
Pyvox Reference Manual

Release 0.71

Paul Hughett

January 23, 2006

Contents

1 Introduction 3
1.1 Overview of Pyvox . 3
1.2 Design Goals . 3

1.2.1 Medical Image Processing 4
1.2.2 Rapid Prototyping . 4
1.2.3 Efficient Execution . 4
1.2.4 Software Portability 4
1.2.5 Data Portability . 4
1.2.6 Open-Source Development 5

1.3 Architecture . 5
1.4 Capabilities . 6
1.5 Current Status . 7
1.6 Distribution . 7
1.7 Open Source Licensing . 8
1.8 Support . 8
1.9 How to Contribute . 9

2 Programming with Pyvox 10
2.1 Data Types . 10

2.1.1 Internal Numeric Types 10
2.1.2 External Numeric Types 10
2.1.3 Pyvox Arrays . 12
2.1.4 Array Slices . 14
2.1.5 Affine Transforms . 15
2.1.6 Neighborhood Kernels 15
2.1.7 Objects . 16

2.2 Error Management . 16
2.3 Programming Conventions . 17

1

2.3.1 Coordinate Systems . 17
2.3.2 Uninterpreted (Raw) Data 17
2.3.3 Image Data . 18
2.3.4 RGBA Images . 18
2.3.5 Points and Vectors . 18
2.3.6 Matrices . 19
2.3.7 Histograms . 19

2.4 Programming Idioms . 19
2.4.1 Compressed Images . 19

3 Theory 20
3.1 Cubic Spline Transform . 20

4 Pyvox Reference 21
4.1 Listing by Category . 22

4.1.1 Pyvox Modules . 22
4.1.2 Optional Features . 22
4.1.3 Types and Classes . 22
4.1.4 Type Objects . 23
4.1.5 Attributes of Pyvox Data Types 23
4.1.6 Data Export and Import 24
4.1.7 Array Creation . 24
4.1.8 Array Attributes . 25
4.1.9 Basic Array Manipulations 25
4.1.10 Type Conversions . 26
4.1.11 Arithmetic and Boolean Operations 27
4.1.12 Special Functions . 28
4.1.13 Other Elementwise Operations 28
4.1.14 Array Reduction Operations 29
4.1.15 Array and Image Metrics 29
4.1.16 Matrix and Vector Operations 29
4.1.17 Neighborhood Operations 30
4.1.18 Fourier and Other Transforms 30
4.1.19 Statistical Operations 31
4.1.20 Voxel Classification . 31
4.1.21 Connected Components 31
4.1.22 Other Image Operations 31
4.1.23 Affine Transforms . 32

2

4.1.24 Polynomial Transforms 33
4.1.25 Interpolation and Resampling 33
4.1.26 Image Registration . 33
4.1.27 Optimization . 34
4.1.28 Graphics, Drawing, and Display 34
4.1.29 Pyvox Development and Debugging 34

4.2 Full Descriptions . 35

5 Applications and Examples 114
5.1 Examples . 114
5.2 Applications . 115

6 Installation 116
6.1 Prerequisites . 116

6.1.1 ANSI C (1999) Compiler 116
6.1.2 Posix C Libraries . 117
6.1.3 Python . 117
6.1.4 X11 . 117
6.1.5 Tcl/Tk and Tkinter . 117
6.1.6 Pmw: Python Mega Widgets 117
6.1.7 Motif/Lesstif . 118
6.1.8 LAPACK and BLAS 118
6.1.9 Miscellaneous . 118

6.2 Particular Platforms . 119
6.2.1 Linux . 119
6.2.2 Darwin (Mac OS X) 119
6.2.3 Solaris . 120
6.2.4 IRIX . 120

6.3 Installation Locations . 121
6.4 Procedure . 121
6.5 Upgrading Old Installations 123
6.6 Configuration Options . 123
6.7 Make Targets . 125

7 Implementation 127
7.1 Some History . 127
7.2 Design Decisions and Rationale 128

7.2.1 Target Audience . 128

3

7.2.2 Target Platform . 129
7.2.3 Open Source License 129
7.2.4 Large Images . 130
7.2.5 Image Operations . 130
7.2.6 Focus on the Core Engine 131
7.2.7 One Glue Language . 131
7.2.8 Installation Prerequisites 131
7.2.9 Moderate Portability 132
7.2.10 Efficiency Tradeoffs . 133
7.2.11 Parallel Processing . 134
7.2.12 Data Typing . 134
7.2.13 Limited Number of New Types 134
7.2.14 Short Function Names 135
7.2.15 External Data Formats 135
7.2.16 Internal Data Formats 135
7.2.17 Random Variates . 136
7.2.18 Error Management . 136
7.2.19 Regression Tests . 138
7.2.20 C . 139
7.2.21 Python . 139
7.2.22 LaTeX . 140
7.2.23 LAPACK and BLAS 140
7.2.24 Vectorization over Rows 141
7.2.25 FIXME Notes . 141
7.2.26 Generic Types and Pointers 142
7.2.27 Data Conversion . 142
7.2.28 Signed Sizes and Indices 145
7.2.29 Upcalls . 145
7.2.30 Inlineable Functions 146
7.2.31 The /usr/bin/env Hack 147

7.3 Open Issues . 147
7.3.1 Merging Pyvox and Voxel Arrays 147
7.3.2 Commented Data Files 147
7.3.3 Parameter Files . 147
7.3.4 Image Views . 148
7.3.5 Huge Images . 148

7.4 Development Prerequisites . 148
7.5 Directory Layout . 149

4

7.6 Architecture and Code Organization 150
7.6.1 Voxel Kit . 150
7.6.2 Pyvox . 151
7.6.3 Numerical Methods . 151
7.6.4 Applications . 151
7.6.5 Examples . 151
7.6.6 Test Scripts . 152

7.7 Make Targets . 152
7.8 The Testmode Script . 152
7.9 Coding Style . 153

7.9.1 Rationale . 153
7.9.2 The Rules . 153
7.9.3 The Old Regime . 158

7.10 Coding Hacks . 159
7.10.1 Bugs in Python 1.5.2 159
7.10.2 Solaris isalpha Bug . 160
7.10.3 getsubopt Bug . 160

7.11 Release Checklist . 160

5

List of Tables

2.1 Internal numeric types . 11
2.2 External numeric types . 11

7.1 Parsing Python Arguments . 143
7.2 Converting between C and Python. 144
7.3 Converting between C and the Voxel Kit 144
7.4 Converting between Python and the Voxel Kit 144
7.5 Converting between Python and external data formats 145
7.6 Converting between C and external data formats 145

6

Chapter 1

Introduction

1.1 Overview of Pyvox

Pyvox (formerly known as BBLimage) is a set of software tools for medical
image processing, particularly skull stripping, registration, and segmentation
of MR brain images; tools to support other applications may be added later.
These tools are intended to support researchers who need to prototype new
image analysis algorithms or to develop automated image analysis tools for
specific image analysis applications. The sequence of processing operations
is specified through a scripting language which can be used interactively or
in command files; the language used is an extension of Python.

Important design criteria for Pyvox include: script files and data files are
portable across multiple Unix platforms, including Linux; suitable for rapid
prototyping of new algorithms and analysis protocols; suitable for efficient,
automated processing of the finished analysis protocols; and easily extensible
by programmers outside the original development team.

Pyvox is being distributed under an Open Source license which permits
free use, modification, and redistribution provided that proper credit is given.

1.2 Design Goals

Pyvox is a set of software tools being developed for medical image processing
with a particular emphasis on brain masking and segmentation of magnetic
resonance brain images; tools to support other applications may be added
later. These tools are intended to support researchers who need to proto-

7

type new image analysis algorithms or to develop automated image analysis
tools for specific image analysis applications. The particular sequence of
processing operations is specified through a scripting language which can be
used interactively or in command files; the language used is an extension of
Python.

1.2.1 Medical Image Processing

Pyvox is designed primarily for medical image processing, because that is
what the author needs to do most; other applications of volume images are
no doubt possible, but their needs come second.

1.2.2 Rapid Prototyping

Pyvox should be suitable for rapid prototyping of new algorithms and anal-
ysis protocols. To do this, it is implemented as a extension to the Python
language. Python is a high-level object-oriented scripting language which
can be used interactively or in programmed scripts and which is designed to
be easily extensible in C.

1.2.3 Efficient Execution

Pyvox should also be suitable for efficient, automated processing of the fin-
ished analysis protocols. To do this, the actual image processing functions
are written in C, which is more efficient than Python.

1.2.4 Software Portability

The script files that define the analysis protocols and the programs that
they invoke should be portable across multiple Unix platforms (including
Linux). To meet this requirement, Pyvox is written to comply with the
usual standards, including ANSI C, Posix, and the X Window System.

1.2.5 Data Portability

The image files and other data files should also be portable across multi-
ple Unix platforms, and easy access should be provided to common medical
imaging file formats. In particular, it should be possible to create an image

8

file on a big-endian machine (e.g. Sparc), copy it to a little-endian machine
(e.g. Pentium), and further process that image without needing to do any
conversion of the file. This is accomplished through a set of portable C func-
tions that can read and write data in specified external formats, converting
as necessary to or from the platform-native format.

In addition, since some medical image formats are not well standardized,
low-level read and write access should be provided to the raw header and
image data itself; the user who needs such access, however, may need to
work with the internals of Pyvox.

1.2.6 Open-Source Development

Pyvox should also be easily extensible by programmers outside the original
development team. This is accomplished by following good software en-
gineering practice in documenting the software for later maintenance and
extensions.

1.3 Architecture

In order to be both efficient and easy to use, Pyvox is designed using a layered
approach. The top layer consists of several Python extension modules for
image processing, written in a combination of Python and C, and effectively
creating an image processing extension to the Python programming language.
Image analysis scripts are written in Python and work with functions and
objects defined by Pyvox. Code at this level is inefficient but usually accounts
for only a tiny fraction of the total run time.

The middle layer consists of the Voxel Kit, which is a collection of C-
language functions for high-level image processing operations such as convo-
lution, object extraction, and statistical analysis. Many of these functions
are made directly available to the user through Pyvox; others are used only
internally. These functions can also be called from C programs; access from
languages other than C and Python is possible, but may require writing a
set of wrapper functions.

The bottom layer consists of BIPS, the basic image processing subrou-
tines, which are a relatively small set of C functions for elementary image
processing functions such as image arithmetic and are written for high ef-
ficiency; if needed, these subroutines can be hand optimized for a specific

9

platform. For those familiar with numerical linear algebra, the relationship
between the Voxel Kit and BIPS is essentially the same as between LAPACK
and BLAS. BIPS probably accounts for 95% or more of the total run time,
so efficiency improvements here have a dramatic effect.

In addition, the quick diagnostic viewer qdv provides interactive exam-
ination of image files and is implemented using Motif and the X Window
System.

1.4 Capabilities

Pyvox is designed to work directly with multi-dimensional image data (up
to 8 dimensions) in signed integer, unsigned integer, and floating point for-
mats from 1 to 8 bytes long. Currently supported operations on such arrays
include:

• Reading or writing image files in signed integer, unsigned integer, and
floating point formats, both big and little endian. For data portability,
external files are always written in some specified external format (e.g.
big-endian 2-byte two’s complement integer or big-endian 4-byte IEEE
754 float), and converted to or from the native format as necessary.

• Image arithmetic, including boolean operators, comparison, transce-
dental functions, table lookup, and min/max.

• Image resampling to new coordinate systems.

• The morphological operations erode and dilate.

• Univariate and bivariate histograms.

• K-means and nearest neighbor classification.

• Object extraction, where an object is defined as a maximal connected
set of voxels.

• Convolution and linear filtering.

• Fourier transforms.

• A basic set of matrix operations.

10

• Interactive image viewing along any coordinate axis with intensity win-
dowing and selection of data format (which is also useful for determin-
ing the format of a unknown image file).

• Interactive modification of images, especially for manual correction of
not-quite-correct automatically masked and segmented images.

• Automated image registration.

Additional capabilities will be added as determined by the needs of Pyvox
users. Some areas that are currently under consideration include:

• Improved masking and segmentation algorithms, including handling of
shading and partial volume effects.

• Tools for validating brain masking and segmentation algorithms.

1.5 Current Status

Pyvox is still under development, which means that the interface is subject to
change without notice when we discover a better way of doing things. Those
who want to use it for brain research will need to take care to maintain some
stable version themselves and to beware of bugs. We will try to ensure that
the NEWS file in the distribution kit will identify any incompatible changes
between versions, but you should expect to have to periodically modify old
scripts for compatibility with newer versions of Pyvox. Once we reach version
1.0, we will try to keep the interface stable. The “Open Issues” section in
the Implementation chapter indicates some areas in which changes are likely.

1.6 Distribution

Pyvox is being distributed under an Open Source license which permits free
use, modification, and redistribution provided that proper credit is given.
There is no warranty. The file COPYING gives the precise license, which is
a variant of the BSD license. People who fix bugs or make generally useful
improvements are requested to send the modifications back to the author to
be folded into the master copy.

11

Prerequisites for this software include an ANSI C compiler, make, POSIX
libraries, the X Window System, and Python binaries and header files. The
software is known to compile with gcc for both Linux on Intel and Solaris on
Sparc. Porting to other compilers and Unix platforms should be straightfor-
ward.

Pyvox is still preliminary, alpha software, although there is now enough
functionality to support some practical applications. The source code is
available from the BBL website at http://www.med.upenn.edu/bbl in the
Publications and Downloads section.

1.7 Open Source Licensing

We are distributing this code under an open source license (which permits
free modification and distribution) for several reasons. First, we believe that
software is a form of scientific knowledge and that science advances most
rapidly when we can build on each other’s work rather than re-implementing
the wheel. We hope that the people who find our software useful will recip-
rocate by contributing bug fixes and other improvements to be folded back
into our master copy for future releases. Second, we find that we write bet-
ter software when we expect that dozens of people will be reading our code
than when we are writing just for ourselves. Finally, we would rather spend
our time doing science rather than trying to monitor and enforce a more
restrictive license.

1.8 Support

Pyvox comes with absolutely NO warranty or support. Nevertheless, it is
currently being maintained by Paul Hughett

<hughett@bbl.med.upenn.edu> ,

who will simulate pleasure at receiving bug reports and who might actually
even do something about them. Bug fixes and other improvements are really
welcome.

12

1.9 How to Contribute

If you have found Pyvox useful and would like to contribute to its further
development, there are several things that you can do, most of which will get
your name added to the Credits file:

1. Use Pyvox in a research project and let us know how it worked for
you.

2. Use the programs and send us bug reports so that we can fix the bugs
in future editions.

3. Fix the bugs yourself, and send us the fixes to be included in future
editions.

4. Port Pyvox to another platform, and send us the changes that you had
to make to get it to work. If it didn’t need any changes, tell us so we can
pat ourselves on the back for writing really portable software.

5. Think of some feature that Pyvox really needs, and implement it. Send
us the code and documentation.

13

Chapter 2

Programming with Pyvox

2.1 Data Types

2.1.1 Internal Numeric Types

Pyvox supports most of the numeric types provided by C. (An exception
is plain char; both signed and unsigned char are supported, however.) The
properties of these types are inherited from the C implementation underlying
Pyvox, including their length and arithmetic behavior. Table 2.1 gives the
type names defined in the exim module for these types.

2.1.2 External Numeric Types

The exim module defines a set of external data types which describe the
format of numeric data stored in files or other external media, and provides
tools for converting these external representations to suitable internal nu-
meric types. Each of these external types can be stored in either big- or
little-endian byte order; the choice of byte order is specified by a separate
flag. A byte is assumed to be exactly 8 bits. Table 2.2 shows the external
types that are currently defined; it is possible to add others, but these have
been found sufficient for the present.

14

Table 2.1: Internal numeric types

Pyvox name C name Description
none Undefined or unspecified type
uchar unsigned char
ushort unsigned short
uint unsigned int
ulong unsigned long
schar signed char
short (signed) short
int (signed) int
long (signed) long
float float
double double
fcomplex float complex
dcomplex double complex

Table 2.2: External numeric types

Name Length Description
uint1 1 Unsigned integer
uint2 2 Unsigned integer
uint4 4 Unsigned integer
int1 1 Two’s complement signed integer
int2 2 Two’s complement signed integer
int4 4 Two’s complement signed integer
float4 4 IEEE-754 floating point
float8 8 IEEE-754 floating point
complex8 8 Real, imag pair of float4s
complex16 16 Real, imag pair of float8s

15

2.1.3 Pyvox Arrays

The Pyvox array is the principal data type used within Pyvox; it is a homo-
geneous multi-dimensional array of one of the internal data types listed above.
The type of the array is the internal data type stored in the array. The
number of dimensions, or rank, ranges from zero to eight inclusive. The
dimensions themselves are presented as a tuple of numbers, each giving the
size of the array along one axis. The coordinates along each axis begin at zero
and range up to (but not including) the dimension along that axis. The type,
rank, and dimensions of an array are available as the read-only attributes
array.type, array.rank, and array.size; in addition, the dimensions can be
changed by the function array.reshape(). Most operations on arrays require
that the operands have the same type, rank, and dimensions; a plain number
is usually acceptable and acts like an array of the appropriate type, rank,
and dimensions. The exceptions to this rule are discussed in the descriptions
of the individual operations.

By convention, the last three axes are typically known as the slice, row,
and column and denoted z, y, and x. A multi-band image is often stored with
the band indexed along the last axis; for example, a three-dimensional RGB
image would usually be stored with indices slice, row, column, and band in
that order.

The data elements are stored sequentially, with the last index varying
most rapidly. The total number of elements in the array may be accessed
through the Python function len().

The rank of a Pyvox array may be zero, in which case the array is called
a scalar array. A scalar array always contains exactly one element, which is
indexed by an empty subscript list. As of Python 1.5.2, however, a empty
subscript list is not allowed; as a workaround, a scalar array will accept (and
ignore) a single subscript. A Pyvox array of any rank that contains only a
single element is known as a singleton. In most contexts where a value is
required, a scalar or singleton array acts as if it were a number.

Any desired element of a Pyvox array can be accessed or assigned to using
the subscript notation. For example, a[0,1,2] evaluates to the element at
slice 0, row 1, column 2 of a three-dimensional array; assigning to the same
expression will alter the value of that element. As a special case, providing
a plain number as a subscript will be treated as an index into the array
considered as a one-dimensional vector. Using the subscript expression as an
argument to a subroutine will pass the value of the element to the subroutine;

16

assigning to the corresponding formal argument in the subroutine will not
affect the array. (This is consistent with the passing of list elements to
subroutines.)

FIXME: Should there be some way to pass a reference to the element
to a subroutine? Perhaps a way to create a singleton array slice which is
distinguishable from a plain number?

The array type is conventionally used to represent certain types of data,
including monochrome and RGB images, points, vectors, histograms, and
matrices; these are discussed under Conventions.

Origin and Spacing

The origin attribute of a Pyvox array gives the physical coordinates corre-
sponding to the voxel indexed by (0, 0, . . .); the spacing attribute gives the
physical distance between successive elements on each axis. Both the origin
and spacing attributes may be read and set. If any spacing value is set to
zero, it indicates that the physical spacing is unknown or not meaningful;
for example, the spacing along the red/green/blue axis should be set to zero.
If no particular physical coordinates are defined, then origin should be set
to zero, and spacing to all ones. In most cases, all operands to an array
operation must have the same origin and spacing and the result will have
the same origin and spacing as the operands. Matrix operations are gen-
erally exempt from this requirement; other exceptions are discussed in the
descriptions of the individual operations.

Other Array Metadata

Other metadata is stored in the attributes array.metadata, array.header,
and array.userdata, each of which is a dictionary reserved for specific kinds
of information. The array.metadata attribute contains information about
the file from which the array was read, or to which it will be written;
other sorts of information may be added in the future. In addition, the
array.header attribute contains the image file header in relatively uninter-
preted form and can be used (if necessary) for low-level manipulation of the
format details; this should not normally be necessary. The array.userdata
attribute is reserved for the user, into which he may store any informa-
tion that he wishes. These three dictionaries are kept separate to avoid key
clashes; otherwise, adding new keys for file information or field names for

17

new data formats would risk breaking existing code.
None of array.metadata, array.header, or array.userdata is checked or

copied during normal array operations, although there is a specific method
array.metacopy() for copying their contents from one array to another. See
the appropriate entries in the reference section of this manual for additional
details.

2.1.4 Array Slices

An array slice is a subset of a Pyvox array obtained by selecting only certain
index values along each axis. The permissible forms for each axis are a single
number; a list or tuple of numbers; or a slice object.

A slice object is written in the form init:limit:stride. If stride is omitted
or None, it defaults to 1; it may not be zero. If init is omitted or None, it
defaults to zero if stride is positive and to the length of that dimension minus
one if stride is negative. If limit is omitted or None, it defaults to the length
of that dimension if stride is positive and to −1 if stride is negative. If init
or limit is not defaulted and is negative, the length of that dimension is
added to it. The colon used alone means all the indices along the given axis.
In addition, the ellipsis object “...” may be used once in a subscript list to
indicate that all index values from the unspecified axes are to be selected.
Here are some examples, assuming that the length of the dimension is 10:

: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

::-1 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

1: 1, 2, 3, 4, 5, 6, 7, 8, 9

:9 0, 1, 2, 3, 4, 5, 6, 7, 8

1:9 1, 2, 3, 4, 5, 6, 7, 8

::2 0, 2, 4, 6, 8

::-2 9, 7, 5, 3, 1

There are some special cases that the user should be aware of. If A

and B are Pyvox arrays, then A[...] = B assigns the elements of B to A,
without changing the shape of A, provided that the number of elements in
B is either exactly one or exactly the same as the number of elements of A.
Using A[...] as an expression yields a copy of A, retaining the shape and
contents. (NOTE that A[...] will become an array slice rather than a copy
in some future version of Pyvox.) Logically, if A is a scalar, or zero rank
array, then subscripting with no arguments, or A[], should yield the number

18

contained in A; Python (1.5.2, anyway) is not so logical, so Pyvox allows you
to provide any subscript to a scalar array, and ignores it.

