speaker: Kenneth M. Langa, MD, PhD // Sylvan M. Cohen Annual Retreat
11:30am - 5:00pm | Smilow Center - Rubenstein Auditorium and Lobby
3400 Civic Center Blvd., Philadelphia, PA 19104