faculty photo

Sigrid C. Veasey

Professor of Medicine
Department: Medicine
Graduate Group Affiliations

Contact information
Center for Sleep and Circadian Neurobiology
Translational Research Laboratories
125 South 31st Street, Suite 2100
Philadelphia, PA 19104-3403
Office: 215-746-4812
Fax: 215-746-4814
Education:
B.S. (Biochemistry)
Sweet Briar College, 1981.
M.D. (Medicine)
University of Virginia, 1985.
Post-Graduate Training
Intern in Medicine, Graduate Hospital, Philadelphia, PA, 1985-1986.
Resident in Medicine, Graduate Hospital, Philadelphia, PA, 1986-1988.
Fellowship in Pulmonary Medicine, University of Pennsylvania, Philadelphia, PA, 1990-1993.
Permanent link
 

Description of Research Expertise

Dr. Veasey’s laboratory focuses on identifying the molecular mechanisms underlying neural injury in sleep disorders and sleep disruption. The present focus of her lab is understanding the molecular mechanisms by which sleep disruption injures and even kills select neurons. Previously sleep researchers believed that all neurobehavioral consequences of sleep loss were fully reversible. Dr. Veasey's lab has led the way in discovering that chronic sleep loss and sleep fragmentation induce loss of wake-activated neurons, neurons essential for alertness and optimal cognitive performance. Most recently her lab has discovered that chronic sleep loss incites an amyloid cascade within locus coeruleus neurons and that this cascade leads to an unstoppable progression of tau degeneration marching throughout the forebrain.

Wake-active neurons in the brain are essential for optimal wakefulness and cognitive performance. Although there are many groups of these neurons, each playing unique roles in wake responses, the catecholaminergic wake neurons in the locus coeruleus and dorsal midbrain are particularly sensitive to diverse injuries, including aging and neurodegenerative processes. We recently identified SIRT1 as a key regulator of wake-active neuron function and integrity, a metabolic homeostat that is lost with aging. A key focus for the lab now is to identify why this is lost and why wake neurons rely so heavily on this protectant. Her lab is now keenly intrigued by sleep loss neuroinflammatory injury to locus coeruleus neurons that results in synaptic pruning and cognitive impairments.

Selected Publications

Lamonica, J.M., Kwon, D.Y., Goffin, D., Fenik, P., Johnson, B.S., Cui, Y., Guo, H., Veasey, S., Zhou, Z.: Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes. The Journal of Clinical Investigation 127(5): 1889-1904, May 2017.

Fung, C.H., Veasey, S.C.: Research Priorities in the Area of Sleep/Circadian Rhythm and Aging Research: Commentary on "Report and Research Agenda of the American Geriatrics Society and National Institute on Aging Bedside-to-Bench Conference on Sleep, Circadian Rhythms, and Aging: New Avenues for Improving Brain Health, Physical Health, and Functioning". Sleep 40(5), May 2017 Notes: doi: 10.1093/sleep/zsx065.

Zhu, Y., Fenik, P., Zhan, G., Somach, R., Xin, R., Veasey, S.: Intermittent short sleep results in lasting sleep wake disturbances and degeneration of locus coeruleus and orexinergic neurons. Sleep 39(8): 1601-1611, Aug 2016.

Perron, I.J., Pack, A.I., Veasey, S.: Diet/energy balance affect sleep and wakefulness independent of body weight Sleep 38(12): 1893-1903, Dec 2015.

Beier, U.H., Angelin, A., Akimova, T., Wang, L., Liu, Y., Xiao, H., Koike, M.A., Hancock, S.A., Bhatti, T.R., Han, R., Jiao, J., Veasey, S.C., Sims, C.A., Baur, J.A., Wallace, D.C., Hancock, W.W.: Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. FASEB Journal 29(6): 2315-2326, Jun 2015.

Zhu, Y., Fenik, P., Zhan, G., Xin, R., Veasey, S.C.: Degeneration in arousal neurons in chronic sleep disruption modeling sleep apnea. Frontiers in Neurology 6: 109, May 2015.

Zhang, J., Zhu, Y., Zhan, G., Fenik, P., Panossian, L., Wang, M.M., Reid, S., Lai, D., Davis, J.G., Baur, J.A., Veasey, S.: Extended wakefulness: compromised metabolics in and degeneration of locus ceruleus neurons Journal of Neurosci 34(12): 4418-4431, Mar 2014

Zhang J, Peng H, Veasey SC, Ma J, Wang GF, Wang KW: Blockade of Na+/H+ exchanger type 3 causes intracellular acidification and hyperexcitability via inhibition of pH-sensitive K+ channels in chemosensitive respiratory neurons of the dorsal vagal nucleus in rats. Neuroscience Bulletin 30(1): 43-52, Feb 2014.

Veasey, S.C., Lear, J., Zhu, Y., Grinspan, J.B., Hare, D.J., Wang, S., Bunch, D., Doble, P.A., Robinson, S.R.: Long-term intermittent hypoxia elevates cobalt levels in the brain and injures white matter in adult mice. Sleep 36(10): 1471-1481, Oct 2013.

Li, Y., Panossian, L.A., Zhang, J., Zhu, Y., Zhan, G., Chou, Y.T., Fenik, P., Bhatnagar, S., Piel, D.A., Beck, S.G., Veasey, S.: Effects of chronic sleep fragmentation on wake-active neurons and the hypercapnic arousal response. Sleep 36(10): 1471-1481, October 2013.

back to top
Last updated: 12/01/2017
The Trustees of the University of Pennsylvania