FIXME: The implementation of array slices is currently in flux. Eval-
uating an array slice, or assigning to one will behave correctly. However,
passing one as a subroutine argument passes a copy of the slice rather than
a reference to it, as is done for lists and other mutable objects. This can be
expected to change in future releases, with array slices becoming first-class
objects.

2.1.5 Affine Transforms

An affine transform is a mapping of the form y = Ax+ b where A is a matrix
and b is a vector; that is, it is a linear transform plus a constant offset.
An affine transform is represented within Pyvox as its own class, containing
the matrix A and the offset b. Points to be transformed are represented
by column vectors as Pyvox arrays. The difference between two points is a
vector and transforms as v = Au; the distinction corresponds to two different
methods in the affine transform class.

Affine transforms may be composed to yield another affine transform.
The order is significant; we will say that A is precomposed with B if they
are applied to a point in the order A then B. Conversely, A is postcomposed
with B if B is applied first, then A. A flag argument is used to indicate
whether to pre- or postcompose; it defaults to postcomposition.

2.1.6 Neighborhood Kernels

A neighborhood kernel (or just kernel) is used to specify the neighboring
voxels and coefficients used in a convolution; more generally, it is also used
to specify the neighborhood in other neighborhood operations such as dila-
tion and erosion. The rank of a kernel is the number of dimensions. The
count of a kernel is the number of voxels in the neighborhood defined by the
kernel, possibly including the center voxel. Each neighbor is associated with
a coefficient, which convolution multiplies by the value at the neighbor. The
position of each neighbor is given by a delta, which is a list of coordinate
offsets relative to the center voxel. The bias is a number, which is added to
the sum computed by convolution; it can be used to offset the convolution
output to fit within a desired range.

FIXME: Check which of these attributes are read-only or read/write.

19

2.1.7 Objects

Pyvox provides tools for extracting the objects in a 3D image, where an object
is defined as a maximal connected set of non-zero voxels (where each voxel is
considered to be connected to its 26 nearest neighbors). The implementation
of object extraction in the Voxel Kit is relatively complete, and each object
is defined by an id, a canonical id, a point on the object, and a count of
voxels contained in the object. The implementation at the Pyvox level is
incomplete, and all you can get is a mask showing the voxels contained in
the largest object; the issue has been to decide exactly how to represent
objects within Pyvox.

Most fast algorithms for finding objects in an image have the characteris-
tic that they sometimes assign different id numbers to two apparently distinct
objects that are later found to be parts of the same object. When this hap-
pens, one object id is taken as canonical and the canon field of the other
is set to this canonical id; furthermore, the count field of the non-canonical
object is added to that of the canonical object and then set to zero. The
canonical object number is distinguished by the fact that its canon field is
equal to its ident field. The point coordinates of the non-canonical object
are left unchanged, although it’s not clear that they are useful for anything.
The ident (and canon) fields are limited to the size of unsigned short to
facilitate later table lookup on object idents. If you have more than 65535
objects in an image, you’re out of luck, at least with the current version of
Pyvox. Ident 0 is always reserved for the background.

FIXME: find a less overloaded name for these? Perhaps blob?
FIXME: The information needed to compute the moments would also be

useful, as would a set of run-length codes giving the voxels in the object.

2.2 Error Management

Almost all errors detected by Pyvox are converted to Python exceptions
which can be caught by the try ... except statement; if uncaught, they
normally cause Python to terminate. The exceptions are currently of type
PythonError but may be converted to the various standard Python excep-
tions in the future; the text string accompanying the exception gives a more
detailed description of the error. There are a few errors—mostly assertion
failures or other events beyond the control of the Pyvox user—which are fa-

20

tal and cause the program to abort; these are gradually being converted to
exceptions.

2.3 Programming Conventions

This section describes some conventions which are not required by Pyvox,
but which are normally used; in particular, these conventions are used in
describing the various functions and methods provided.

2.3.1 Coordinate Systems

Following the usual convention in C (which differs from Fortran), multi-
dimensional arrays are stored with the last coordinate varying most rapidly.
A set of voxels for which the last coordinate is constant is called a row, and
a set for which the last two coordinates are constant is called a slice; there
isn’t any established name for larger aggregates. The last three coordinates
are called z, y, and x in that order; note carefully that this differs from the
usual mathematical convention.

Pyvox arrays typically represent a rectangular sampling of some physical
property and specify the origin and spacing of the samples in some physical
coordinate system; the origin and spacing may be set to zero and one when
the physical coordinate system is unknown. An array element may be referred
to using either its array indices or its physical coordinates. The first of these
is defined as “index” coordinates, and the second as “physical” coordinates.

2.3.2 Uninterpreted (Raw) Data

Data which has been read from a file but not yet interpreted as useful data
is usually represented by a rank-1 array of type unsigned char; that is, as
raw binary data. For example, an image viewer might read an image file of
unknown format as raw data and allow the user to interactively experiment
with different interpretation until he finds the one that works. The functions
in exim provide the means for interpreting raw data as integers, floats, or
whatever.

21

2.3.3 Image Data

Images which contain a single echo or band of information per pixel are
conventionally stored as Pyvox arrays of the appropriate rank and type.
In most cases, it is appropriate to set the origin and space attributes to
indicate the relationship between index coordinates and physical coordinates.

Images which contain multiple echoes or bands per pixel are convention-
ally stored with the last dimension running over the defined bands; note that
this does require that all bands be representable in the same data format.

2.3.4 RGBA Images

Two-dimensional images intended for immediate display via the X Window
System or other display interface are usually stored as a rank 3 unsigned
char array, where the last dimension runs over the components per pixel. The
possible values of the last dimension and the interpretation of the components
are show in the table below. If the number of components is 1, then it is
usually safe to reduce the array to rank 2.

Dimen Components
1 Luminance (gray level)
3 Red, green, blue
4 Red, green, blue, alpha

2.3.5 Points and Vectors

The canonical representation of a geometrical point or vector in n dimensions
is an n×1 column vector of type double containing its (physical) coordinates,
but most functions and methods that expect points will also accept a row
vector, 1-dimensional array, list, or tuple containing numbers of any type
whenever its meaning is unambiguous.

There are a few instances, notably in the affine transforms, where it is
necessary to distinguish between points and vectors; the distinction is that
a vector is considered to be the difference of two points and is affected only
by the matrix part of an affine transform.

22

2.3.6 Matrices

The canonical representation of a matrix (or linear transform) is an n ×
m array of type double using physical coordinates, but most functions and
methods that expect matrices will also accept a two-dimensional array of any
numeric type, or nested tuples and lists. For example, the matrix

[

1 2
3 4

]

could be represented by the nested lists [[1,2], [3,4]].

2.3.7 Histograms

The histogram of an usigned char or short image is conventionally represented
as a 256- or 65536-element rank-1 array of type unsigned long; histograms of
other array types have not yet been implemented but will probably follow a
similar pattern.

2.4 Programming Idioms

The right way to do things in Pyvox is not always obvious. In this section
we describe some of the less obvious programming idioms.

2.4.1 Compressed Images

Volume image files are typically large and it is useful to compress them for
long-term storage. Pyvox tries to make it easy to handle compressed files
transparently. If an image file name given for reading does not exist, a corre-
sponding compressed or gzipped file will be sought, and silently uncompressed
as needed. If an image file name given for writing ends in the appropriate
extension, it will be automatically compressed after being written. There is,
however, one situation where the transparency breaks down. If you read a
file such as foo.img which exists as the compressed file foo.img.Z, read-
ing will silently use the compressed file; but when you attempt to write an
updated image file to the original name foo.img, it will not be compressed.
The pyvox.truefile() function can be used to determine the true file name
of a possibly compressed file, whereupon you can write back to the true file
name.

23

Chapter 3

Theory

This chapter details the mathematical theory behind some of the more es-
oteric operations, primarily to establish the notation and its relationship to
the softare parameters; a full explanation is left to more tutorial texts. The
choice of topics in this chapter is selective, because I don’t have time to
explain all the background.

3.1 Cubic Spline Transform

Image warps are often defined within Pyvox using a coordinate transform
based on cubic Hermite splines. To fix notation, we suppose that such a
transform maps from an M -dimensional space to an N -dimensional space.
The spline is defined over a rectangular grid containing R0×R1×· · ·×RM−1

nodes in total. At each node r = (r0, r1, . . . , rM−1) of this grid is given an
offset br and matrix Ar which define the local affine transform at that node.

24

Chapter 4

Pyvox Reference

This chapter describes in detail the functions, methods, and attributes pro-
vided by Pyvox. The first section is a listing by category, which is useful
for finding the function that provided some desired capability; the second
section is in alphabetical order and provides a complete description.

Much of the functionality of Pyvox is provided by methods belonging to
objects of some given type or class, and invoked as an attribute of the object.
For instance, if affine is some expression which evaluates to an instance of an
affine transform, then affine.inverse() computes and returns the inverse of
that transform. Such methods are listed here under the name of the class or
type; in this example, affine.inverse(). Similarly, the italicized word array
indicates an expression which evaluates to a Pyvox array; kernel indicates a
Pyvox kernel.

Optional positional arguments are written in italic type and followed by
an equal sign and the default value. Keyword arguments are written in a
typewriter font; if optional, they are followed by an equals sign and the
default value. In either case, the default value ??? means the default value
is given in the description below.

25

4.1 Listing by Category

4.1.1 Pyvox Modules

Importable Pyvox Modules
exim Data export and import
optim Optimization functions and classes
pyvox Pyvox core types and functions
reged Generic interactive region editor
regis Image registration classes and functions
tkphoto Access to Tkinter PhotoImage objects

4.1.2 Optional Features

Optional Features
pyvox.have complex Are complex types supported?

4.1.3 Types and Classes

Types and Classes
affine N -dimensional affine transform
array Multi-dimensional numeric array
ccmap Connected components in an image
exim.extypes Tuple of all the external array types
exim.intypes Tuple of all the internal array types
kernel Generalized convolution kernel
obaffine Affine transform to be optimized
obfun Objective function to be optimized
obrigid Rigid transform to be optimized
poly N -dimensional polynomial transform
tkphoto Wrapper around a Tkinter PhotoImage object
type Pyvox data type (internal or external)

26

4.1.4 Type Objects

Type Objects
pyvox.AffineType Class object for an affine transform
pyvox.ArrayType Type of a Pyvox array
pyvox.KernelType Type of a Pyvox kernel
pyvox.PolyType Class object for a polynomial transform

4.1.5 Attributes of Pyvox Data Types

Attributes of Pyvox Data Types
type.code Numeric type code used in Pyvox C code
type.complex Complex type with equal or better precision
type.desc Description of the type, as a string
type.epsilon Smallest ε > 0 such that 1 + ε > 1
type.extype Natural external type for an internal type
type.intype Natural internal type for an external type
type.iscomplex Is this a complex-valued types?
type.isfloat Is this a floating-point type?
type.isint Is this an integral type?
type.isreal Is this a real-valued type?
type.isunsigned Is this an unsigned type?
type.name Name of type, as a string
type.nbytes Number of bytes per element
type.real Real type with equal precision

27

4.1.6 Data Export and Import

Data Export and Import
array.print() Print contents of a Pyvox array
array.write() Write contents of a Pyvox array
array.writeppm() Write Pyvox array as a PPM image file
array.writepgm() Write Pyvox array as a PGM image file
array.writeraw() Write Pyvox array as a raw image file
exim.dump() Dump struct contents from dict
exim.pack() Pack dict into struct per format
exim.unpack() Unpack struct into dict per format
pyvox.rawread() Read a Pyvox array in raw data format
pyvox.read() Read a Pyvox array in various formats
pyvox.truefile() True name of a possibly compressed file

4.1.7 Array Creation

Array Creation
pyvox.array() Create an array from given data
pyvox.column() Create column vector from given data
pyvox.const() Deprecated alias for pyvox.array()
pyvox.diag() Create a diagonal matrix from given data
pyvox.fftramp() Create an FFT frequency ramp
pyvox.matrix() Create a rank-2 matrix from given data
pyvox.point() Create coordinate point from given data
pyvox.ramp() Create array with coordinate indices
pyvox.randi() Create array of random integers
pyvox.randn() Create array of normal random variates
pyvox.randu() Create array of uniform random variates
pyvox.vector() Create rank-1 vector from given data

28

4.1.8 Array Attributes

Basic Array Manipulations
array.header Dictionary with image file header info
array.metadata Dictionary for metadata
array.origin Physical coordinates of origin
array.rank Rank, or number of dimensions
array.size Dimensions of an array
array.spacing Physical spacing of coordinate planes
array.type Type of data in an array
array.userdata Dictionary reserved for the user

4.1.9 Basic Array Manipulations

Basic Array Manipulations
array[] Element or slice
array[] = expr Assign to element or slice
array.copy() Copy contents and attributes
array.count() Number of elements in an array
array.i2p() Index-to-physical transform
array.list() Elements as a Python list
array.metacopy() Copy selected metadata
array.p2i() Physical-to-index transform
array.reshape() Change the shape of an array
array.tuple() Elements as a Python tuple
len(array) Number of elements (Python bug!)

29

4.1.10 Type Conversions

Type Conversions
array.cast() Convert to specified type
array.dcomplex() Convert to double complex
array.double() Convert to double
array.fcomplex() Convert to float complex
array.float() Convert to float
array.int() Convert to int
array.long() Convert to long
array.short() Convert to short
array.schar() Convert to signed char
array.uchar() Convert to unsigned char
array.uint() Convert to unsigned int
array.ulong() Convert to unsigned long
array.ushort() Convert to unsigned short

30

4.1.11 Arithmetic and Boolean Operations

Elementwise Arithmetic and Boolean Operations
-array Additive inverse
+array (Copy?)
array + array Addition
array - array Subtraction
array * array Multiplication
array / array Division
array % array Remainder
~array Bitwise negation
array & array Bitwise AND
array | array Bitwise OR
array ^ array Bitwise XOR
array == array Equal
array != array Not equal
array < array Strictly less than
array <= array Less than or equal
array > array Strictly greater than
array >= array Greater than or equal
array.abs() Absolute value
abs(array) Absolute value (deprecated)
array.carg() Complex argument
array.ceil() Ceiling
array.cmove() Conditional move
array.compare() Comparison of two arrays
array.conj() Complex conjugate
array.floor() Floor
array.fma() Fused multiply-add x ∗ y + z
array.imag() Imaginary part
array.max() Maximum of two arrays
array.min() Minimum of two arrays
array.real() Real part

31

4.1.12 Special Functions

Special Functions
array.acos() Arc cosine
array.asin() Arc sine
array.atan() Arc tangent
array.atan2() Two-argument arc tangent
array.cbrt() Cube root
array.cos() Cosine
array.cosh() Hyperbolic cosine
array.erf() Error function
array.erfc() Complementary error function
array.exp() Exponential
array.exp2() Exponential to base 2
array.expm1() Exponential ex − 1

array.hypot() Hypotenuse
√

x2 + y2

array.lgamma() Log of gamma function
array.log() Natural logarithm
array.log10() Logarithm to the base 10
array.log1p() Logarithm log(1 + x)
array.log2() Logarithm to the base 2
array.pow() Power
array.sin() Sine
array.sinh() Hyperbolic sine
array.sqrt() Square root
array.tan() Tangent
array.tanh() Hyperbolic tangent
array.tgamma() Gamma function

4.1.13 Other Elementwise Operations

Other Elementwise Operations
array.logcomp() Log intensity compression
array.lookup() Lookup table
array.scale() Scale by constant gain and bias

32

4.1.14 Array Reduction Operations

Reduction Operations
array.amax() Maximum value along specified axes
array.amin() Minimum value along specified axes
array.aprod() Product of array elements
array.asum() Sum of array elements
array.mean() Mean of elements along specified axes

4.1.15 Array and Image Metrics

Array and Image Metrics
array.dot() Vector dot product of two arrays
array.norm1() Vector 1-norm of an array
array.norm2() Vector 2-norm of an array
array.normsup() Vector sup-norm of an array
regis.correl() Weighted correlation of two images
regis.info() Information content of an image
regis.mutinfo() Mutual information of two images

4.1.16 Matrix and Vector Operations

Matrix and Vector Operations
array.cholesky() Cholesky decomposition
array.cross() Vector cross product in 3-d
array.det() Determinant of a square matrix
array.diag() Extract diagonal elements of a matrix
array.eigsy() Solution of symmetric/Hermitian eigensystem
array.H() Complex conjugate (Hermitian) transpose
array.inverse() Matrix inverse
array.mmul() Matrix multiplication
array.prinaxes() Principal axes transformation
array.solve() Solve the linear system AX = B
array.svd() Singular value decomposition
array.T() Transpose of a matrix
array.trans() Transpose of a matrix

33

4.1.17 Neighborhood Operations

Neighborhood Operations
array.convolve() Convolution with optional subsampling
array.dilabel() Dilation of a label image
array.dilate() Dilation of a binary image
array.erode() Erosion
array.lostat() Local mean and variance
array.lowpass() Lowpass filter with optional subsampling
kernel.bias Bias term of a kernel
kernel.coef Coefficients of a kernel
kernel.count Number of neighbors in a kernel
kernel.delta Neighbor offsets for a kernel
kernel.rank Rank of a kernel
pyvox.kernel() Create a kernel
pyvox.lowpass() Create a standard lowpass kernel

4.1.18 Fourier and Other Transforms

Fourier and Other Transforms
array.fft() Fast Fourier transform
array.ifft() Inverse fast Fourier transform
pyvox.fftramp() Create an FFT frequency ramp

34

4.1.19 Statistical Operations

Statistical Operations
array.bihist() Bivariate histogram
array.histo() Univariate histogram
array.kmeans1() Train K-means classifier
array.lostat() Local mean and variance
array.mean() Mean of elements along specified axes
array.minmax() Minimum/maximum values within array
array.moments() Center of gravity and principal moments
array.mop() Arbitrary moments of a product of images
array.stat() Mean and standard deviation of elements
pyvox.monomials() Monomials of degree ≤ n in k literals
regis.correl() Weighted correlation of two images
regis.info() Information content of an image
regis.mutinfo() Mutual information of two images

4.1.20 Voxel Classification

Voxel Classification
array.kmeans1() Compute K-means classifier
array.nnclass1() Univariate nearest neighbor classifier
array.nnclass2() Bivariate nearest neighbor classifier

4.1.21 Connected Components

Connected Components
array.bigob() Extract largest object in image
ccmap.bigob() Largest connected component
ccmap.count() Number of pixels in a connected component
ccmap.map() Connected component each pixel belongs to
ccmap.regions() List of connected components found
ccmap.seed() Seed point in a connected component
pyvox.ccmap() Find connected components of an image

4.1.22 Other Image Operations

Other Image Operations
array.chamfer() Compute chamfer distance transform

35

4.1.23 Affine Transforms

Affine Transforms
affine[] Get coefficient of transform
affine[] = value Set coefficient of transform
affine + other Coefficientwise sum of transforms
affine - other Coefficientwise difference of transforms
affine.addparam() Add vector of parameters to the transform
affine.compose() Compose with another affine transform
affine.compose2() Compose with given matrix and offset
affine.copy() Deep copy
affine.i2p() Compose with index-to-physical transform
affine.inverse() Inverse
affine.invert() Invert in place
affine.linear() Resample image with linear interpolation
affine.map() Coordinate map
affine.matrix Matrix part of affine transform
affine.nearest() Resample with nearest neighbor interpolation
affine.norm() Norm of an affine transform
affine.offset Constant part of affine transform
affine.p2i() Compose with physical-to-index transform
affine.param() Transform as a vector of parameters
affine.point() Transform a point
affine.rotate() Compose with a rotation
affine.rotate3d() Compose with a rotation around axis in 3-D
affine.scale() Compose with scale transform
affine.setparam() Set transform from a vector of parameters
affine.shear() Compose with elementary shear transform
affine.translate() Compose with translation
affine.vector() Transform a vector
pyvox.affine() Create an affine transformation

36

4.1.24 Polynomial Transforms

Polynomial Transforms
poly + other Coefficientwise sum
poly - other Coefficientwise difference
poly * number Scalar multiplication
poly.addparam() Add vector of parameters to the transform
poly.compose() Compose with an affine transform
poly.copy() Deep copy
poly.init() Initialize coefficients of transform
poly.linear() Resample image with linear interpolation
poly.map() Coordinate map
poly.norm() Norm of a polynomial transform
poly.param() Transform as a vector of parameters
poly.point() Transform a point
poly.scale() Compose with a scale transform
poly.setparam() Set transform from a vector of parameters
poly.translate() Compose with a translation
poly.truncate() Truncate to specified maximum degree
pyvox.poly() Create an polynomial transformation

4.1.25 Interpolation and Resampling

Interpolation and Resampling
affine.linear() Resample image with linear interpolation
affine.nearest() Resample with nearest neighbor interpolation
array.cubic() Cubic Lagrange interpolation within an array
array.linear() Linear interpolation within an array
array.nearest() Nearest neighbor interpolation in an array
poly.linear() Resample image with linear interpolation

4.1.26 Image Registration

Image Registration
regis.obaffine Obfunction for affine registration
regis.obregis Generic obfunction for image registration
regis.obrigid Obfunction for rigid registration

37

4.1.27 Optimization

Optimization
optim.obfunction Base class for an objective function
optim.powell Powell direction set method

4.1.28 Graphics, Drawing, and Display

Graphics, Drawing and Display
array.fill2d() Fill a 2D contour with a value
array.rgba2d() Extract 2D RGBA slice from raw data
reged.reged Generic interactive region editor
tkphoto.tkphoto() Construct and wrap a Tkinter PhotoImage
tkphoto.getimage() Extract contents of a Tkinter PhotoImage
tkphoto.handle Get Tk handle of a Tkinter PhotoImage
tkphoto.name Get Tk name of a Tkinter PhotoImage
tkphoto.putimage() Copy array into a Tkinter PhotoImage
tkphoto.size Get dimensions of a Tkinter PhotoImage
tkphoto.tkphoto Get Tkinter PhotoImage from its wrapper

4.1.29 Pyvox Development and Debugging

Pyvox Development and Debugging
pyvox.error action() Set action to take if an error occurs
pyvox.refcnt() Reference count of a Python object

38

4.2 Full Descriptions

affine [class instance]

An affine class instance represents a N -dimensional affine transform and
is typically created by calling pyvox.affine.

affine[row, col]

Returns the numeric value of the specified entry of the n×(n+1) element
array defining the affine transform, where n is the number of dimensions. The
row ranges from 0 to n − 1. The col ranges from 0 to n, where 0, . . . , n − 1
are the rotation matrix elements, and n is the offset.

affine[row, col] = value

Replaces the specified element of the n × (n + 1) element array which
specifies the affine transform, where n is the number of dimensions. The row
ranges from 0 to n − 1. The col ranges from 0 to n, where 0, . . . , n − 1 are
the rotation matrix elements, and n is the offset.

affine + other

Returns a new transform containing the coefficientwise sum of the trans-
forms affine and other. If other is an affine transform, then the result is
an affine transform; if other is a poly transform, then the result is a poly
transform.

affine - other

Returns a new transform containing the coefficientwise difference of the
transforms affine and other. If other is an affine transform, then the result

39

is an affine transform; if other is a poly transform, then the result is a poly
transform.

affine.addparam(parms)

Updates an affine transform by adding the contents of the vector parms to
the elements of the n×(n+1) matrix defining the affine transform, taking the
matrix elements in row-major order. This function is useful for optimization
algorithms that generate perturbations to an initial transform.

affine.compose(other, pre=0)

Updates affine to contain the composition of the affine transformations
affine and other ; returns the updated transform. If pre is 1, then precomposes
other with affine; if pre is 2 (or 0), then postcomposes other with affine; if
pre is −1, then precomposes the inverse of other with affine; if pre is −2,
then postcomposes the inverse of other with affine; any other value of pre is
an error.

affine.compose2(matrix=1, offset=0, pre=0)

Updates the affine transform affine by composing it with another affine
transform given by matrix and offset; returns the updated transform. If
matrix is a scalar, it is converted to a diagonal matrix with that value on
the diagonal; in particular, providing 1 yields an identity matrix. If offset
is a scalar, it is interpreted as a column vector containing that value at
each element; in particular, providing 0 yields a zero offset. The value of
pre determines the order in which the two transforms are composed; see
affine.compose() for the permitted values.

affine.copy()

Returns a new affine transform containing the contents and attributes of
the original affine transform but which shares no storage with it.

40

affine.i2p(origin, spacing, pre=0)

Updates affine by composing it with the index-to-physical transformation
given by origin and spacing; returns the updated transform. The value of
pre determines the order in which the two transforms are composed; see
affine.compose() for the permitted values.

affine.inverse()

Returns a new affine transform which is the inverse of the affine transform
affine.

affine.invert()

Updates affine to contain the inverse of the original transform; returns
the updated value.

affine.linear(image, dimen)

Resamples image through the affine transform given by affine to yield a
new Pyvox array with dimensions dimen and the same type as image. Linear
interpolation is used. The affine transform must be given as the destination-
to-source transform (not the source-to-destination transform that you might
naively expect) and must be given in index coordinates for both the source
and destination. The origin and spacing of the result are set to the results
of transforming the origin and spacing of the image; note that this may or
may not be appropriate.

(There are actually two implementations of this method. The linear0

method is a reference implementation which is not particularly fast but which
is simple enough to be verified by inspection; the linear method is a faster
implementation which has been verified against the reference algorithm.)

41

affine.map(dimen)

Returns a new Pyvox array of type double which contains the output
coordinates of the transform affine computed from index coordinates over a
notional source image of dimensions dimen. The rank of the result is one
higher than the number of dimensions in affine; the (new) last dimension
ranges over the number of dimensions in affine and contains the output co-
ordinates in order.

affine.matrix

The matrix part of the affine transform, as a Pyvox array. This attribute
may be freely read, but setting it is not recommended.

affine.nearest(image, dimen)

Resamples image through the affine transform given by affine to yield a
new Pyvox array with dimensions dimen and the same type as image. Nearest
neighbor interpolation is used. The affine transform must be given as the
destination-to-source transform (not the source-to-destination transform that
you might naively expect) and must be given in index coordinates for both
the source and destination. The origin and spacing of the result are set to
the results of transforming the origin and spacing of the image; note that
this may or may not be appropriate.

affine.norm(other=None, length=100)

Computes a simple norm on the vector space of affine transforms; the
computed norm is also the maximum sup-norm of the image of any point
with sup-norm not exceeding the given length. If other is given, the norm is
computed on the (vector) difference of self and other; as a special case, setting
other to 1 compares self to the identity transform. For the mathematically
inclined, the norm is defined as

‖T‖ = max
r

(

|br|+ λ
∑

c

|Arc|
)

(4.1)

42

where T is an affine transform, λ is the specified length, A and b are the matrix
(or linear) and offset parts of T , and the indices r and c run over the rows and
columns of A. (The sup-norm rather than the Euclidean norm on the points
is used because the resulting norm on affine transforms is slightly faster to
compute.) Note that this norm does not behave properly for composition
and so is NOT an operator norm.

affine.offset

The constant offset part of the affine transform, as a Pyvox column vector.
This attribute may be freely read, but setting it is not recommended.

affine.p2i(origin, spacing, pre=0)

Updates affine by composing it with the physical-to-index transformation
given by origin and spacing; returns the updated transform. The value of
pre determines the order in which the two transforms are composed; see
affine.compose() for the permitted values.

affine.param()

Returns a vector containing the elements of the n×(n+1) matrix defining
the transform, taken in row-major order. This is useful for optimization
methods which work on vectors.

affine.point(x)

Transforms a point according to the given affine transform, returning a
new Pyvox array.

affine.rotate(i, j, angle, pre=0)

43

Updates affine by composing it with an elementary rotation of the form
x[i] = x[i] cos θ + x[j] sin θ and x[j] = −x[i] sin θ + x[j] cos θ; returns the
updated transform. The value of pre determines the order in which the two
transforms are composed; see affine.compose() for the permitted values.

affine.rotate3d(axis, angle, pre=0)

Updates affine by composing with a rotation around axis by the given
angle in radians. The axis is presumed to go through the origin, and a
positive angle is defined by the righthand rule. The value of pre determines
the order in which the two transforms are composed; see affine.compose()
for the permitted values.

affine.scale(coef, pre=0)

Updates affine by composing it with an elementary scale of the form
x[i] = C[i]x[i]; returns the updated transform. The value of pre determines
the order in which the two transforms are composed; see affine.compose()
for the permitted values.

affine.setparam(parms)

Sets the elements of the n× (n+1) matrix defining the transform, taken
in row-major order, from the contents of the vector parms. This is useful for
optimization methods which work on vectors.

affine.shear(i, j, coef, pre=0)

Updates affine by composing it with an elementary shear of the form
x[i] = x[i] + Cx[j]; returns the updated transform. The value of pre deter-
mines the order in which the two transforms are composed; see affine.compose()
for the permitted values.

44

affine.translate(delta, pre=0)

Updates affine by composing it with a translation of the form x[i] =
x[i] + ∆[i]; returns the updated transform. The value of pre determines the
order in which the two transforms are composed; see affine.compose() for
the permitted values.

affine.vector(v)

Transforms a vector (difference of points) according to the affine trans-
form affine, returning a new Pyvox array.

abs(array)

Deprecated; use array.abs() in new code.

array [type]

An array object represents an N -dimensional numeric array and is typi-
cally created by calling pyvox.array or pyvox.ramp. As special cases, it can
also represent a matrix or coordinate point. A matrix is typically created
by calling pyvox.column, pyvox.diag, pyvox.matrix, or pyvox.vector. A
point is typically created by calling pyvox.point.

array[sub0, sub1, . . .]

Returns the numeric value of an element if all of the subscripts are num-
bers, and an array slice for any other valid combination of subscripts. Each
subscript may be a integer value, a non-empty list of integers, or a slice object;
the number of subscript items must match the rank of array. Alternatively,
the ellipsis ... may be used once in a subscript list to mean all the unnamed
dimensions; then the number of subscript items must be strictly less than the
rank. As a special case, a single number may be provided as subscript to an
array of any rank and treats the array as if it were a one-dimensional vector;

45

the order of elements is taken with the last (regular) subscript varying most
rapidly. As another special case, any number of subscripts may be provided
to a scalar (rank 0) array and will be ignored; this is to work around a Python
bug which prohibits empty subscript lists.

Negative integers from −1 through −N , where N is the number of ele-
ments along the appropriate dimension, may be used in all subscript items
and are mapped to N − 1 through 0, selecting the last to first elements.
Subscripts less than −N or greater than N − 1 are invalid and will generate
an error. A single negative number as the subscript is interpreted the same
way, except that N is the total number of elements in the array.

Using a list of integers as a subscript selects the array elements indexed
by the elements of the list, along the appropriate dimension of the array.

Using a slice object start:limit:step as a subscript selects the elements
indexed by start, start + step, . . . up (or down) to but not including limit,
along the corresponding dimension. The step defaults to 1. If the step is
positive, the start and limit default to 0 and N − 1, where N is the number
of elements along the dimension; if the step is negative, the start and limit
default to −1 and −N − 1; a zero step is an error. If only a single colon is
provided, it is assumed to separate the start and limit. Any element of the
slice object may evaluate to None, in which case the appropriate default is
used.

The rank of the array slice returned is equal to the rank of array, minus
the number of subscripts given as integers rather than lists, slices, or ellipses;
an array slice of rank 0 decays into a number.

FIXME: The current implementation returns a new array of the same
rank as array rather than an array slice of reduced rank; this will be fixed in
some future version.

FIXME: This does not provide a way to extract a element as a scalar
array; this is probably no serious loss, but it might be useful to define some
alternate way to get a scalar array.

array[sub0, sub1, . . .] = expr

Replaces the elements of array indexed by the subscripts with the cor-
responding elements of expr, which must be an array, an array slice, or a
numeric value. See array[] for the permissable subscript items and their
interpretation. If expr is an array or array slice, the number of elements it

46

contains must be the same as the number of selected elements in array; the
shape is not, however, required to match. If expr is a numeric value, all the
selected array elements are replaced by that value. The origin and spacing

of the array are unchanged.

+array

Returns array. Provided for symmetry with -array.

array + array1

Returns a new array containing the elementwise sum of array and array1.
Either array or array1 may be a numeric value rather than a Pyvox array; in
this case, the number is coerced to the type of array. Otherwise, the types
of array and array1 must be the same.

-array

Returns a new array containing the elementwise additive inverse of array.

array - array1

Returns a new array containing the elementwise difference of array and
array1. Either array or array1 may be a numeric value rather than a Pyvox
array; in this case, the number is coerced to the type of array. Otherwise,
the types of array and array1 must be the same.

array * array1

Returns a new array containing the elementwise product of array and
array1. Either array or array1 may be a numeric value rather than a Pyvox
array; in this case, the number is coerced to the type of array. Otherwise,
the types of array and array1 must be the same.

47

See also array.mmul(array1) for the matrix product.

array / array

Returns a new array containing the elementwise quotient of array and
array1. Either array or array1 may be a numeric value rather than a Pyvox
array; in this case, the number is coerced to the type of array. Otherwise,
the types of array and array1 must be the same.

array % array1

Returns a new array containing the elementwise remainder of array and
array1. The remainder is defined as x− trunc(x/y) ∗ y, where trunc denotes
rounding toward zero. This operation is valid for both integral and floating-
point types.

~array

Returns a new array each element of which is the bitwise negation of the
corresponding element in array. Valid for unsigned integral types only.

array & array

Returns a new array each element of which is the bitwise AND of the
corresponding elements in array and array1. Either array or array1 may
be a numeric value rather than a Pyvox array; in this case, the number is
coerced to the type of array. Otherwise, the types of array and array1 must
be the same. Valid for unsigned integral types only.

array | array

Returns a new array each element of which is the bitwise OR of the
corresponding elements in array and array1. Either array or array1 may

48

be a numeric value rather than a Pyvox array; in this case, the number is
coerced to the type of array. Otherwise, the types of array and array1 must
be the same. Valid for unsigned integral types only.

array ^ array

Returns a new array each element of which is the bitwise XOR of the
corresponding elements in array and array1. Either array or array1 may
be a numeric value rather than a Pyvox array; in this case, the number is
coerced to the type of array. Otherwise, the types of array and array1 must
be the same. Valid for unsigned integral types only.

array == array2

Returns a new unsigned char array each element of which is 1 if the cor-
responding elements in array and array2 are equal, and 0 otherwise. Either
array or array2 may be a numeric value rather than a Pyvox array; in this
case, the number is coerced to the type of array. Otherwise, the types of
array and array2 must be the same.

array != array2

Returns a new unsigned char array each element of which is 1 if the
corresponding elements in array and array2 are unequal, and 0 otherwise.
Either array or array2 may be a numeric value rather than a Pyvox array; in
this case, the number is coerced to the type of array. Otherwise, the types
of array and array2 must be the same.

array < array2

Returns a new unsigned char array each element of which is 1 if the
corresponding element in array is strictly less than the corresponding element
in array2, and 0 otherwise. Either array or array2 may be a numeric value
rather than a Pyvox array; in this case, the number is coerced to the type

49

of array. Otherwise, the types of array and array2 must be the same. Not
defined for complex types.

array <= array2

Returns a new unsigned char array each element of which is 1 if the
corresponding element in array is less than or equal to the corresponding
element in array2, and 0 otherwise. Either array or array2 may be a numeric
value rather than a Pyvox array; in this case, the number is coerced to the
type of array. Otherwise, the types of array and array2 must be the same.
Not defined for complex types.

array > array2

Returns a new unsigned char array each element of which is 1 if the
corresponding element in array is strictly greater than the corresponding
element in array2, and 0 otherwise. Either array or array2 may be a numeric
value rather than a Pyvox array; in this case, the number is coerced to the
type of array. Otherwise, the types of array and array2 must be the same.
Not defined for complex types.

array >= array2

Returns a new unsigned char array each element of which is 1 if the
corresponding element in array is greater than or equal to the corresponding
element in array2, and 0 otherwise. Either array or array2 may be a numeric
value rather than a Pyvox array; in this case, the number is coerced to the
type of array. Otherwise, the types of array and array2 must be the same.
Not defined for complex types.

array.abs()

Returns a new Pyvox array containing the elementwise absolute value of
the array. NOTE: Since Pyvox inherits its arithmetic from the underlying C

50

implementation, you can get unexpected results taking the absolute value of
signed integral types on a two’s complement machine; the absolute value of
−2n−1, where n is the width of the type in bits, is the same value −2n−1.

array.acos()

Returns a new Pyvox array containing the elementwise arc cosine of the
original array. The returned value is in radians. Valid for floating-point types
only.

array.amax(axes=All)

This function computes the maximum of the array elements along the
specified axes (defaulting to all axes) and returns either a scalar or an array
of reduced rank. The axes argument may be an integer in the range [0, n−1],
where n is the rank of the array, meaning a single axis counting from the
left; an integer in the range [−1,−n], meaning a single axis counting from
the right; or a tuple or list of such integers, meaning all the axes listed. The
default is to reduce on all axes to yield a scalar, and can be obtained either
by omitting the axes argument or setting it to None. On the other hand,
setting axes to a list or tuple with no elements is just a expensive way to
copy the array. The values listed in axes may be in any order, and duplicates
are permitted. The returned result is the same type as array.

The origin and spacing of the result are copied from array, except that
the named axes are omitted.

array.amin(axes=All)

This function computes the minimum of the array elements along the
specified axes (defaulting to all axes) and returns either a scalar or an array
of reduced rank. The axes argument may be an integer in the range [0, n−1],
where n is the rank of the array, meaning a single axis counting from the
left; an integer in the range [−1,−n], meaning a single axis counting from
the right; or a tuple or list of such integers, meaning all the axes listed. The
default is to reduce on all axes to yield a scalar, and can be obtained either

51

by omitting the axes argument or setting it to None. On the other hand,
setting axes to a list or tuple with no elements is just a expensive way to
copy the array. The values listed in axes may be in any order, and duplicates
are permitted. The returned result is the same type as array.

The origin and spacing of the result are copied from array, except that
the named axes are omitted.

array.aprod(axes=All)

This function computes the product of the array elements along the spec-
ified axes (defaulting to all axes) and returns either a scalar or an array of
reduced rank. The axes argument may be an integer in the range [0, n− 1],
where n is the rank of the array, meaning a single axis counting from the
left; an integer in the range [−1,−n], meaning a single axis counting from
the right; or a tuple or list of such integers, meaning all the axes listed. The
default is to reduce on all axes to yield a scalar, and can be obtained either
by omitting the axes argument or setting it to None. On the other hand,
setting axes to a list or tuple with no elements is just a expensive way to
copy the array. The values listed in axes may be in any order, and duplicates
are permitted. The returned result is the same type as array.

The origin and spacing of the result are copied from array, except that
the named axes are omitted.

array.asin()

Returns a new Pyvox array containing the elementwise arc sine of the
original array. The returned value is in radians. Valid for floating-point
types only.

array.asum(axes=All)

This function computes the sum of the array elements along the specified
axes (defaulting to all axes) and returns either a scalar or an array of reduced
rank. The axes argument may be an integer in the range [0, n − 1], where
n is the rank of the array, meaning a single axis counting from the left; an

52

integer in the range [−1,−n], meaning a single axis counting from the right;
or a tuple or list of such integers, meaning all the axes listed. The default is
to reduce on all axes to yield a scalar, and can be obtained either by omitting
the axes argument or setting it to None. On the other hand, setting axes to
a list or tuple with no elements is just a expensive way to copy the array.
The values listed in axes may be in any order, and duplicates are permitted.
The returned result is the same type as array.

The origin and spacing of the result are copied from array, except that
the named axes are omitted.

The array.dot() method may be used to obtain a weighted sum of the
elements.

array.atan()

Returns a new Pyvox array containing the elementwise arc tangent of
the original array. The returned value is in radians. Valid for floating-point
types only.

array.atan2(other)

Returns a new Pyvox array containing the elementwise two-argument arc
tangent of the original and other arrays. The returned value is in radians.
Valid for types float and double only.

array.bigob(label=255, other=0)

Returns a new unsigned char Pyvox array containing a mask covering only
the largest object in the original image; an object is defined as a maximal
connected set of non-zero voxels.

This function has been deprecated; use pyvox.ccmap(image).bigob() in
new code, or use other features of the ccmap class.

array.bihist(other, weight=1)

53

Returns a new two-dimensional unsigned long Pyvox array containing the
bivariate histogram of the two unsigned char arrays array and other; it also
computes the two marginal histograms (which are the univariate histograms
of the individual images) as one-dimensional unsigned long Pyvox arrays.
An optional unsigned char array of weights may be provided; it must be the
same shape as the other two arrays and defaults to weight 1 for each voxel.
These results are returned as a tuple containing the bivariate histogram and
the two univariate histograms.

array.carg()

Returns a new Pyvox array containing the elementwise complex argument
(that is, the polar angle) of the original array. Valid for complex types only.

array.cast(type)

Returns a new Pyvox array containing the contents of the original array
converted to the specified internal type.

array.cbrt()

Returns a new Pyvox array of the same type and shape as array and
which contains the cube root of each corresponding element in array. Valid
for real floating-point types only, and provided only if the underlying C
implementation supports it.

array.ceil()

Returns a new Pyvox array containing the elementwise ceiling of the
original array. Valid for types float and double only.

array.chamfer(type=???)

54

Returns a new Pyvox array containing the chamfer distance transform of
the original array. The chamfer distance is defined to be zero wherever the
original array is non-zero, and the taxicab (L1) distance to the nearest non-
zero voxel otherwise. The type of the result may be specified by the caller
to be either exim.uchar or exim.ushort, and will default to the shortest
type which is capable of containing the longest possible distance within the
original image. Not supported for complex types.

array.cholesky()

Returns a new Pyvox array of the same type as array which contains the
Cholesky factor of the symmetric or Hermitian positive definite matrix array.
That is, it returns the lower triangular matrix L such that array = LLT or
LLH as appropriate. Valid for floating point types only.

array.cmove(select, source)

Modifies array in place by replacing each element by the corresponding
element of source whenever the corresponding element of select is non-zero;
any elements of array corresponding to zero elements of select are unchanged.
Returns the (modified) array. The select argument must be unsigned char;
the array and source may be any type but must be the same type. All three
arrays must have the same rank, dimensions, origin, and spacing, except that
source may be a plain number.

array.compare(other, less, equal, more)

Returns a new unsigned char Pyvox array containing the results of com-
paring array element by element to other. The result takes one of the values
less, equal, or more depending on whether each element of array is less than,
equal to, or greater than the corresponding element of other. The array
other may be replaced by a number or scalar, which is then used in all the
comparisons. Not defined for complex types.

55

array.conj()

Returns a new Pyvox array containing the elementwise complex conjugate
of the original array. Valid for complex types only. See also array.H() for
the complex conjugate (Hermitian) transpose of a matrix.

array.convolve(kernel, shrink=1)

Convolves array with kernel, optionally subsamples by the factor shrink,
and returns the result as a new Pyvox array; the algorithm used avoids com-
puting pixel values that will be omitted by subsampling and is faster than
convolution followed by subsampling. The object array may be of any rank,
type, or shape, except that convolution is not defined for rank zero arrays;
the array and kernel must have the same rank. The shrink argument may be
either a single positive integer, or a list of integers giving the desired shrink
factor for each dimension of the array; if the shrink is omitted, no subsam-
pling is done. The convolution is calculated in double or double complex and
converted back to the original image type; if the original type cannot repre-
sent the values, the nearest representable value is used instead. Convolving
a real image by a complex kernel is not permitted.

array.copy()

Returns a new Pyvox array containing the contents and attributes of the
original array but which shares no storage with it, except that only shallow
copies are made of the header, metadata, and userdata dictionaries.

array.cos()

Returns a new Pyvox array containing the elementwise cosine of the orig-
inal array. The input is in radians. Valid for floating-point types only.

array.cosh()

56

Returns a new Pyvox array containing the elementwise hyperbolic cosine
of the original array. Valid for floating-point types only.

array.count()

Returns the number of elements in array.

array.cross(other)

Returns the vector cross product of array and other. The operands need
not be any particular type and shape, but each must contain exactly three
elements. The type and shape of the result are taken from array. Not defined
for complex types.

array.cubic(map, type=array.type)

Returns a new array whose elements are computed by cubic Lagrange
interpolation in the voxels of the source array at the sample points defined
by map. The type of map must be double, and its last dimension must match
the rank of array. The type argument specifies the desired type of the result;
it defaults to the type of array. The shape of the result is the shape of map
with the last dimension omitted. Voxels outside array are assumed to be
zero.

As a special case, the value of map may be a tuple, list, or vector of length
equal to the rank of array; in this case, the result is a plain number rather
than an array. If array is rank one, and the last dimension of map is not one,
then a final dimension of length one is effectively added to map.

array.dcomplex(imag=0)

Returns a new Pyvox array containing the contents of the original array
converted to double complex. The imag argument, if present, must be a
Pyvox array of the same type and shape as array and supplies the imaginary
part of the result.

57

array.det()

Returns the determinant of a square matrix represented as a Python
array. Valid for floating-point types only.

array.diag()

Returns a new rank-1 Pyvox array whose elements are the diagonal ele-
ments of array; the type of the result is the same as the type of array. Use
the function pyvox.diag(values) to construct a diagonal matrix.

array.dilabel(kernel=???)

Returns a new Pyvox array containing the morphological dilation of a
label image array, which must have non-zero rank and any unsigned integral
type. Each pixel of the result is the smallest nonzero pixel value within the
neighborhood defined by the kernel; if all pixels in the neighborhood are zero,
then the result is zero. The neighborbood is specified by a kernel object and
defaults to a centered 3 × 3 × 3 neighborhood. The bias and coefficients of
kernel, if any, are ignored.

A common use of this method is to dilate an image in which nonzero pixel
values label different regions and a zero pixel value denotes background. This
method will dilate the nonbackground regions while preserving the region
labels, taking the lower-numbered region in case of ties.

See also array.dilate().

array.dilate(kernel=???)

Returns a new Pyvox array containing the morphological dilation of a
binary image array, which must have non-zero rank and any unsigned integral
type. Each pixel of the result is the bitwise OR of the pixel values in the
neighborhood defined by the kernel. The neighborbood is specified by a
kernel object and defaults to a centered 3 × 3 × 3 neighborhood. The bias
and coefficients of kernel, if any, are ignored.

58

See also array.dilabel().

array.dot(other=None, weight=None, axes=All)

Returns the vector dot product of array and other along the specified
axes, with optional pixelwise weights provided by weight; the dot product
〈x, y〉w of vectors x and y with weights w is defined as

∑

n

wn x
∗
n yn (4.2)

where n is an index over the elements, and ∗ indicates the complex conjugate.
The array, other, and weight arguments may be of any type and are converted
to double or double complex for this computation; they must, however, be
the same shape. Note that array.dot(w) can also be interpreted as the sum
of the elements of array with weights w; setting w to None will compute the
unweighted sum of the elements of array. The weight argument may be None,
in which case an unweighted dot product is computed.

The axes argument may be an integer in the range [0, n− 1], where n is
the rank of the array, meaning a single axis counting from the left; an integer
in the range [−1,−n], meaning a single axis counting from the right; or a
tuple or list of such integers, meaning all the axes listed. The default is to
reduce on all axes to yield a scalar, and can be obtained either by omitting
the axes argument or setting it to None. The values listed in axes may be in
any order, and duplicates are permitted.

The origin and spacing of the result are copied from array, except that
the named axes are omitted.

array.double()

Returns a new Pyvox array containing the contents of the original array
converted to double.

array.eigsy()

59

Returns a pair (val, vec) containing the eigenvalues and eigenvectors of
the original Pyvox array considered as a real symmetric matrix or a complex
Hermitian matrix; the results are undefined if the Pyvox array is not actually
symmetric or Hermitian. The result val is a list of the eigenvalues. The result
vec is an orthogonal or unitary matrix, the rows of which are the eigenvectors;
vec may or may not be a proper orthogonal matrix (with determinant equal
to +1). (If a proper matrix of eigenvalues is required, use array.prinaxes()
instead.) If A denotes the original matrix, then A = vec’*diag(val)*vec.

array.erf()

Returns a new Pyvox array of the same type and shape as array and
which contains the error function erf(x) for each element x of array. The
error function is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt (4.3)

and is described in most books on special functions. This function is valid
for real floating-point types only, and is provided only if the underlying C
implemention supports it.

See also array.erfc().

array.erfc()

Returns a new Pyvox array of the same type and shape as array and
containing the complementary error function erfc(x) for each element x of
array. The error function is defined as

erfc(x) =
2√
π

∫ ∞

x

e−t
2

dt (4.4)

and is described in most books on special functions. This function is valid
for real floating-point types only, and is provided only if the underlying C
implemention supports it.

See also array.erfc().

60

array.erode(kernel=???)

Returns a new Pyvox array containing the morphological erosion of array,
which must have non-zero rank and any unsigned integral type; the dilation is
done bitwise on the voxel values. The neighborbood is specified by a kernel
object and defaults to a centered 3 × 3 × 3 neighborhood. The bias and
coefficients of kernel, if any, are ignored.

array.exp()

Returns a new Pyvox array of the same type and shape as array and
containing the value ex for each element x of array. Valid for floating-point
types only.

array.exp2()

Returns a new Pyvox array of the same type and shape as array and con-
taining the value 2x for each element x of array. Valid for real floating-point
types only and provided only if the underlying C implementation supports
it.

array.expm1()

Returns a new Pyvox array of the same type and shape as array and con-
taining the value ex − 1 for each element x of array. Valid for real floating-
point types only and provided only if the underlying C implementation sup-
ports it.

array.fcomplex(imag=0)

Returns a new Pyvox array containing the contents of the original array
converted to float complex. The imag argument, if present, must be a Pyvox
array of the same type and shape as array and supplies the imaginary part
of the result.

61

array.fft(axes=All)

Returns a new Pyvox array containing the fast Fourier transform of the
original array, transformed only along the specified axes. The original array
may be of any type; the result is always float or double complex. Each axis on
which the transform is to be computed must be a power of 2. The definition
of the discrete Fourier transform is not entirely standard; the definition used
in this software is, in one dimension,

F (k) =
1

N

N−1
∑

n=0

f(n) e−j2πkn/N . (4.5)

An advantage of this choice is that each spectral coefficient F (k) can be
read directly as the amplitude of the corresponding complex exponential
component ej2πkn/N .

array.fill2d(points, value)

Modifies a two-dimensional Pyvox array by setting the voxels inside the
contour defined by points to the given value and returns the modified array.
The points are given by an N × 2 Pyvox array of (y, x) coordinate pairs.
(Other formats may be added later.) If the first and last points are not
identical, then the contour is closed by assuming a line segment from the
last to the first. A voxel is considered to be inside the contour if a ray to
infinity from the center of the voxel (given by integer coordinates) crosses
the contour an odd number of times; this is known as the even-odd rule.
The ambiguity present when the voxel center falls exactly on the contour are
handled by pretending the the voxel center is actually displayed by a positive
epsilon along each axis from its nominal position.

array.float()

Returns a new Pyvox array containing the contents of the original array
converted to float.

62

array.floor()

Returns a new Pyvox array containing the elementwise floor of the original
array. Valid for real floating-point types only.

array.fma(second, third)

Returns a new Pyvox array containing the elementwise evaluation of x ∗
y + z for the three arrays array, second, and third. This operation is known
as a fused multiply-add and is faster and more precise than the equivalent
multiply and add operations on most platforms. Valid for floating-point types
only.

array.H()

Returns a new Pyvox array containing the complex conjugate (Hermitian)
transpose of the original array. Valid for complex types only.

array.header

This read/write attribute of a Pyvox array is either a list or a dictionary
which is reserved for the contents of the image file header associated with the
array. It may either be set by the software which actually reads the array
data, or by the user to specify the format and contents of the header file
to be written. If never specified, it defaults to an empty list or dictionary.
The elements of the list or keys into the dictionary are determined by the
particular image file format used.

array.histo(weight=1)

63

Returns a new Pyvox array containing the univariate histogram of array,
which must be an unsigned char or unsigned short image. An optional un-
signed char array of weights may be provided; the weight array must be the
same shape as array and defaults to unit weights for each voxel.

A useful trick to know is that, if array is a histogram, then array.moments()
will compute the total counts, mean, and variance of the index variable of
the histogram.

array.hypot(other)

Returns a new Pyvox array with the same type and shape as array and
other and which contains the value

√

x2 + y2 for the corresponding elements
x in array and y in other. Valid for real floating-point types only, and pro-
vided only if the underlying C implementation supports it.

array.i2p()

Returns the affine transform which maps index coordinates into physical
coordinates, as defined by the origin and spacing attributes of array.

array.ifft(axes=All)

Returns a new Pyvox array containing the inverse fast Fourier transform
of the original array, transformed only along the specified axes. The original
array may be of any type; the result is always float or double complex. Each
axis on which the transform is to be computed must be a power of 2. The
definition of the inverse discrete Fourier transform is not entirely standard;
the definition used in this software is, in one dimension,

f(n) =
N−1
∑

n=0

F (k) ej2πkn/N . (4.6)

Note that each spectral coefficient F (k) can be read directly as the amplitude
of the corresponding complex exponential component ej2πkn/N .

64

array.imag()

Returns a new Pyvox array containing the elementwise imaginary part of
the original array. Valid for complex types only.

array.int()

Returns a new Pyvox array containing the contents of the original array
converted to int.

array.inverse()

Returns a new Pyvox array containing the inverse of the non-singular
square matrix represented by the original Pyvox array. Note that it is gener-
ally better to use array.solve for the solution of a system of linear equations.

array.kmeans1(cent)

Returns the class centroids computed by the K-means classification algo-
rithm, where array is the histogram of an unsigned char image (and must have
exactly 256 bins) and cent is a list of initial guess at the class centroids. The
centroids thus computed can be used later by the array.nnclass1 method
to do the actual segmentation. If initial guesses are not available for the
centroids, they should all be set to zero. The number of classes found is set
by the number of centroids provided.

array.kmeans2(cent1, cent2)

Returns a tuple (newcent1, newcent2) containing two lists of class cen-
troids computed by the K-means classification algorithm, where array is the
bivariate histogram of two unsigned char images (and must have exactly
256 × 256 bins), and cent1 and cent2 are two lists of initial guesses at the

65

class centroids. The centroids thus computed can be used later by the ar-
ray.nnclass2 method to do the actual segmentation. If initial guesses are
not available for the centroids, they should all be set to zero. The number
of classes found is set by the number of centroids provided.

array.lgamma()

Returns a new Pyvox array with the same type and shape as array and
containing the value log Γ(x) for each element x in array. The function Γ(x)
is defined by

Γ(x) =

∫ ∞

0

e−ttx−1 dt (4.7)

Valid for real floating-point types only, and provided only if the underlying
C implementation supports it.

See also array.tgamma().

array.linear(map, type=array.type)

Returns a new array whose elements are computed by linear interpolation
in the voxels of a source array at the sample points defined by map. The
type of map must be double, and its last dimension must match the rank of
array. The type argument specifies the desired type of the result; it defaults
to the type of array. The shape of the result is the shape of map with the
last dimension omitted. Voxels outside array are assumed to be zero.

As a special case, the value of map may be a tuple, list, or vector of length
equal to the rank of array; in this case, the result is a plain number rather
than an array. If array is rank one, and the last dimension of map is not one,
then a final dimension of length one is effectively added to map.

See also affine.linear() and poly.linear() for linear interpolation of
an array subject to an affine or polynomial transform; using either of these
functions, when appropriate, is faster than computing the map and using
array.linear() to interpolate.

Prior to 2005-07-18, the type of the result was always double.

66

array.list()

Returns the elements of array as a Python list, in row-major order; the
elements of the list will be Python floats, ints, or longs as appropriate.

array.log()

Returns a new Pyvox array containing the elementwise natural logarithm
of the original array. Valid for floating-point types only.

array.log10()

Returns a new Pyvox array containing the elementwise base-10 logarithm
of the original array. Valid for real floating-point types only.

array.log1p()

Returns a new Pyvox array with the same type and shape as array and
which contains the value log(1 + x) for each corresponding element x in
array. Supported for real floating-point types only, and provided only if the
underlying C implementation supports it.

array.log2()

Returns a new Pyvox array with the same type and shape as array and
which contains the value log2 x for each corresponding element x in array.
Supported for real floating-point types only, and only if the underlying C
implementation supports it.

array.logcomp()

Returns a new unsigned char Pyvox array containing a intensity-compressed
version of the orginal image, which must be of type unsigned long. The com-
pression rule is the transformation y = A log(1 + x), where A is chosen such

67

that the largest voxel value actually present in the image is converted to the
value 255.

array.long()

Returns a new Pyvox array containing the contents of the original array
converted to long.

array.lookup(lut)

This Pyvox function takes each voxel in array and uses it as the index
into the lookup table lut, saving all the results of the lookup as a Pyvox array.
The source image array must be either unsigned char or unsigned short but
may be of any shape. The origin and spacing of the result are the same
as array; they are ignored for the lut itself. The lut must be rank 1 or 2 and
contain at least as many rows as the largest voxel value in array; but it (and
thus the result) may be of any type. If the lut is rank 1, then the result is
the same shape as the original array. If the lut is rank 2, then the result
has rank one higher than the array and the last dimension ranges over the
columns of the lut. For example, a lut with 256 × 3 elements could be used
to expand a monochrome image into an RGB image.

array.lomean()

Obsolete?

array.lostat()

This Pyvox function computes the local mean and standard deviation
within each 3× 3× 3 neighborhood of a volume image and returns them as a
list containing two new images of the same shape and type as array; the first
is the local mean and the second is the local standard deviation. Boundary
voxels are handled correctly. The standard deviation is multiplied by 2.0 for
images of type unsigned char, to better match the possible range of values

68

to the range supported by unsigned char; the scale is left at 1.0 for all other
data types.

If you want only the local mean, you can compute it with array.convolve().

array.lovar()

Obsolete. Use array.lostat instead.

array.lowpass(shrink=1)

Lowpass filters array, optionally subsamples by the factor shrink, and re-
turns the result as a new Pyvox array; the algorithm used avoids computing
pixel values that will be omitted by subsampling and is faster than convolu-
tion followed by subsampling. The object array may be of any rank, type, or
shape, except that lowpass filtering is not defined for rank zero arrays. The
shrink argument may be either a single positive integer, or a list of integers
giving the desired shrink factor for each dimension of the array; if the shrink
is omitted, no subsampling is done. The convolution is calculated in double
precision and converted back to the original image type; if the original type
cannot represent the values, the nearest representable value is used instead.

The kernel used is a 3 × 3 × . . . convolution kernel and has the form
2−n−

∑

|xi|, where n is the rank and xi are the coordinates; this kernel will
completely surpress the Nyquist frequency along any of the coordinate axes.

array.max(other)

Returns a new Pyvox array containing the elementwise maximum of the
original and other arrays. Not defined for complex types.

array.mean(weight=None, axes=All)

This function computes the weighted mean of the array elements along
the specified axes (defaulting to all axes) and returns either a scalar or an
array of reduced rank. The weight is normally an array but may be None or

69

a plain number to specify an unweighted mean. The axes argument may be
an integer in the range [0, n− 1], where n is the rank of the array, meaning a
single axis counting from the left; an integer in the range [−1,−n], meaning a
single axis counting from the right; or a tuple or list of such integers, meaning
all the axes listed. The default is to reduce on all axes to yield a scalar, and
can be obtained either by omitting the axes argument or setting it to None.
On the other hand, setting axes to a list or tuple with no elements is just
a expensive way to cast the array to type double. The values listed in axes
may be in any order, and duplicates are permitted. The array and weight
arguments may be of any type but must be the same shape; the returned
value is always type double or double complex. If you’re foolish enough to
let the weights sum to zero for some output element, you get whatever value
the underlying C implementation provides for division by zero; this should
normally be nan for IEEE-754 platforms.

The origin and spacing of the result are copied from array, except that
the named axes are omitted.

array.metacopy(other, options. . .)

This method updates array by copying into it selected metadata from
the other array. The option metadata=1 copies into array.metadata each
key:value pair from other.metadata. The option filedata=1 copies into
array.metadata each key:value pair descriptive of the external file from
other.metadata. (The metadata=1 and filedata=1 options are currently
synonomous, but this may change in the future.) The option header=1

copies into array.header each key:value pair from other.header. The op-
tion physdata=1 copies other.origin and other.spacing into array.origin
and array.spacing. The option userdata=1 copies into array.userdata
each key:value pair from other.userdata. If no options are specified, then
all attributes are copied; otherwise only the specified attributes are copied.

array.metadata

This attribute of a Pyvox array is a dictionary in which is stored metadata
that is not specific to the image file header or defined by the user.

70

The only information currently stored in this dictionary describes the file
from which the array was read, or to which it will be written. These key:value
pairs are automatically set when the array is read from an external file but
may also be set by the user to specify how array is to be written to an
external file.

The value corresponding to the key ’bigend’ is an integer that specifies
the byte order used in the external file. The value 0 specifies little-endian; 1
specifies big-endian. Note that some image file formats specify a particular
byte order, in which case this attribute is ignored.

The value corresponding to the key ’compress’ is a string that specifies
the name of the compression program to be used for the external file. Note
that some image file formats specify a particular compression algorithm, in
which case this attribute is ignored. If the image file format provides separate
header and data files, then only the data file is compressed. The currently
supported compression programs are ’gzip’ and ’compress’.

The value corresponding to the key ’filename’ is a string that speci-
fies the filename used for the external file. A filename extension indicating
compression is normally omitted, and the compression specified under the
’compress’ key is used. A filename extension indicating the data format is
normally included, but will be overridden by the ’format’ value if different.

The value corresponding to the key ’format’ is a string that specifies the
data format to be used for the external file. The values currently supported
are shown in the table below. If the ’format’ value is undefined or None,
the format defaults to the value implied by the filename extension.

format Extension File Format
’avw’ .hdr Analyze View format
’analyze’ .hdr Analyze View format
’pgm’ .pgm Portable Gray Map (binary)
’ppm’ .ppm Portable Pixel Map (binary)
’raw’ .img Raw data

The value corresponding to the ’seek’ key is an integer that specifies
the position in the external file from which the data were read or to which a
write operation should seek before actually writing the data from array. It
is currently implemented only for reading raw format data, and is not stored
in the metadata. Note that if this attribute is set and is not None, then the
file being written to must already exist and will be updated. Zero is the

71

default and means that the desired data begins with the first byte of the file.
A non-negative value means that the desired data is preceded by the given
number of bytes. A negative value −N means that the data is followed by
N − 1 bytes; in particular, seek=-1 means that the desired data is last in
the file.

array.min(other)

Returns a new Pyvox array containing the elementwise minimum of the
original and other arrays. Not defined for complex types.

array.minmax(axes=All)

This function computes the minimum and maximum of the array elements
along the specified axes (defaulting to all axes) and returns either a list of two
scalars or a list of two arrays of reduced rank. The axes argument may be
an integer in the range [0, n− 1], where n is the rank of the array, meaning a
single axis counting from the left; an integer in the range [−1,−n], meaning a
single axis counting from the right; or a tuple or list of such integers, meaning
all the axes listed. The default is to reduce on all axes to yield a scalar, and
can be obtained either by omitting the axes argument or setting it to None.
The values listed in axes may be in any order, and duplicates are permitted.
The returned result is the same type as array. Not defined for complex types.

The origin and spacing of the results are copied from array, except that
the named axes are omitted.

array.mmul(other)

Returns a new Pyvox array containing the matrix product of array and
other, both of which must be rank-2 arrays of floating-point type and com-
patible for multiplication. As a special case, if other is a rank-1 array of the
appropriate length, it will be treated as a column vector.

FIXME: The current version requires that both arrays are of the same
type.

72

array.moments()

Returns a tuple containing the total mass, center of gravity, and second
central moments of a volume image; the values returned are the total mass (as
a Python float), the center of gravity (as a Pyvox array), and the moments
(as a Pyvox array). The center of gravity and moments are in physical units,
as defined by the origin and spacing of the volume image. Not supported for
complex types.

array.mop(moments, array2=None, array3=None)

This function computes and returns arbitrary non-central moments in
index coordinates for the elementwise product of up to three arrays of any
integral or real floating-point type. Not implemented for complex types.
The requested moments are defined by moments, which must be a Pyvox
array of type int with any number of rows and a number of columns equal
to the dimension of array; each row of moments specifies one moment to be
computed, while each column specifies the power to which the corresponding
coordinate is to be raised. (The pyvox.monomials function may be useful in
constructing the moments argument.) The requested moments are returned
in a one-dimensional Pyvox array of type double and are in the same order
as the rows of moments. The three arrays must be the same dimension
and shape, but may be of any type or types; the product is always done in
double. (It often takes less time and memory to let this function compute the
products on the fly rather than computing them outside; this is especially
true for arrays of integral type.)

array.nearest(point)

Returns the pixel value at a given position possibly between samples,
using nearest neighbor interpolation. The point may be given as a tuple,
list, or rank-1 array of coordinate values. Samples outside the image are
assumed to be zero.

73

array.nnclass1(clids, cents)

Returns a new unsigned char Pyvox array containing the classification of
each voxel of the original image using a univariate nearest neighbor classifier.
The arguments are the class ids and the class centroids. Different centroids
may be assigned to the same class number. There must be exactly as many
class ids as class centroids.

FIXME: The current calling sequence was adopted because it was fairly
easy to implement quickly, but it’s not clear that it’s the best option; so it
might change in the future.

array.nnclass2(other, clids, cents1, cents2)

Returns a new unsigned char Pyvox array containing the classification
of each voxel using a bivariate nearest neighbor classifier on corresponding
voxels of the original and other arrays. The remainings arguments are the
class ids and the class centroids for each array. Different centroids may be
assigned to the same class number. There must be exactly as many class ids
as class centroids.

FIXME: The current calling sequence was adopted because it was fairly
easy to implement quickly, but it’s not clear that it’s the best option; so it
might change in the future.

array.norm1(other=0, weight=1, axes=All)

Computes the vector 1-norm of array, or of the difference between array
and other, with optional pixelwise weights given by weight, and returns either
a scalar or an array of reduced rank and type double. The argument other,
if provided, must be None, the scalar 0, or an array of any type but the same
shape as array. The argument weight, if provided, must be None, the scalar
1, or an array of any type but the same shape as array.

The axes argument may be an integer in the range [0, n− 1], where n is
the rank of the array, meaning a single axis counting from the left; an integer
in the range [−1,−n], meaning a single axis counting from the right; or a
tuple or list of such integers, meaning all the axes listed. The default is to
reduce on all axes to yield a scalar, and can be obtained either by omitting

74

the axes argument or setting it to None. The values listed in axes may be in
any order; duplicates will be used only once.

The origin and spacing of the result are copied from array, except that
the named axes are omitted.

Note that using foo.norm1(bar) is better than (foo-bar).norm1() be-
cause it avoids potential overflow and wraparound problems in the subtrac-
tion. Note also that the weighted norm of a single array may be computed
as array.norm1(0, weight).

array.norm2(other=0, weight=1, axes=All)

Computes the vector 2-norm of array, or of the difference between array
and other, with optional pixelwise weights given by weight, and returns either
a scalar or an array of reduced rank and type double. The argument other,
if provided, must be None, the scalar 0, or an array of any type but the same
shape as array. The argument weight, if provided, must be None, the scalar
1, or an array of any type but the same shape as array.

The axes argument may be an integer in the range [0, n− 1], where n is
the rank of the array, meaning a single axis counting from the left; an integer
in the range [−1,−n], meaning a single axis counting from the right; or a
tuple or list of such integers, meaning all the axes listed. The default is to
reduce on all axes to yield a scalar, and can be obtained either by omitting
the axes argument or setting it to None. The values listed in axes may be in
any order; duplicates will be used only once.

The origin and spacing of the result are copied from array, except that
the named axes are omitted.

It is better to use foo.norm2(bar) rather than (foo-bar).norm2() be-
cause it avoids potential overflow and wraparound problems in the subtrac-
tion. Note also that the weighted norm of a single array may be computed
as array.norm2(0, weight).

array.normsup(other=0, weight=1, axes=All)

Computes the vector sup-norm of array, or of the difference between array
and other, with optional pixelwise weights given by weight, and returns either
a scalar or an array of reduced rank and type double. The argument other,

75

if provided, must be None, the scalar 0, or an array of any type but the same
shape as array. The argument weight, if provided, must be None, the scalar
1, or an array of any type but the same shape as array.

The axes argument may be an integer in the range [0, n− 1], where n is
the rank of the array, meaning a single axis counting from the left; an integer
in the range [−1,−n], meaning a single axis counting from the right; or a
tuple or list of such integers, meaning all the axes listed. The default is to
reduce on all axes to yield a scalar, and can be obtained either by omitting
the axes argument or setting it to None. The values listed in axes may be in
any order; duplicates will be used only once.

The origin and spacing of the result are copied from array, except that
the named axes are omitted.

It is better to use foo.normsup(bar) rather than (foo-bar).normsup()

because it avoids potential overflow and wraparound problems in the subtrac-
tion. Note also that the weighted norm of a single array may be computed
as array.normsup(0, weight).

array.origin

This attribute of a Pyvox array specifies the physical coordinates corre-
sponding to zero index coordinates and is represented as a list of numbers.
Assigning to this attribute changes the origin. As a special case, a plain
number may be assigned as the origin of a rank-1 array; it will, however,
always be returned as a list.

array.p2i()

Returns the affine transform which maps physical coordinates into index
coordinates, as defined by the origin and spacing attributes of array.

array.pow(other)

Returns a new Pyvox array containing the elementwise power function of
array and other; that is, pow(x, y) or xy for each element. Supported for
floating-point types only.

76

array.prinaxes()

Returns a pair (val, vec), where val is a vector containing the principal
moments and val is a proper orthogonal matrix containing the principal axes
of the original array considered as a real symmetric matrix. The results are
undefined if the matrix is not actually symmetric. This method is equivalent
to array.eigsy, except that the matrix of eigenvalues is guaranteed to have
determinant +1. Note that this function is not defined for complex Hermitian
matrices, the determinant of which can lie anywhere on the unit circle.

array.print(stream)

(Not yet implemented) Writes a human-readable representation of the
contents to the indicated stream.

array.rank

Reports the rank of the Pyvox array. This attribute may not be changed
directly, although the reshape method will modify it.

array.real()

Returns a new Pyvox array containing the elementwise real part of the
original array.

array.reshape(newshape)

Changes the shape of a Pyvox array in place without copying or modifying
any of its elements. As a special case, omitting the newshape argument will
simply remove any dimensions along which the number of elements is one; for
example, a 1×3×1×5 array would be reduced to a 3×5 array. If newshape
is given explicitly, then the origin and spacing attributes are set to their

77

default values; otherwise they are retained for the retained dimensions only.
It is not permitted to change the total number of elements by this method;
that is, the product of the new dimensions must equal the product of the old
dimensions. Similarly, it is not permitted to change the type of the data.

FIXME: Once array views are implemented, this will probably change to
return a new view of the array, leaving the old array intact but sharing it.

array.rgba2d(dimen, extype=exim.uint1, bigend=1, coords=[0,...],

axes=[0,1], chan=[0,0])

This function is intended to support interactive display programs that
allow the user to dynamically change the assumed external format of an
image file of unknown characteristics. It assumes that the external file has
been read as a one-dimensional array of unsigned char bytes, reinterprets
those bytes as an array of given dimensions and external type, selects a
specified 2-dimensional slice, further selects specified input channels as red,
green, blue, and alpha, intensity windows the input data, and converts into an
unsigned char array suitable for display; all this is, of course, done efficiently
so that the user doesn’t have to wait too long. The result is always a rank
three array, although the last dimension may be one.

The dimen, extype, and bigend arguments specify how the raw bytes of
the input file are to be imported into a notional “input image” such as would
be created by the pyvox.rawread() command. The coords, axes, and chan

arguments specify how extract and prepare for display a two-dimensional slice
of the input image. All arguments are keyword arguments.

The dimen argument is required and specifies the assumed dimensions
of the input image. The total number of bytes implied may not exceed the
length of array. The last dimension may optionally contain the channels of
a multichannel image.

The extype argument specifies the assumed external type of the input
image; it defaults to exim.uint1. Note that an external type rather than an
internal type is required here.

The bigend argument specifies whether the input image is assumed to be
big-endian (the default) or little-endian.

The coords argument specifies the coordinates of the desired slice in the
input image which is to be mapped into output image. It includes the channel
dimension (if any) and defaults to a list of all zeros.

78

The axes argument specifies the axes of the input image which are to
be mapped to the output image. A list of two elements specifies the axes
to become the y and x axes of a single-channel output image. A list of
three elements specifies the axes to become the y, x, and channel axes of a
multichannel output image. This argument defaults to (0,1).

The chan argument specifies the input channel which maps to each output
channel. It defaults to (0,0,0), which maps a luminance image into an RGB
image.

The output image may be either a single- or multichannel image. A
single-channel output image is obtained by setting the axes argument to
a two-element list and setting the last element of the coords argument to
the desired channel from the input image. A multichannel output image
is obtained by setting the axes argument to a three-element list, the last
of which specifies the input axis which varies over the bands; then the chan

argument specifies the coordinate values on this axis which map to the output
channels.

array.scale(gain=1.0, bias=0.0)

Returns a new Pyvox array of the same type as the original, with each
element rescaled by multiplying by the gain and adding the bias; the rescaling
is done in double or double complex and then rounded and limited to the
destination type. This operation can be done with other functions, but this
function makes better use of cache and is faster for arrays of integral type.

array.schar()

Returns a new Pyvox array containing the contents of the original array
converted to signed char.

array.short()

Returns a new Pyvox array containing the contents of the original array
converted to short.

79

array.sin()

Returns a new Pyvox array containing the elementwise sine of the original
array. The input is in radians. Valid for floating-point types only.

array.sinh()

Returns a new Pyvox array containing the elementwise hyperbolic sine of
the original array. Valid for floating-point types only.

array.size

This attribute of a Pyvox array is a tuple containing its dimensions. The
rank is obviously the length of this list. This attribute may not be changed
directly, although the array.reshape() method will modify it. FIXME: This
should probably be renamed as array.shape() for consistency.

array.solve(rhs)

Returns the solution X of the linear system AX = B for a square matrix
A given by array and a general matrix B given by rhs. Both array and rhs
must be the same floating-point type and must be compatible in shape.

array.spacing

This attribute of a Pyvox array specifies the spacing between coordinate
planes in each axis and is represented as a list of numbers. Assigning to
this attribute changes the spacing. As a special case, a plain number may be
assigned as the spacing of a rank-1 array; it will, however, always be returned
as a list.

80

array.sqrt()

Returns a new Pyvox array containing the elementwise square root of the
original array. Valid for floating-point types only.

array.stat(weight=None, axes=All)

Returns a tuple containing the estimated mean x̄ and standard deviation
s of the elements of array along the specified axes, optionally weighted by the
contents of weight array. The weight is normally an array but may be None or
a plain number to specify an unweighted mean. The axes argument may be
an integer in the range [0, n− 1], where n is the rank of the array, meaning a
single axis counting from the left; an integer in the range [−1,−n], meaning a
single axis counting from the right; or a tuple or list of such integers, meaning
all the axes listed. The default is to reduce on all axes to yield a scalar, and
can be obtained either by omitting the axes argument or setting it to None.
The values listed in axes may be in any order, and duplicates are permitted.

The array and weight arguments may be of any type or shape, but must
be the same shape. The results are defined by

pi =
wi
∑

iwi

(4.8)

x̄ =
∑

i

pixi (4.9)

s2 =

∑

i pi|xi − x̄|2
1−∑i p

2
i

(4.10)

where i runs over the elements of array, xi is the ith element of array, wi is
the ith element of weight, and pi is the weight wi converted to a probability.
The alternative definition

x̄ =

∑

iwixi
∑

iwi

(4.11)

s2 =

∑

iwi

(
∑

iwi)
2 −∑iw

2
i

·
[

∑

i

wi|xi|2 − |x̄|2
∑

i

wi

]

(4.12)

is often more convenient for computation. In the case that weight is omitted

81

or set to None, these simplify to

x̄ =
1

N

∑

i

xi (4.13)

s2 =
1

N − 1

∑

i

|xi − x̄|2 (4.14)

where N is the number of elements in array. If you’re foolish enough to let
the weights sum to zero for some output element, you get whatever value
the underlying C implementation provides for division by zero; this should
normally be nan for IEEE-754 platforms.

The origin and spacing of the result arrays are copied from array, except
that the named axes are omitted.

array.svd()

Given an array A of m×n elements, returns a tuple (U, S, V T) such that
U is an orthogonal or Hermitian matrix of m × m elements, S is a vector
of min(m,n) elements, V T is an orthogonal or Hermitian matrix of n × n
elements, and

A = U · diag(S) · V T (4.15)

where diag(S) is an m× n matrix with the elements of S along its principal
diagonal. The elements of S are the singular values of A and are in decreasing
order; the rows of U and the columns of V T are the corresponding left and
right singular vectors of A. Note that this function returns the transpose V T

rather than V itself. Valid for floating-point types only.

array.T()

Returns a new Pyvox array containing the transpose of the original array.
Valid for an array of any type. Same as array.trans(). See also array.H()
for the complex conjugate (Hermitian) transpose.

array.tan()

82

Returns a new Pyvox array containing the elementwise tangent of the
original array. The input is in radians. Valid for floating-point types only.

array.tanh()

Returns a new Pyvox array containing the elementwise hypebolic tangent
of the original array. Valid for floating-point types only.

array.tgamma()

Returns a new Pyvox array with the same type and shape as array and
which contains the value Γ(x) for each corresponding element x in array.
The function Γ(x) is defined by

Γ(x) =

∫ ∞

0

e−ttx−1 dt (4.16)

Supported for real floating-point types only, and provided only if the under-
lying C implementation supports it.

See also array.lgamma().

array.trans()

Returns a new Pyvox array containing the transpose of the original array.
Valid for an array of any type. Same as array.T(). See also array.H() for
the complex conjugate (Hermitian) transpose.

array.tuple()

Returns the elements of array as a Python tuple, in row-major order; the
elements of the tuple will be Python floats, ints, or longs as appropriate.

array.type

83

This attribute of a Pyvox array is the internal type used for the contents
of the Pyvox array. This attribute may not be modified.

array.uchar(lower=???, upper=???)

Returns a new Pyvox array containing the contents of the original array
converted to unsigned char. The conversion is done the same way as the un-
derlying C implementation; one consequence is that casting from an integral
type is done modulo the size of the destination.

The caller may optionally specify the lower and upper limits of a range to
be linearly compressed to fit the 0..255 range of unsigned char voxels; if this
is done, then the results are limited to fit the range rather than cast modulo
the destination size. Either both or neither of lower and upper should be
provided; the results are unpredictable if only lower is provided.

NOTE: Prior to 2003-08-25, the results were limited to the destination
min/max even if no lower and upper limits were specified.

array.uint()

Returns a new Pyvox array containing the contents of the original array
converted to unsigned int.

array.ulong()

Returns a new Pyvox array containing the contents of the original array
converted to unsigned long.

array.userdata

This read-only array attribute is a dictionary reserved for the user, who
may save here any information which he wishes to associate with the array.

84

array.ushort()

Returns a new Pyvox array containing the contents of the original array
converted to unsigned short.

array.write(filename, options. . .)

Writes the contents of a Pyvox array to an external file named filename
as prescribed by the options.

In many cases, only the filename need be specified, and the options will
default to the right values. Specifically, the parameters used to write the file
take the first-defined of: an explicit argument or keyword option; the values
implied by the filename extension; the values contained in array.metadata;
or uncompressed, ’raw’, and the natural external type corresponding to the
actual Pyvox array type. But if an explicit argument or keyword option is
incompatible with the format, it will be silently ignored. See array.metadata
for further information on the parameters and their possible values.

As a special case, the PGM and PPM formats will ignore any extra di-
mensions equal to 1.

Encapsulated PostScript is supported (for output only) and can be re-
quested by using the .eps suffix in the filename or requesting format =

’eps’. The keyword options height=height and width=width specify the de-
sired height and width, in inches, of the output image. If only one of height
and width is specified, then the other is set to maintain the aspect ratio of
the image; if neither is specified, then they are set to provide 72 samples per
inch.

The filename argument specifies the filename to which the data are to be
written; it is optional and defaults to array.metadata[’filename’].

The keyword option format=format specifies the image file format.
The keyword option bigend=bigend specifies whether the data are to be

stored in big-endian or little-endian byte order.
The keyword option compress=compress specifies the compression to be

used on the file.
(Not yet implemented) The keyword option exact=1 specifies that the

contents of array.header are preferred to any other attributes of array,
particularly array.origin and array.spacing. This permits certain non-
conformant AnalyzeView headers to be copied without modification.

85

(Not yet implemented) The keyword option seek=seek specifies that an
existing file is to be updated in place, rather than a new file written and
specifies the position within the file to which the data are to be written; this
preserves any information in the file outside the region written. If this option
is used with any value other than None, the file must already exist.

(Not yet implemented) The keyword extype=extype is permitted only for
’raw’ format and specifies the external data type to be used for the data;
it defaults to the natural external type corresponding to the actual internal
type of array. Using this option implies format=’raw’.

For compatibility with some older versions of Pyvox, the calling sequence
array.write(filename, format, bigend, options. . .) may also be used, but
this will be deprecated and removed in the future.

array.writepgm(filename)

Writes the contents of a Pyvox array to an external file in the binary
Portable Gray Map format. The array must be unsigned char or unsigned
short, and exactly two dimensions must be greater than 1. Use of this func-
tion is discouraged; in most cases, using array.write() with the appropriate
arguments produces the same results and is more flexible. As

array.writeppm(filename)

Writes the contents of a Pyvox array to an external file in the binary
Portable Pixel Map format. The array must be unsigned char or unsigned
short; exactly 3 dimensions must be greater than 1; the last dimension must
be 3 and contain the red, green, and blue components of each pixel in that or-
der. Use of this function is discouraged; in most cases, using array.write()
with the appropriate arguments produces the same results and is more flex-
ible.

array.writeraw(filename, extype=???, bigend=1)

Writes the contents of a Pyvox array to an external file in some specified
external raw format. If a string is given as the file argument, then that file

86

is opened for writing, the data are written to it, and the file is closed; if the
given string ends in .Z or .gz, the file is compressed or gzipped after being
written. If a file object is given as the filename argument, then the data are
written to the file starting at its current position but the file is neither closed
nor repositioned after writing. If no external data type is specified, the data
are written in the ”natural” data type corresponding to the type of the Pyvox
array; note that careless use of this feature can produce output files that you
don’t know how to read back in. Use of this function is discouraged; in
most cases, using array.write() with the appropriate arguments produces
the same results and is more flexible.

ccmap [class instance]

A ccmap object represents a map of the connected components (regions
for short) found in a 2D or 3D unsigned char image and is created by calling
pyvox.ccmap(image).

ccmap.bigob()

This convenience method returns a new unsigned char array the same
shape as the original image in which each pixel has the value 255 if it is
contained in the largest connected component and zero otherwise. If there
are two or more maximal regions of the same size, one is chosen at random.

ccmap.count(region=1)

This method returns the number of pixels contained in the region with the
given region number, or zero if there is no such region. If region is omitted,
it defaults to the nonbackground region with the greatest number of pixels.
Region 0 may be specified.

ccmap.map(region=???)

87

If region is specified, this method returns a new unsigned char array the
same shape as the original image in which pixels belonging to the specified
region number have value 255 and all other pixels have value 0.

Otherwise, this method returns a new unsigned char or unsigned short
array the same shape as the original image. The value of each pixel in that
array is the number of the region which contains that pixel; pixels in the
background region have the value 0.

ccmap.regions()

This method returns a sorted list of (region, count, seed) triples for the
connected components found in the image, where region is the region number,
count is the number of pixels in the region, and seed is a seed point on the
boundary of the region. The background region is omitted.

ccmap.seed(region=1)

This method returns the coordinates of a pixel on the boundary of the
specified region. If region is omitted, it defaults to the nonbackground region
with the greatest number of pixels. Region 0 is not permitted.

exim [module]

This module implements various functions for converting data between
internal (platform-dependent) and external (platform-independent) formats;
it also includes type descriptors for the internal and external types which it
supports.

exim.dump(dict, format, file=sys.stdout)

This function dumps the contents of a dictionary dict to the specified
file according to the struct description format. The meaning of format is
described under exim.pack.

88

exim.extypes

Is a list of all the external data types known to the exim module.

exim.intypes

Is a list of all the internal Pyvox array types known to the exim module.

exim.pack(dict, format, bigend=1)

This function packs the contents of the dictionary dict into a byte string
containing a struct in some external format, with byte order as specified by
bigend. The format descriptor is a list or tuple which contains one entry
for each field in the format, in the order which they appear. Each field
descriptor is a list or tuple of three or four elements. The first is the name
of the field, and will be used as a key into the dict to find the corresponding
value. The second is the default value, which will be used if the dict lacks the
corresponding key; an error will be reported if the default is None and the dict
fails to provide a value. The third is the external type of the field, given as one
of the external types from the exim package; the special value exim.string
requests a string. The value or default provided must be compatible with
requested type. The fourth, if provided, is the number of elements in the
field or string.

exim.unpack(data, format, bigend=1)

This function unpacks the contents of the byte string data containing
a struct in some external format, with byte order given by bigend, into a
dictionary and returns the dictionary. The meaning of format is described
under exim.pack().

kernel [type]

89

A kernel object represents a generalized convolution kernel and is typically
created by calling pyvox.kernel.

kernel.bias

The bias attribute of a kernel object is the value to which is added the
sum of coefficient times voxel intensity for each voxel in the neighborhood.
This attribute may be either read or written.

kernel.coef

Returns a list of the kernel coefficients, one for each neighbor given in
the kernel and corresponding to the delta list. This attribute may not be
written, to guarantee consistency between the coefficients and the deltas.

kernel.count

Returns the number of neighbors defined in the kernel.

kernel.delta

Returns a list of deltas for the kernel. Each delta is a list of coordinate
offsets relative to the center of the neighborhood.

kernel.rank

Returns the rank of the kernel, which is the same as the number of di-
mensions in which it is defined.

kernel.type

90

Returns the type of the kernel, which, in the current implementation, will
be either exim.double or exim.dcomplex.

obaffine [class instance]

An obaffine instance represents an affine transform as an objective func-
tion to be optimized and is typically created by calling regis.obaffine. The
class is derived from optim.obfunction and inherits most of the behavior
of an obfun instance.

obfun [class instance]

An obfun instance represents an objective function to be optimized and
can be created by calling optim.obfunction; more commonly, however, more
specific classes are derived from the optim.obfunction base class and inherit
its attributes and methods.

obrigid [class instance]

An obrigid instance represents a rigid transform as an objective function
to be optimized and is typically created by calling regis.obrigid. The class
is derived from optim.obfunction and inherits most of the behavior of an
obfun instance.

optim [module]

This module implements various class and functions to support multi-
dimensional optimization.

optim.obfunction [base class]

This base class defines an objective function to be minimized using the
optimization functions defined in the optim module, and also contains the

91

parameters that control the minimization process. It may be used by itself
when the function to be optimized is simple, or as a base class for more
complex optimizations. Note that the precise interpretation of the optimiza-
tion parameters is determined by the particular optimizer used, although the
following descriptions should be typical.

An instance of an objective function has the following attributes:
obfun.npar is the number of dimensions in the parameter space, or the

number of arguments to the objection function.
obfun.funct is the function to be optimized and will be invoked when

the instance is used as a function, as in obfun(foo). The user or derived
class may elect to do strange things by overriding the call method, in
which case the funct attribute is traditionally set to None.
obfun.xtol is a vector of tolerances in the abscissae; optimization stops

when the dimensions of the box which the optimizer is currently exploring
become less than the tolerances.
obfun.ftol is the tolerance in the objective function; optimization stops

when the range of the objective function within the region the optimizer is
currently exploring becomes less than this tolerance.
obfun.xopt is the best abscissa found so far, or None if no optimization

has been attempted yet. It is usually a vector, but will be a scalar for one-
dimensional optimization.
obfun.fopt is the value of the objective function at the abscissa xopt.
obfun.step is a vector of “reasonable” step sizes defining a box within

which the optimizer should start exploring for a minimum; the optimizer is
not, however, prohibited from moving outside this initial region.
obfun.niter is the maximum number of iterations that the optimizer

should attempt. Generally speaking, an iteration consists of a complete cycle
through all parameters, but the precise definition depends on the particular
optimizer.

The obfunction class itself does not define any user-callable methods,
although its derived classes often do.

optim.powell(obfun)

This function in the optim module implements the Powell direction set
optimization algorithm. It takes one argument, which is an objective func-
tion (that is, an instance of the optim.obfunction class or a derived class)

92

which defines the function to be minimized and the the parameters for the
optimizer. The location and value of the minimum found by the optimizer
is stored in the xopt and fopt attributes of the objective function.

poly [class instance]

An poly class instance represents a N -dimensional polynomial transform
and is typically created by calling pyvox.poly().

poly + other

Returns a new poly transform which contains the coefficientwise sum of
poly and other, which may be an affine or poly transform.

poly - other

Returns a new poly transform which contains the coefficientwise difference
of poly and other, which may be an affine or poly transform.

poly * number

Returns a new poly transform which contains the scalar product of poly
and number. The form number * poly is equivalent.

poly.addparam(parms)

Updates an polynomial transform by adding the contents of the vector
parms to the coefficients which define the polynomial transform. This func-
tion is useful for optimization algorithms that generate perturbations to an
initial transform.

93

poly.compose(other, pre=2)

Updates poly to contain the composition of poly and the affine or polyno-
mial transformation other ; returns the updated transform. If pre is 1, then
precomposes other with poly ; if pre is 2 or omitted, then postcomposes other
with poly ; if pre is −1, then precomposes the inverse of other with poly ;
if pre is −2, then postcomposes the inverse of other with poly ; any other
value of pre is an error. However, polynomial transforms are not invertible
(into polynomial transforms), so attempting to compose with the inverse of
a polynomial transform will fail.

poly.copy()

Returns a new polynomial transform containing the contents and at-
tributes of the original polynomial transform poly but which shares no storage
with it.

poly.init(data)

Initializes the transform poly from the given data and returns the modified
poly. The value of data must be an affine transform, another poly transform,
a list or tuple, a dictionary, the value 0, or the value 1. If data is the value
0, then all coefficients are set to zero. If data is the value 1, then poly is
initialized to an identity transform. If data is a list or tuple, it must contain
one entry for each term to be defined; each entry must be a three-element list
containing the output index, the multi-index which define the exponents to
which each input coordinate must be raised, and the value of the coefficient
itself. For example, the argument data=[[0, [0, 0], 2.0], [0, [1, 2],

3.0], [1, [3, 0], 4.0]] defines the transform

y0 = 2.0 + 3.0x0x
2
1

y1 = 4.0x3
0 .

If data is a dictionary, then it must contain one key:value pair for each term
to be defined. The key must be a tuple (not a list) containing the total
degree of the term, the output index, and the multi-index; the value must be
the coefficient. For example, data={(0, 0, (0, 0) : 2.0, (3, 0, (1,

94

2) : 3.0, (3, 1, (3, 0)) : 4.0} would define the same transform as
shown above.

Any existing terms in poly not named in data are retained but their coef-
ficients are set to zero. Any new terms specified in data are added.

poly.linear(image, dimen)

Resamples image through the polynomial transform given by poly to yield
a new Pyvox array with dimensions dimen and the same type as image.
Linear interpolation is used. The polynomial transform must be given as
the destination-to-source transform (not the source-to-destination transform
that you might naively expect) and must be given in index coordinates for
both the source and destination. The origin and spacing of the result are
set to their default values, and may be reset by the user to the desired values.

(There are actually two implementations of this method. The linear0

method is a reference implementation which is not particularly fast but which
is simple enough to be verified by inspection; the linear method is a faster
implementation which has been verified against the reference algorithm.)

poly.map(dimen)

Returns a new Pyvox array of type double which contains the output
coordinates of the transform poly computed from index coordinates over a
notional source image of dimensions dimen. The rank of the result is one
higher than the number of dimensions in poly; the (new) last dimension ranges
over the number of dimensions in poly and contains the output coordinates
in order.

poly.norm(other=None, length=100)

Computes a simple norm on the vector space of polynomial transforms;
the computed norm is also the maximum sup-norm of the image of any
point with sup-norm not exceeding the given length. If other is given, the
norm is computed on the (vector) difference of poly and other; as a special

95

case, setting other to 1 compares poly to the identity transform. For the
mathmatically inclined, the norm is defined as

‖T‖ = max
i

∑

k

|cik|λ|αk| (4.17)

where T is a polynomial transform, λ is the specified length, i runs over
the output coordinates, k runs over the terms for each output coordinate i,
αk is the multi-index of exponents for the kth term, and |αk| is the sum of
the exponents in the kth term. (The sup-norm rather than the Euclidean
norm on the points is used because the resulting norm on affine transforms
is slightly faster to compute.) Note that this norm does not behave properly
for composition and so is not an operator norm.

poly.param()

Returns a vector containing the coefficients which define the transform.
This is useful for optimization methods which work on vectors.

poly.point(x)

Transforms a point according to the given polynomial transform, return-
ing a new Pyvox array.

poly.scale(coef, pre=2)

Updates poly by composing it with an elementary scale transform of the
form x[i] = C[i]x[i], and returns the updated transform. If coef is a plain
number, then isotropic scaling is done. The value of pre determines the
order in which the two transforms are composed; see poly.compose() for the
permitted values.

poly.setparam(parms)

96

Sets the coefficients which define the polynomial transform from the con-
tents of the vector parms. This is useful for optimization methods which
work on vectors.

poly.translate(delta, pre=2)

Updates poly by composing it with a translation of the form x[i] =
x[i] + ∆[i]; returns the updated transform. The value of pre determines
the order in which the two transforms are composed; see poly.compose() for
the permitted values.

poly.truncate(maxdegree)

Updates poly by removing all terms of total degree higher than the spec-
ified maxdegree. Note that simple truncation does NOT provide the poly-
nomial transform of degree maxdegree that most closely approximates the
original transform. (The method that will has not yet been written.)

pyvox [module]

This module implements the core types, class, and functions of the Pyvox
extension to Python.

pyvox.affine(ndim, matrix=1, offset=0)

Creates a new affine transform in the given number of dimensions with
the given matrix and offset. If matrix is omitted, an identity matrix is used;
if offset is omitted, zero is used. Providing a plain number for matrix yields
a diagonal matrix; providing a plain number for offset yields a column vector
all of whose elements are that number.

pyvox.AffineType

97

Returns the Python class object for an affine transform, which can be
used with the Python function isinstance to check if some object is a
Pyvox affine transform.

pyvox.array(dimen, type=double, data=0)

This method constructs a new Pyvox array with given shape and type,
and fills it with data from a list. The data must be a list of numbers, and
the total number of data provided must exactly match the total number of
elements in the array to be created. As a special case, the given data may
be a scalar value, in which case the entire array is filled with that value; the
default is to fill the array with zeroes. The internal type defaults to double,
which is larger than is necessary in many applications but can contain any
value (except complex).

pyvox.ArrayType

Returns the Python type object for a Pyvox array, which can be used
with the Python function isinstance() to check if some object is a Pyvox
array.

pyvox.ccmap(image, minsize=0, maxreg=None)

Scans a two- or three-dimensional unsigned char image to find its con-
nected components and returns a new ccmap object which the user can query
for more information.

A connected component, or region, of a digital image is defined to be
a maximal connected set of nonzero pixels, where two pixels are connected
if none of their corresponding coordinates differ by more than one. The
boundary of a region is defined to be those pixels contained in the region that
are connected to some pixel outside the region. (Note that this definition
differs from the one used in topology, in which a boundary point need not be
contained in the region.)

Each nonbackground region found is assigned a region number, starting
from 1, in order by decreasing number of pixels; if there are two regions of

98

the same size, the order is indeterminate. Region 0 always represents the
background and includes all pixels that were zero in the original image, that
were contained in a region of less than the specified minimum size, or that
were not contained in the maxob largest regions. Note that the background
pixels need not form a single connected region.

If the optional keyword argument minsize is provided, then any region
containing fewer than the specified number of pixels will be omitted, and its
pixels added to the background object.

If the optional keyword argument maxreg is provided, then only the spec-
ified number of nonbackground regions will be included; all other regions will
be added to the background.

See ccmap and its methods for more information.

pyvox.column(data, n=None)

Creates an n × 1 Pyvox array of type double or double complex from
the given data, which may be a number, tuple, list, or a Pyvox array of any
shape; if data is a number, then n must be specified and the value of data is
used for all elements of the column vector. If n is not specified, it defaults
to the actual number of elements in data. If n is specified but differs from
the actual number of elements in data, or if those elements are not numeric,
then an exception is thrown.

The function pyvox.point() is identical to this one but may more clearly
express the user’s intent in some contexts.

pyvox.const(dimen, intype=double, value=0)

This method is a deprecated alias for the pyvox.array().

pyvox.diag(data, n=None)

Creates a new n×n Pyvox array of type double or double complex whose
diagonal elements are taken from the given data, which may be a number,
tuple, list, or Pyvox array of any shape. If data is a number, then n must
be specified and the value of data is used for all diagonal elements. If n is

99

not specified, it defaults to the actual number of elements in data. If n is
specified but differs from the actual number of elements in data, or if those
elements are not numeric, then an exception is thrown.

See also array.diag() to extract the diagonal elements of a matrix.

pyvox.error action(what)

This function sets the action that Pyvox should take if an error is encoun-
tered within the C extension code; it is likely to be useful only to those who
are actually debugging the C code. The possible values are 0 to generate a
Python error, 1 to exit immediately from the program, and 2 to abort and
dump core.

pyvox.fftramp(size, type=double, axis=Last)

Returns a new Pyvox array of the specified shape and type, each voxel of
which contains the FFT frequency index corresponding to its own coordinate
index along the specified axis, converted to the array type according to the
usual C rules. The type defaults to double, and the axis defaults to the
last axis. If the requested type is complex, the real part contains the index
and the imaginary part is zero. This function is not defined for unsigned
types. If there are N elements on the specified axis, then the frequency n′

corresponding to element n ∈ {0, . . . N − 1} is

n′ =

{

n if n ≤ N/2

n−N otherwise.
(4.18)

pyvox.have complex

This attribute is 1 if complex types are supported in this build of Pyvox,
and 0 otherwise. The complex types exim.fcomplex and exim.dcomplex

are always defined , but operations on complex types will be supported only
if pyvox.have complex is true.

100

pyvox.kernel(deltas, coefs=None, bias=0)

Returns a new Pyvox kernel with given neighbors, coefficients, and bias.
The deltas argument is a list of the neighbors, defined by an offset in each
coordinate direction. The coefs argument is optional; if omitted, the kernel
defines a neighborhood only. Otherwise coefs is a list of numbers giving the
coefficient at each neighbor. The bias argument is also optional; if omitted,
it defaults to zero. The bias and coefs may be either real or complex. The
kernel itself will be double complex if any of the coefs is complex, and double
otherwise. Once constructed, the kernel cannot be changed, although this
restriction may be lifted in later versions. The number of neighbors is deter-
mined by the length of the outer delta list; the length of the coefficient list
must be the same, or zero. The rank is determined by the length of the inner
delta lists; it is an error if these are not all the same. Kernels containing no
neighbors are invalid by decree, since it is not possible to determine the rank
in that case.

pyvox.lowpass(rank)

Returns a new Pyvox kernel which contains a standard lowpass filter in
the specified number of dimensions. The kernel generated is a 3 × 3 × . . .
convolution kernel with the form 2−n−

∑

|xi|, where n is the rank and xi are
the coordinates; this kernel will completely surpress the Nyquist frequency
along any of the coordinate axes.

pyvox.KernelType

Returns the Python type object for a Pyvox kernel, which can be used
with the Python function isinstance() to check if some object is a Pyvox
kernel.

pyvox.matrix(data, nr=None, nc=None)

Creates a nr×nc Pyvox array of type double or double complex and fills
it with the contents of data, which may be a Pyvox array of any shape, a

101

list (tuple) of lists (tuples) of numbers, or a plain number; if data is a plain
number, then nr and nc must be specified and a diagonal matrix with the
value of data along the diagnonal is returned. If nr and nc are omitted they
default to the values implied by data; if nr is provided but nc is not, then nc
is set equal to nr; if they are provided but fail to match the values implied
by data, then an exception is thrown. An exception will be thrown if the
contents of data are not all numeric. (Note that this function will not allow
you to create a matrix from a flat list of numbers; for that, you should use
pyvox.array() with appropriate arguments.

pyvox.monomials(n, k)

Returns a new Pyvox array defining the monomials in k literals of total
degree less than or equal to n. Each row of the table defines one possible
monomial; each column gives the power to which the corresponding literal is
to be raised. For example, the following array gives the monomials of degree
≤ 2 in 2 literals, which we shall take to be y and x.

0 0 means 1
0 1 means x
0 2 means x2

1 0 means y
1 1 means xy
2 0 means y2

The order of rows in the table is not guaranteed to be consistent from one
version of Pyvox to the next.

This function may be useful in generating a set of nth order moments
in k dimensions for use with the array.mop() function, or for generating a
polynomial transform using pyvox.poly().

pyvox.point(data, n=None)

Creates an n × 1 Pyvox array of type double or double complex from
the given data, which may be a number, tuple, list, or Pyvox array of any
shape; if data is a number, then n must be specified and the value of data
is used for all coordinates of the point. If n is not specified, it defaults to

102

the actual number of elements in data. If n is specified but differs from the
actual number of elements in data, or if those elements are not numeric, then
an exception is thrown.

This function is identical to pyvox.column() but may more clearly ex-
press the user’s intent in some contexts.

pyvox.poly(ndim, options. . .)

Creates a new polynomial transform in multiple dimensions. The param-
eter ndim specifies the number of dimensions.

The keyword option degree=degree specifies the degree of the transform
to be created. For example, 1 specifies an affine transorm (linear and con-
stant terms only) and 2 specifies a quadratic transform (constant, linear, and
quadratic terms). The degree defaults to None, in which case only the terms
specified in the init argument are provided.

The keyword option init=init specifies the multi-indices and correspond-
ing coefficients and works as described under poly.init(). The init defaults
to None, in which case only the terms specified by degree are included, with
zero coefficients.

If both degree and init are supplied, then any terms omitted from init

default to zero, while any terms listed in init with degree higher than degree
are added to the transform. If neither degree nor init are specified, then a
zero transform is created; this transform has no terms and maps every input
point to zero.

pyvox.PolyType

Returns the Python class object for an polynomial transform, which can
be used with the Python function isinstance to check if some object is a
Pyvox polynomial transform.

pyvox.ramp(shape, type=double, axis=Last)

Returns a new Pyvox array of the specified shape and type, each voxel of
which contains its own coordinate index along the specified axis, converted

103

to the array type according to the usual C rules. The type defaults to double,
and the axis defaults to the last axis. If the requested type is complex, the
real part contains the index and the imaginary part is zero.

pyvox.randi(shape, N)

Returns a new Pyvox array of the specified shape and type int, which
contains a set of newly generated random integers in the range 0, . . . , N − 1.
The default random number generator is used.

pyvox.randn(shape, mean=0, sdev=1)

Returns a new Pyvox array of the specified shape and type double, which
contains a set of newly generated normal random variates with the given
mean and sdev. The default random number generator is used.

pyvox.randu(shape, a=0, b=1)

Returns a new Pyvox array of the specified shape and type double, which
contains a set of newly generated uniform random variates in the interval
(a, b). The default random number generator is used. The generated variates
should never exactly equal a or b when the default a and b are used, but, due
to roundoff error, this cannot be guaranteed for user-supplied values.

pyvox.rawread(filename, dimen, extype=uint1, bigend=1, seek=0)

Returns a new Pyvox array initialized with raw image data read from
an external file in some specified external numeric format and converted to
the most natural internal format. The arguments are the file to read from,
the desired shape of the array (as a tuple or list), the external type (which
defaults to unsigned char), an optional flag to mark bigendian (which defaults
to bigendian), and the position in the file to start reading from.

If the given filename ends in .gz or .Z, it is assumed to be a compressed
file and is uncompressed into a temporary file and then read. If there is

104

no image file with the given name, but there is a file with either .gz or .Z
appended, then that file is assumed to be the image file compressed, which
is uncompressed on the fly and read instead.

The first element of the dimen array may be zero, in which case the
number of slices is determined by the size of the (uncompressed) image file.
This may not be combined with a non-zero seek argument.

If the seek is positive, it is relative to the beginning of the file; if negative,
relative to the end of the file; if zero, no seek is done.

NOTE: This function is deprecated and should be replaced by pyvox.read
in new code.

pyvox.read(filename, options. . .)

Reads an external file named filename with specified keyword options as
described below and returns the contents as a new Pyvox array. In many
cases, only the filename need be specified and the options will default to the
right values according to the file format defined by the extension part of the
filename. Specifically, the parameters used to read the file will be taken as the
first-defined of: an explicit argument or keyword option; the values implied
by the magic number in the file itself; or the values implied by the filename
extension. But if an explicit argument or keyword option is incompatible
with the format, it will be silently ignored.

The array.metadata attribute of the returned array will contain the
filename and many of the other parameters used to read the file. See ar-
ray.metadata for additional information.

The array.header attribute of the returned array will contain the infor-
mation extracted from the file header; the specific keys and values provided
depend on the selected data format.

The filename argument specifies the name of the file to be read. If
the image format specified uses separate header and data files, the name
of the header file should be specified here and the name of the corresponding
data file will be either read from the header file or automatically generated.
The filename extension indicates the data format but can be overriden by
the format option. If the given filename does not exist, but appending a
compression-indicating suffix to it yields a real file, then that file will be
silently uncompressed.

105

The keyword option format=format specifies the image file format used;
see array.metadata for the currently supported values.

The keyword option bigend=bigend specifies whether the data is stored
in big-endian or little-endian byte order; it defaults to 1 (big-endian) but is
ignored if the byte order is implicit in the format, as in the PGM and PPM
formats.

The keyword option seek=seek specifies the position of the desired data
in the file. See array.metadata for additional information. This option is
supported for raw mode only.

(Not yet implemented) The keyword option origin=origin is a number
or list of numbers which specify the physical coordinates which correspond to
index (0, . . .); it will be overridden by the origin specified in the header file,
if any. A single number will be replicated as needed for the actual number of
dimensions. The actual origin will be saved as the array.origin attribute.

(Not yet implemented) The keyword option spacing=spacing is a number
or list of numbers which specify the physical spacing between voxels; it will
be overridden by the spacing specified in the header file, if any. A single
number will be replicated as needed for the actual number of dimensions.
The actual spacing will be saved as the array.spacing attribute.

The following keyword options apply to only a few image file formats.
In fact, they apply only to the ’raw’ format, but this might change in the
future.

The keyword option dimen=dimen is permitted and required only for the
’raw’ format and specifies the dimensions of the data to be read; as a special
case, the first dimension may be specified as 0, in which case as many slices
or rows as possible will be read from the file. In all other formats, the
dimensions are specified in the file itself.

The keyword option extype=extype is permitted and required only for the
’raw’ format and specifies the external data type used for the data. The use
of this option implies format=’raw’. The internal type of the Pyvox array
returned defaults to the natural internal type corresponding to the external
type but may be overriden by the intype=intype option.

(Not yet implemented) The keyword option intype=intype is permitted
only for the ’raw’ format and specifies the internal data type to which the
data are to be converted. It defaults to the natural internal type correspond-
ing to the specified extype.

For compatibility with some older versions of Pyvox, the calling sequence
pyvox.read(filename, dimen, format, bigend, options. . .) may also be

106

used, but this will be deprecated and removed in the future.

pyvox.refcnt(ob)

Returns the current reference count of a Python object; mainly useful for
debugging Pyvox itself.

pyvox.row(data, n=None)

Creates an 1 × n Pyvox array of type double or double complex from
the given data, which may be a number, tuple, list, or a Pyvox array of any
shape; if data is a number, then n must be specified and the value of data is
used for all elements of the column vector. If n is not specified, it defaults
to the actual number of elements in data. If n is specified but differs from
the actual number of elements in data, or if those elements are not numeric,
then an exception is thrown.

pyvox.truefile(filename)

This function returns the true file name of a possibly compressed file.
That is, if the given file name exists and is readable, it returns the given file
name. If not, but if the given file name does not already end in .Z or .gz
and appending one of these yields the name of a valid and readable file, it
returns the modified file name. Otherwise, it returns None.

pyvox.vector(data, n=None)

Creates an n-element rank-1 Pyvox array of type double or double com-
plex from the given data, which may be a number, tuple, list, or Pyvox array
of any shape; if data is a number, the n must be specified and the value of
data is used for all elements of the vector. If n is not specified, it defaults
to the actual number of elements in data. If n is specified but differs from
the actual number of elements in data, or if those elements are not numeric,
then an exception is thrown.

107

reged [module]

This module implements a generic interactive region editor for volume
images. It is still being developed and is highly subject to change; if you feel
brave or ambitious, look at the files lib/reged.py and scripts/bredit.

regis [module]

This module implements various classes and functions for the registration
of N -dimensional images.

regis.correl(image1, image2, mask=None)

This function in the regis module computes the (optionally weighted)
Pearson product-moment correlation of two images. The two images image1
and image2 may be of any type and shape but must be the same shape. The
optional mask image defines a per-pixel weight; it must be the same shape
as the other two images. The mask defaults to one. The correlation r is
computed as

s2
x =

∑

n

wnx
2
n −

(
∑

nwnxn)
2

∑

nwn

(4.19)

s2
y =

∑

n

wny
2
n −

(
∑

nwnyn)
2

∑

nwn

(4.20)

r =
(

s2
xs

2
y

)−1/2

[

∑

n

wnxnyn −
(
∑

nwnxn) (
∑

nwnyn)
∑

nwn

]

(4.21)

where n ranges over the voxels in each image, xn and yn are the intensities
of the nth voxel in the first and second images, and wn is the weight for the
nth voxel.

regis.info(image, mask=None)

108

This function in the regis module computes the information content, in
bits per voxel, of an unsigned char image of any rank and shape. Zero voxels
are assumed to be background and are ignored. The optional mask image
defines a per-pixel weight; it must be unsigned char and the same shape as
image. The mask defaults to one. The information content I in bits per voxel
is defined by

pk =
∑

xi=k

wi

/

∑

i

wi (4.22)

I =
∑

k

pk log2 pk (4.23)

where i ranges over the voxels in the image, k runs over the intensity levels
1 through 255, xi is the intensity of the ith voxel, and wi is the weight for
the ith voxel.

regis.mutinfo(image1, image2, mask=None)

This function in the regis module computes the mutual information of
two unsigned char images, in bits per voxel. The two images image1 and
image2 may be of any rank and shape but must be the same rank and shape.
The optional mask image defines a per-pixel weight; it must be unsigned char
and the same shape as the other two images. The mask defaults to one. The
mutual information I in bits per voxel is defined by

pkl =
∑

xi=k; yi=l

wi

/

∑

i

wi (4.24)

pk =
∑

l

pkl (4.25)

pl =
∑

k

pkl (4.26)

I =
∑

kl

pkl log2

(

pkl
pkpl

)

(4.27)

where i ranges over the voxels in each image, k and l run over the intensity
levels 0 through 255, xi and yi are the intensities of the ith voxel in the first
and second images, and wi is the weight for the ith voxel.

109

regis.obaffine(source, target, init=1)

This class invocation creates an instance of the obaffine class, which is
used to define an objective function for the affine registration of two images.
Its arguments are the source and target images to be registered, plus an
optional initial guess init at the transform that will register the two images.
The initial guess defaults to the identity transform and may be an affine
transform, an obaffine instance, or an obrigid instance. In either of the latter
two cases, the metric, scenter, and tcenter attributes are also copied into
the new obaffine object.

The class is derived from regis.obregis and inherits the attributes and
methods of that class. The following additional attributes and methods are
defined.

The ndim attribute is the number of dimensions in the images to be
registered. Both images must be the same number of dimensions. This
attribute is set automatically when the instance is initialized and should not
be altered.

The npar attribute is the number of parameters needed to define an affine
transform; it is set automatically and should not be modified.

The xtol, ftol, and step attributes of the obregis class are set to
reasonable default values and do not usually need to be set by the user.

The itgt2src() method returns the best transform found so far in index
coordinates, as an instance of the affine class. The transform returned is in
index coordinates for the unshrunk images and is the desired mapping from
target coordinates to source coordinates.

The ptgt2src() method returns the best transform found so far in phys-
ical coordinates, as an instance of the affine class. The transform returned
is in physical coordinates for the images and is the desired mapping from
target coordinates to source coordinates.

The ctgt2src() method returns the best transform found so far in cen-
tered physical coordinates, as an instance of the affine class. Centered
physical coordinates have the same spacing as physical coordinates, but the
origin is placed at the specified center of the source or target. The optimizer
works in centered physical coordinates, since this generally gives the most
rapid convergence.

The deprecated initrigid(obrigid) method initializes the optimizer to
the best rigid transform found by an earlier obrigid rigid registraton objective

110

function; the init argument to the obaffine constructor should be used in
new code.

regis.obregis [base class]

This base class is derived from optim.obfunction and is used to derive
objective function classes for image registration. It is not usually used on its
own but defines the following attributes and methods in addition to those
defined by optim.obfunction.

The source and target attributes define the source and target images
to be registered. Both images must have the same rank and both must
(currently) be of type unsigned char.

The scenter and tcenter attributes are the nominal centers of rotation
and scaling for the source and target images. They are not strictly necessary,
but choosing good values here often yields faster convergence; setting them
to the center of gravity of each image is a good default choice.

The sspacing and tspacing attributes are the physical pixel spacings in
the source and target images. They are used to correct for aniotropic sam-
pling and default to the spacing attributes of the source and target images;
few user will need to set the explicitly.

The metric attribute selects the metric to be used to measure the quality
of the match between the two images. The following choices are currently
supported: “correl” uses a Pearson product moment correlation; “mutinfo”
uses the mutual information between the two images; and “norm2” uses the
L2 norm or RMS error.

The scale(shrink, smooth=0) method sets shrink and smoothing levels
for multi-scale registration. The values set remain effective until new values
are set with this method; the best transform found so far is automatically
modified to suit the new scale. When the shrink parameter is not zero (which
is its default value when an instance is created), the metric is evaluated on
images shrunk by the factor 2shrink; thus if the shrink is 2, the metric is eval-
uated on an image reduced by a factor of 4 in each dimension. When the
smooth parameter is not zero (its default value), the images being registered
are lowpass filtered smooth times after being shrunk and before being reg-
istered. (The original unshrunk and unsmoothed images are saved for later
use.) Initially registering with shrunk and smoothed images and progres-

111

sively unshrinking and unsmoothing them often provides a faster and more
robust algorithm than attempting to register using only the original images.

regis.obrigid(source, target, init=1)

This class invocation creates an instance of the obrigid class, which is
used to define an objective function for the rigit registration of two images.
Its arguments are the source and target images to be registered, plus an
optional initial guess init at the transform that will register the two images.
The initial guess defaults to the identity transform and may be an affine
transform, an obrigid instance, or an obaffine instance. In either of the latter
two cases, the metric, scenter, and tcenter attributes are also copied into
the new obrigid instance. Note that, while it is possible to set the initial
transform to other than a rigid transform, it is rarely sensible to do so.

The class is derived from regis.obregis and inherits the attributes and
methods of that class. The following additional attributes and methods are
defined.

The ndim attribute is the number of dimensions in the images to be
registered. Both images must be the same number of dimensions. This
attribute is set automatically when the instance is initialized and should not
be altered.

The npar attribute is the number of parameters needed to define an affine
transform; it is set automatically and should not be modified.

The xtol, ftol, and step attributes of the obregis class are set to
reasonable default values and often do not need to be set by the user.

The itgt2src() method returns the best transform found so far in index
coordinates, as an instance of the affine class. The transform returned is in
index coordinates for the unshrunk images and is the desired mapping from
target coordinates to source coordinates.

The ptgt2src() method returns the best transform found so far in phys-
ical coordinates, as an instance of the affine class. The transform returned
is in physical coordinates and is the desired mapping from target coordinates
to source coordinates.

The ctgt2src() method returns the best transform found so far in cen-
tered physical coordinates, as an instance of the affine class. Centered
physical coordinates have the same spacing as physical coordinates, but the
origin is placed at the specified center of the source or target. The optimizer

112

works in centered physical coordinates, since this generally gives the most
rapid convergence.

tkphoto.tkphoto(tkphoto=None, **options)

This function wraps the Tkinter PhotoImage provided as argument in a
Pyvox tkphoto object and returns the new tkphoto object. Alternatively,
if no positional arguments are provided, this function creates a new Tkinter
PhotoImage object using any keyword arguments provided, and returns that
wrapped in a tkphoto object. It is intended that a tkphoto object should
support all the methods of the enclosed PhotoImage object, and be usable
anywhere that a PhotoImage object can be used; but don’t count on it just
yet.

tkphoto [type]

A tkphoto object is a wrapper around the Tkinter PhotoImage object and
is typically created by calling pyvox.tkphoto.

tkphoto.getimage()

This method of a tkphoto object copies the contents of the image it
contains into a new Pyvox array object and returns the new array. The new
array always has type unsigned char and dimensions height × width × 4,
where the last dimension ranges over red, green, blue and alpha.

tkphoto.handle

This attribute of a tkphoto object is the Tk handle of the Tkinter Pho-
toImage it contains.

tkphoto.name

113

This attribute of a tkphoto object is the name of the Tkinter PhotoImage
it contains, as assigned by Tk.

tkphoto.putimage(data, position=(0,0), size=all, zoom=1, subsample=1)

This method of a tkphoto object copies the contents of the Pyvox array
data into the tkphoto image. The Pyvox array must have type unsigned char
and dimensions height × width × 4, where the last dimension ranges over
red, green, blue and alpha; the last dimension may also be omitted entirely
(gray level only), 1 (gray level), or 3 (RGB). The position of the upper left
corner defaults to the upper left of the tkphoto image. The size defaults to
the size of data, adjusted for zoom and subsample. The zoom and subsample
arguments may be a single number to apply equally to x and y, or a list of
numbers for anisotropic zoom and subsampling. If the image data contains an
alpha channel, note that the Tkinter Canvas widget seems to distinguish
only between zero (transparent) and non-zero (opaque). This method is
essentially a wrapper for the Tk function Tk PhotoPutZoomedBlock and the
documentation of that function should be consulted for the finer details.

tkphoto.size

This attribute of a tkphoto object describes the dimensions of the Tkinter
PhotoImage that it contains. The dimensions are always height × width ×
4, where the last dimension ranges over red, green, blue and alpha.

tkphoto.tkphoto

This attribute of a tkphoto object is the Tkinter PhotoImage that it
contains.

type.code

114

This attribute of an internal or external type is the numeric code used to
designate it within the Pyvox C code. This is unlikely to be of any interest
to the Pyvox user, but is used internally.

type.complex

This attribute of an internal type is the complex type with equal or better
precision; for example, exim.double.complex evaluates to exim.dcomplex.
Any complex internal type maps to itself.

type.desc

This attribute of an internal or external type is a short (half-line) string
describing the type.

type.epsilon

This attribute of an internal type is the smallest value ε > such that 1+ε >
1 when computed in the given type. Integral types are assumed to have ε = 1;
complex types are assumed to have the same ε as the corresponding real type.
This value is useful in estimating the available precision of computations in
the given type; see a book on numerical analysis for further details.

type.extype

This attribute of an internal type is the external type that most naturally
corresponds to type. Note that the correspondence is not guaranteed to be
constant across platforms, or different versions of Pyvox. Returns None for
an external type, although this might change in the future.

type.intype

115

This attribute of an external type is the internal type that most naturally
corresponds to type. Note that the correspondence is not guaranteed to be
constant across platforms, or different versions of Pyvox. Returns None for
an internal type, although this might change in the future.

type.iscomplex

This attribute of an internal or external type is 1 if the type is complex-
valued and 0 if it is real-valued.

type.isfloat

This attribute of an internal or external type is 1 if the type is a real or
complex floating point type and 0 otherwise.

type.isint

This attribute of an internal or external type is 1 if the type is integral
and 0 otherwise.

type.isreal

This attribute of an internal or external type is 1 if the type is real-valued
and 0 if it is complex-valued.

type.isunsigned

This attribute of an internal or external type is 1 if the type is unsigned
and 0 otherwise.

type.name

116

This attribute of an internal or external type is a one-word string naming
the type.

type.nbytes

This attribute of an internal or external type is the number of bytes of
storage required by each element.

type.real

This attribute of an internal type is the real type with the same preci-
sion; for example, exim.dcomplex.real evaluates to exim.double. Any real
integral or floating-point type maps to itself.

117

Chapter 5

Applications and Examples

The Pyvox package also contains various command-line application programs
written either as Python scripts or directly in C. These are listed briefly
below and are fully described by man pages. There are also several example
programs written in Python, and usually documented by man pages.

5.1 Examples

The example programs are implemented in Python and contained in the
examples directory; they are intended as examples of the use of Pyvox and
are not installed as part of the Pyvox package. Their usage is described by
man pages in the same directory, and their implementation in the source
code. There may be other, experimental, programs in this directory that
have not been documented yet. On the other hand, some of these program
may move into the applications when they grow up.

118

Example programs
agate Generate agate-like fractal image
brmask4 An experimental brain masking algorithm
colorcube Generate volume image with all 24-bit colors
conseg(1) Compute concordance of two segmented images
ellipsoid Generate test image with ellipsoidal region
fresnel Generate test image with Fresnel diffraction pattern
kmsegm Univariate or bivariate K-means segmentation
lovar Compute local mean and variance of an image
paregis Principal axes registration
regis Affine registration and resampling
rpsamp(1) Choose random set of points within an image
vihist Univariate or bivariate histogram

5.2 Applications

Applications are implemented either in Python or C and appear in either
the scripts or src directories; they are intended to be useful programs and
are installed with the rest of the Pyvox package. Their usage is described in
man pages, and their implementation in the source code.

Application Programs
anonavw(1) Anonymize an AnalyzeView header file
bredit(1) Interactive brain mask editor
dumpavw(1) Dump contents of an Analyze View header file
editavw(1) Edit contents of an Analyze View header file
makeavw(1) Create an Analyze View header file
qdv(1) Image viewer for gray-scale volume images
reged(1) Generic interactive region editor

119

Chapter 6

Installation

6.1 Prerequisites

In short, Pyvox requires a Unix-compatible operating system, the Gnu C
compiler with C99 support, Posix-compatible C libraries, Python 2.1 or later,
the X Window System with 24-bit true color visuals, Tcl/Tk, the LAPACK
and BLAS libraries, and Lesstif or Motif. If this describes your system, there
is a pretty good chance that you can compile and install Pyvox without
having to do anything special. If not, or if you run into problems, the sections
below discuss possible solutions.

6.1.1 ANSI C (1999) Compiler

Pyvox is intended to work with any ANSI (1999) C compiler [4], but for the
moment that compiler must be the Gnu C compiler (gcc). This is considered
a bug but we haven’t yet figured out how to portably build shared libraries
(which are required for Python extensions). If you manage to get it working
with another compiler, please let us know how.

Compilation under a C89 C compiler is possible in theory, but scant effort
goes into making sure that it works; it’s probably more economical for you
to upgrade your compiler than to patch Pyvox to match.

Pyvox will compile under a C compiler that lacks support for complex
numbers, but accomplishes this by omitting any feature that uses complex
numbers. The recommended solution is to upgrade your compiler.

120

6.1.2 Posix C Libraries

C libraries compatible with Posix [3, 5] are required.

6.1.3 Python

Version 2.1 or later of Python [2] is required. In theory, you can compile
with Python 2.0 but all the features that depend on a later version will be
omitted. If the Python executable is not on the path, or if it is not named
python, use the --with-python=EXEC to specify the location of the desired
Python executable. In this case, you should carefully check the generated
Makefile for errors and use make -n install before installing for real.

6.1.4 X11

Several GUI programs in Pyvox require the X11 Window System with a 24-
bit true color display. Pyvox will (probably) compile without X11, but will
omit all the GUI programs.

As long as the header and library files are in reasonably standard places,
no special steps should be needed; if not, use the --with-c-header-path

and --with-library-path configure options to indicate the right place to
look. If you don’t have X at all, use the --without-x option to leave out
the GUI programs.

6.1.5 Tcl/Tk and Tkinter

The current implementation of Pyvox uses the Tkinter extension module to
support GUIs, which is a wrapper around the Tcl/Tk libraries. This is still
somewhat experimental, since Tk is not very good at handling and displaying
images generated internally by a program rather than read from the disk; we
might eventually wind up using some other GUI package, perhaps GTK.

If no working Tkinter module is found during configuration, then the
Pyvox tkphotomodule will not be created and none of the modules or scripts
that depend on it will work.

6.1.6 Pmw: Python Mega Widgets

The GUI programs other than qdv require the Python Mega Widgets pack-
age; version 1.2 is known to work and is available from

121

http://pmw.sourceforge.net/ .

6.1.7 Motif/Lesstif

The qdv image viewer requires X and Motif with a 24-bit true color visual.
Pyvox should compile even without these, but qdv will not be built. Pyvox is
expected to eventually eliminate any use of Motif/Lesstif in favor of a more
modern GUI toolkit, but this is not yet a high priority item.

6.1.8 LAPACK and BLAS

Pyvox uses the LAPACK and BLAS libraries [1] for numerical linear alge-
bra; some platforms may also require the f2c library or the F77 and I77
libraries to support LAPACK and BLAS. Note that these libraries must be
shared libraries; Python extenstions such as Pyvox cannot be implemented
as statically linked code. If you have these libraries installed in a reasonably
standard place, then the configure script should be able to find them auto-
matically and nothing special needs to be done. If you have them in some
non-standard place, then you will need to use the --with-lapack option
to specify where; see the section on configuration options for more details.
If the configure script cannot find these libraries (which must be shared li-
braries), or if you specify the --without-lapack option, then it will use its
own internal light-weight version.

It should be noted that LAPACK and BLAS libraries tuned for your
specific platform are generally much better if you care at all about numerical
linear algebra; this light-weight code is provided only as a convenience for
users who are primarily interested in image processing and don’t want to
spend a lot of time getting Pyvox up and running.

6.1.9 Miscellaneous

A recent make command is required. Gnu make, often installed as gmake on
platforms with a vendor-supplied make, is known to work. Many, but not all,
other versions of make will work.

The /usr/bin/env command is required; the Python scripts use this to
find the Python executable without knowing its exact path. If you don’t
have it for some reason, you will need to modify the first line of each Python
script to indicate where the Python executable is found.

122

If gzip is visible on the path during configuration, then it will be used to
support automatic uncompression of image files for reading.

6.2 Particular Platforms

Pyvox is developed primarily on Linux for the x86 and x86 64 platforms, and
works best on these platforms. Development and testing on other platforms
is still experimental and probably buggy. We will be interested to hear about
other successes or failures, and very interested to receive fixes that will yield
success on other machines and operating systems.

6.2.1 Linux

Pyvox should build and install out of the box on any recent RedHat or Fe-
dora distribution, provided that you have the appropriate tools and libraries
installed. It is likely to work well on most other distributions, but we do not
attempt to test them.

Some (older) versions of RedHat and Fedora Linux do not install tcl-devel
and tk-devel rpm packages by default, so you may need to install these by
hand.

You can make the new shared libraries available by adding the the direc-
tory $PREFIX/lib to /etc/ld.so.conf and running ldconfig, or by adding
the directory to LD LIBRARY PATH in /etc/profile or other shell init file.
The most convenient way to declare PYTHONPATH for all users is to add the
line

export PYTHONPATH=$PREFIX/lib/pythonN.N

to /etc/profile, substituting the proper value of PREFIX where appropriate.

6.2.2 Darwin (Mac OS X)

The Developer’s Toolkit is required to build Pyvox. If you want to use any
of the GUI programs, you will also need to install X11 support and the X11
SDK. However, we don’t yet have the GUI programs working reliably on
Darwin.

In at least some versions of Darwin, version 2.95.2 of the C compiler does
not handle restrict correctly but fails to set the return code to indicate

123

this, which causes the config.h file to be set up incorrectly. The symptom is
that compiling bips.c generates several pages of syntax errors complaining
of a missing ’:’ after ’ restrict’. A workaround for this error is to manually
edit include/config.h after running ./configure to define restrict as
an empty string.

In at least some versions of Darwin, the math.h header file for version
2.95.2 of the C compiler does not include a proper ANSI prototype for the
cabs function and the compiler will complain about it with the warning levels
as usually set by Pyvox; this warning can be ignored without consequence.

6.2.3 Solaris

The GUI programs do not yet build and work reliably on Solaris. Nor do
complex numbers, although this may be an artifact of an outdated or mis-
configured C compiler on our test system.

Some of the X headers provided with Solaris omit the type declaration
on many of the functions they declare, letting it default to ‘int’; this yields
a page or two of warning messages, which can be ignored.

6.2.4 IRIX

This platform is really experimental; don’t try it unless you’re willing to
debug it. The rest of this section consists of my notes from trying to get it
to work correctly.

The GUI programs do not yet build and work reliably. Nor do complex
numbers.

...Python, Tk, gcc in /usr/freeware; not known if this is vendor-supplied
or a local modification.

...multiple executable file formats; you must use the same one for Python,
Pyvox, Tk, and other shared libraries files, and must compile pyvox in
this same format. For the one sample system, the default gcc format was
mips-3 and n32; the appropriate library files were found in /usr/lib32 and
/usr/freeware/lib32. Use the –with-library-path option on configure to
set the path correctly.

...Typing plain python on the command line gets version 1.5.2, which is
no longer compatible with Pyvox. There also exists python2, which appears
to be version 2.1. Use --with-python=‘which python2‘ to get the right

124

version. Also define ln -s ‘which python2‘ /bin/python so that the
/usr/bin/env hack works correctly.

...For at least one example, the following works:

./configure --with-python=‘which python2‘ --with-library-path=/usr/freeware/lib32

...On my test machine, gcc is configured with –disable-c99, which means
no complex numbers and thus no real Pyvox support. I notice also –disable-
shared, although that doesn’t seem to have stopped me from using the -shared
option successfully.

6.3 Installation Locations

The configuration script attempts to guess where the various components
of Pyvox should be installed; its guesses are printed out at the end of its
run. You should review these to make sure that they are appropriate for
your system. If they are not, you have the following options: (1) Use the
--prefix and --exec-prefix options to ./configure. (2) Modify the gen-
erated Makefile by hand. (3) Modify the configure.in file to make a better
guess. If you do the latter, please send the improved script to us.

One particular point should be noted. If you have Python installed in
/usr rather than in /usr/local, which includes most platforms on which
Python is installed with the system rather than being a later add-on, the
configure script will typically install the new Python modules under

/usr/local/lib/pythonN.N/site-packages

provided that this directory exists, rather than under

/usr/lib/pythonN.N/site-packages

This is for consistency with the fact that all the other components are in-
stalled in /usr/local rather than /usr. If this is what you want, then you
should make sure that the former directory exists (and is included on your
PYTHONPATH environment variable); if not, then you should make sure that
that directory does not exist, or modify the Makefile by hand.

6.4 Procedure

The following instructions should work on most systems. If they don’t, or if
one of the special caveats below applies to you, see the other sections in this

125

chapter.
If you are upgrading from BBLimage 0.67 or earlier, see the the section

“Upgrading Old Installations” below on manually fixing some incompatibilies
between the old and new versions.

The following steps will usually suffice:

1. Unpack the tar file and cd into the source tree.

2. Run ./configure to guess the right parameters for your machine. See
the section “Configuration Options” below for possible options to this
command.

3. Examine the installation locations list at the end of the run and make
sure they are what you want.

4. Run make to compile and link everything. A side effect of this is to
run make tags to create the TAGS file for emacs; if you’re a vi partisan,
make the obvious change to the Makefile.

5. Run make regress to run the regression tests. These don’t yet test
everything, but are sufficient to give a reasonably good smoke test.

6. As root, run make install to install all the executable binaries and
man pages, usually in /usr/local/bin and /usr/local/man. See the
configuration options below if you want to install it elsewhere.

7. Several Python extension modules are installed in the directory

$PREFIX/lib/pythonN.N/site-packages;

you will need to add this directory to your PYTHONPATH if it is not
already there.

8. Similarly, the shared libraries libpyvox.so and libvoxkit.so are in-
stalled in $PREFIX/lib; you may need to add this directory to the
search path for shared libraries. The details for doing this will depend
on your operating system, its setup, and your choice of shell; a few
systems are described in the section “Particular Systems” above.

126

6.5 Upgrading Old Installations

If you are upgrading from BBLmage version 0.67 or earlier, you may need to
make the following changes by hand.

• The default location for installing the Python modules has changed
from $PREFIX/lib/python1.5 to

$PREFIX/lib/pythonN.N/site-packages

where N.N is the Python version. You should remove the files pyvox.so
and exim.so from the old location.

• The old command line programs anonbblanz, binnseg, conseg, dump-
bblanz, imstack, inleav2, lovar, rpsamp, skmiv, swab, usb2uc, vibi-
hist, and vihist have been converted to examples in Python or re-
moved entirely; you should remove the old programs and their man
pages from their installed locations.

• The pyvox module is now defined by a Python file pyvox.py and a
shared library pyvoxC.so; it was previously defined by a shared library
pyvox.so. You should remove the old file pyvox.so to prevent it from
shadowing pyvox.py.

• Versions of Pyvox prior to 0.63 recommended that the installer should
create a link from /usr/local/bin/python to /usr/bin/python; this
is no longer necessary and should be removed unless needed for some
other reason.

• Versions 0.67 and earlier installed a single shared library libbbli.so

in $PREFIX/lib; later versions have replaced this with two libraries
libvoxkit.so and libpyvox.so. You should remove the older shared
library.

6.6 Configuration Options

The following options may be provided to the configuration script to provide
for special needs. To change the options, you should run make distclean

to clean up the source tree before running configure with the new options.

127

1. The machine-independent files (only the man pages, at the moment)
are installed in $prefix/man, where prefix defaults to /usr/local.
You can specify another location PATH by using the

--prefix=PATH

option to the configure command.

2. The machine-dependent files are installed in the location specified by
$exec prefix, which defaults to $prefix. More specifically, the exe-
cutable programs and scripts are installed in $exec prefix/bin; the li-
braries (except the Python modules) are installed in $exec prefix/lib;
and the Python modules are installed in $exec prefix/lib/pythonN.N.
The

--exec-prefix=PATH

option to the configure script can be used to specify another location.

3. In most cases, the configure script will automatically find the necessary
header and library files. If not, the configure options

--with-c-include-path=PATH

--with-library-path=PATH

may be used to indicate the directories where they may be found.
For example, --with-c-include-path=/img/prog/include will cause
that directory to be added to the list of directories searched for include
files. Multiple directories may be specified and are separated by colons.
The environment variables C INCLUDE PATH and LIBRARY PATH work
the same way.

4. Motif-compatible headers and library files are required to compile the
qdv viewer. They will be found automatically if present in the usual
place within the X11 directory tree. If they are actually somewhere else,
use the --with-c-include-path and --with-library-path options
described above to indicate where.

5. If you don’t have X and Motif, or don’t want to use them, the configure
option

128

--without-x

will omit compilation of all the programs and libraries that use X.

6. Pyvox will try to find and use the platform-specific versions of the
LAPACK and BLAS libraries if they exist, but will use its own generic
light-weight version if they cannot be found. The option

--with-lapack=OPTIONS

allows the user to specify any necessary -L and -l loader options
to get the platform-specific libraries, including libf2c or libF77 and
libI77 if necessary; the options string will need to be quoted if it con-
tains blanks. (The -L options could also be specified through the
--with-library-path configure option.) The option

--without-lapack

forces Pyvox to use its own light-weight libraries.

7. The configure script attempts to find the existing installation of Python
automatically. If it fails, the option

--with-python=EXEC

can be used to specify the location of the Python executable.

6.7 Make Targets

This section summarizes the targets for the make command that are useful
for the installer and user; see the same-named section in the Implementation
chapter for additional targets useful for developers.

The all target compiles (but does not install) all the components of
Pyvox that are needed for the specified configuration.

The clean target deletes all the compiled and generated files and some
related files but does not modify the configuration.

The distclean target deletes all compiled and generated files, plus the
files that define the configuration. In general, it attempts to restore the
directory to its “as-distributed” state.

129

The realclean target deletes all files that can be regenerated by the
builder.

The install target installs the compiled code into the locations specified
by configuration. In general, you must be root to install Pyvox.

The regress target runs a regression test on the code in the build direc-
tory (not the installed code)

The dvi and pdf targets regenerate the dvi and pdf forms of the documen-
tation from their original TeX files. You will need to have LaTeX installed
for the dvi target, and both LaTeX and ps2pdf installed for the pdf target.
The documentation is distributed in pdf format, so most users will never
need to do this.

130

Chapter 7

Implementation

This Chapter is intended primarily for the developers of Pyvox itself, al-
though other users may find the discussion of design decisions interesting.
(The decisions are ordered from basic to technical, so begin at the beginning
and read until it becomes too technical.) Even this Chapter does not give
all the details; for that you must consult the source code. But it does try to
give you enough orientation that you understand the architecture, can easily
find the right source code to read, and understand why things were done as
they were. A final section discusses some design issues that are still open.

7.1 Some History

A bit of history may be helpful in understanding the organization of the
software. BBLimage, the predecessor of Pyvox, was originally designed as a
toolkit of image processing functions intended to be called from C, plus a set
of command-line programs that would call the lower-level toolkit to provide
user-level functionality.

The results were not entirely satisfactory. Building complete image anal-
ysis protocols for end users by using shell scripts to connect CLI programs
was just plain painful and involved constantly reading and writing images to
disk; on the other hand, writing complete protocols in C involved getting a
lot of fussy little details straight that distracted from the image processing
algorithm itself.

The current approach is to encapsulate the image processing library as
an extension of the Python language, which was chosen because it is a full-

131

featured, high-level programming language which is very easily extended in
C. This approach makes it easy to program new analysis protocols in Python
while still permitting the lower-level functions to be written in highly efficient
C. There are, however, still many command-line programs that have not yet
been converted into Python scripts.

The original BBLimage package also contained the programs BrainMask,
Kmean 3Dseg, and AdpKmean 3Dseg Ebeta, which were originally devel-
oped by Michelle Yan for use with specific MR imaging protocols used at
the Brain Behavior Lab. These programs are heavily used at BBL for image
analysis, but have not proven adaptable to other imaging protocols. They
have been moved into the segm package (which is made available to the pub-
lic but is not recommended for general use) and are no longer included in
Pyvox.

7.2 Design Decisions and Rationale

7.2.1 Target Audience

The primary audience for Pyvox is image analysts in neuroscience and related
research groups who need to develop automated image analysis protocols and
apply them to hundreds of large images. The key quality criteria for this
group include rapid development and validation, efficiency, and robustness.
Portability will be important to any analysts who have a platform other
than the few that Pyvox is being developed on. Ease of learning, pretty
graphical user interfaces, and elegant code are definitely secondary issues;
anyone who needs to process hundreds of images can be assumed to be willing
to spend some time learning how to do it efficiently and to want effective
automation more than a pretty graphical interface. Clarity, maintainability,
and extensibility of the source code, while of little interest to the image
analyst, are of considerable interest to the developers; they will be given
high priority but may be sacrificed if necessary to the primary virtues of
rapid development, efficiency, and robustness. By the way, rapid development
refers to the rapid development of applications using Pyvox, not necessarily
to the development of Pyvox itself.

The reason for choosing this audience is that it’s the itch I need to scratch.
Researchers who need to do rapid prototyping of algorithms without worrying
about efficiency in applying them, and students who want to experiment with

132

medical image processing will not be deliberately excluded, but if it comes
down to inconveniencing them or inconveniencing my primary audience, I’ll
focus on the needs of my primary audience.

7.2.2 Target Platform

Pyvox is generally optimized for a modern scientific or engineering work-
station or high-performance personal computer, say a system with dual 500
MHz or faster processors, 256 MB or more of RAM, 20 GB or more of fast
hard disk, 1280 × 1024 or better display resolution with 24-bit color, and
a 19-inch monitor or better. The software is designed to be portable, but
there is a definite bias toward Linux and Unix platforms, because that’s
what I’m most experienced and comfortable with; volunteers to get Pyvox
to run well on Windows or Macintosh will be gratefully received. Pyvox will
probably run successfully on smaller and slower platforms (assuming enough
swap space and hard disk) but s-s-l-l-o-o-w-w-l-l-y-y. As for larger and faster
platforms—if someone would like to donate a supercomputer and its upkeep,
I’ll be happy to make Pyvox work on it.

7.2.3 Open Source License

Pyvox is distributed under an Open Source license (which permits free modi-
fication and distribution) for several reasons. First, I believe that software is
a form of scientific knowledge and that science advances most rapidly when
we can build on each other’s work rather than re-implementing the wheel. I
hope that the people who find this software useful will reciprocate by con-
tributing bug fixes and other improvements to be folded back into the master
copy for future releases. Second, I find that we write better software when I
expect that dozens of people will be reading my code than when I am writing
just for myself. Finally, I would rather spend my time doing science rather
than trying to monitor and enforce a more restrictive license. (Note: The
only reason that last paragraph says “I” rather than “we” is simply that I’m
the only developer so far.)

Since Pyvox is funded in large part by federal research grants, I do not
feel that it is ethical to prohibit for-profit organizations (who do, after all,
pay some of the taxes which support Pyvox) from using this code. Thus I
use a license similar to the BSD license rather than the Gnu General Public
License and do not use GPLed code within Pyvox to avoid its viral property.

133

Note also that I am an academic, for whom publications and citations
are often worth more than money (at least, they can often be converted into
tenure and money), so I really do want to see citations of this work.

7.2.4 Large Images

Pyvox is optimized for “large” images, by which we mean images that will
fit comfortably into main memory, but not into L2 cache. A modern 32-bit
workstation can typically support up to 3-4 GB of virtual memory; physical
memory may be somewhat smaller. L2 cache is typically about 256 to 2048
KB. An MRI volume image containing 256× 256× 256 voxels of 8- or 16-bit
data, or a data set of several such images, would be representative. Efficient
processing of large images requires careful attention to locality and blocking
to avoid unnecessary traffic between the cache and main memory. On the
good side, Pyvox does not need to be particularly careful about limiting the
size of image headers; any reasonable information may be included in the
header without noticeably increasing the total memory requirements.

Pyvox will support “small” images that fit into L2 cache but will not
exploit their small size for improved efficiency. The actual payload in a
“tiny” image such as a 4×4 array used to represent an affine transformation
will likely be overwhelmed by the size of the header; since relatively few of
these are expected to be used, the cost in memory and computer time should
be acceptable.

On the other hand, “huge” images that will not fit into main memory (or
a single disk file) and must be processed in pieces introduce a whole new set
of problems that Pyvox will not attempt to handle, at least yet.

7.2.5 Image Operations

Pyvox emphasizes the use of operations that work on entire images, with op-
erations on individual voxels an anomaly. This viewpoint will be familiar to
experienced Matlab programmers, but will seem bizarre and uncomfortable
to C and Fortran programmers. Rest assured, however, that the effort of
recasting algorithms into operations on entire images pays off in efficiency,
because much of the overhead in dealing with single voxels can then be amor-
tized over the entire image; this is especially true in comparing pixelwise op-
erations written in Pyvox to imagewise operations written as a C extension
to Python.

134

7.2.6 Focus on the Core Engine

Pyvox focuses on the computational engine for image processing, and is de-
signed to be used from a scripting language rather than interactively; it
provides a graphical user interface (GUI) only when human intervention is
absolutely necessary. GUIs are nice for interactive experimentation but do
not lend themselves to batch processing or reproducible analysis protocols.
For our target audience, the effort put into a GUI would usually be better
spent in improving the computational engine.

A slightly more subtle issue is that Pyvox focuses on the core image
processing algorithms such as convolution, resampling, etc rather than at-
tempting to implement the wide variety of segmentation, registration, etc.
algorithms currently available in the literature. The idea is that the wider
variety of complete algorithms can be written in Python using the efficient
core functions provided by Pyvox; they can thus be both concise and efficient.

7.2.7 One Glue Language

Pyvox is intended to be used with a single glue language—Python—rather
than trying to support C++, Python, Perl, Tcl, and perhaps a few other
scripting languages. While this limits the number of people who will be will-
ing to try Pyvox, it has some compensating advantages. The user interface
can be designed to exploit and support the special features of the chosen glue
language, rather than the lowest common denominator of several languages.
The parts of the package that are not critical to performance can be written
in Python rather than C, making them simpler to implement. The effort
needed to write several sets of wrappers for different glue languages can be
devoted instead to making one wrapper better.

Nonwithstanding the above arguments, the high-performance algorithms
in Pyvox are all written in C and can be called from C or C++ programs
by any programmer who is willing to look into the source code to determine
the calling sequences; the documentation is done carefully, just not extracted
into a separate manual.

7.2.8 Installation Prerequisites

Pyvox is designed for the serious user who intends to process many images
with it; such a user is assumed to be willing to expend a little additional effort

135

in installation to obtain more efficient operation. Thus we recommend that
the user take the extra time to install the best available libraries (currently
just LAPACK, BLAS, and perhaps libf2c) before installing Pyvox, although
we also provide an internal lightweight version for the impatient.

7.2.9 Moderate Portability

Pyvox is designed to be moderately portable; this means that it should com-
pile and run with at most minor modifications on a wide variety of modern
platforms, especially Unix systems. It does not, however, attempt to handle
every possible perversion permitted by the relevant standards. A general rule
is that code should be written to be platform-independent whenever feasi-
ble and reasonably efficient; but if portability requires platform-specific code
that we don’t have sample platforms to test on, we’ll just go ahead and be
non-portable to those platforms.

For example, some of the code in exim assumes that signed integers are
represented in two’s complement format, and that the value −2n−1 has a valid
representation. Since handling one’s complement machines would require
special-case code which cannot be tested on any machine we have, we simply
don’t try to handle one’s complement machines. Similarly, we don’t try to
handle platforms on which the char type is not exactly 8 bits, or the character
representation is not ASCII.

On the other hand, both big- and little-endian platforms are supported.
(Middle-endian platforms are not.) Any platform which supports ANSI C
(1999) and Posix should be able to comple and run Pyvox with little or
no modification. Most development and testing has been done on a 32-bit
platform.

Both 32-bit and 64-bit platforms are supported; however, less develop-
ment and testing has been done on 64-bit platforms and there are likely to
be residual bugs.

Floating point in other than IEEE 754 format and ints shorter than 32 bits
are intermediate cases. They are supported in principle, but we don’t develop
on any platforms that don’t support these possibilities, so some dependencies
may have crept in without detection.

A probably incomplete list of such portability assumptions follows. Some
of these might actually be guaranteed by the C standard, but it might take a
language lawyer to be sure; even so, a compiler implementor might get them
wrong. (Adding tests in the configuration script might not be a bad idea.)

136

• A C double complex value and a Python Py complex have the same
layout in memory; that is, two contiguous double values containing
the real and imaginary parts in that order with no internal or external
padding.

• Addresses within an array can be computed by converting pointers to
unsigned char pointers, doing arithmetic in units of the original size,
and converting back to pointers of the original type.

7.2.10 Efficiency Tradeoffs

An emphasis on run-time efficiency tends to degrade ease of use, robustness,
maintainability, extensibility, generality, and all those other virtues; Pyvox
is by no means exempt from this trade-off, and it is necessary to decide
when efficiency should dominate and when the other virtues should be more
important.

Operations in Pyvox can be roughly classified by how frequently they
are executed: Per-image operations are done once or only a few times per
image. Per-pixel operations are done once (or more) for each pixel in an
image; image addition or histogramming are good examples. Per-neighbor
operations are done once (or more) for each neighbor of each pixel in an
image; convolution is the canonical example. Per-neighbor and per-pixel
operations will normally constitute the largest fraction of the computer time
spent in an algorithm, with per-image operations as a minor contributor. As
a rough estimate, we might say that per-neighbor operations constitute 80%
of the run time, per-pixel operations about 15%, and per-image about 5%.
It follows that efficiency matters enormously in per-neighbor and per-pixel
operations, and hardly at all in per-image operations.

The general policy is thus to emphasize efficiency in per-neighbor and
per-pixel operations, even if it requires sacrificing clarity, generality, and ease
of use. On the other hand, per-image operations should emphasize clarity,
generality, and ease of use. This means that per-neighbor and per-voxel
operations are almost always implemented in C, while per-image operations
may be implemented in either C or Python, whichever is more convenient.

137

7.2.11 Parallel Processing

Pyvox is being written to be thread-safe wherever possible, to facilitate the
possible future use of multiple processors; however, there are no current
efforts to actively exploit multiple processors except by running multiple
copies of Pyvox in parallel (which is soon limited by available memory).
Note that the current implementation of error management is NOT thread-
safe, nor are a few other functions; most of these should be marked with
FIXME comments.

Pyvox will probably never try to exploit the parallelism possible in a net-
work of workstations. If you’ve got multiple workstations, the most effective
way to use them (for our target audience) is usually to process separate im-
ages in parallel on separate workstations and there is little benefit to the
complex coordination and data communication required to harness multiple
workstations to process a single image.

7.2.12 Data Typing

The header for a Pyvox array includes a field encoding the data type con-
tained in that array. The functions in BIPS switch on this field to determine
which efficient loop to use. Most higher-level functions are then implemented
to handle any of the defined data types and do not even need to examine the
type field; the only common exceptions to this rule are that some operations
are meaningful only for unsigned, floating point, or complex types. This
approach facilitates simple, generic high-level routines, at the cost of messy
(but efficient) code at the lower levels. It is also consistent with Python’s
data typing, which is attached to data items rather than to the variables that
contain them.

7.2.13 Limited Number of New Types

There are two basic approaches to choosing the new types (or classes) to be
implemented in a package. The “splitting” approach is to embody even fine
distinctions between object usages into distinct types or classes; the “lump-
ing” approach is to introduce distinct new types only where it seems unavoid-
able, and otherwise overloading existing types with specific interpretations.
Pyvox has generally chosen to lump, on the grounds that this is probably
the best choice for a small, compact package that nevertheless intends to be

138

used in a wide variety of applications.

7.2.14 Short Function Names

Similarly, function and method names can be either short and abbreviated,
or long and explicit. Pyvox has generally chosen to use short, mnemonic
names at the user level rather than long, explicit names for essentially the
same reasons that it introduces only a few new types—it seems unnecessarily
complex to use long names for a small, compact package developed by a single
programmer. Lower-level functions, on the other hand, often have longer
descriptive names.

7.2.15 External Data Formats

For simplicity in transfering data files between platforms with possibly differ-
ent internal data representations, Pyvox recommends and supports writing
and reading data files in defined external formats rather than in the na-
tive formats; the code that actually imports or exports the data is written
to be platform-independent. The recommended formats are the ones most
commonly used internally: two’s complement signed integers, and IEEE 754
floating point; other external formats may be added as needed. The choice
between big and little endian is essentially arbitrary; BBL has standardized
on big-endian because most of our data was originally written in that byte
order.

The current version of Pyvox supports raw pixel data in raster order, plus
AnalyzeView and Portable Bit Map formats; extensions to handle DICOM
are almost certain but have not yet been implemented. Other extensions
could be added, but none are currently planned. The exim module provides
some tools for packing and unpacking data in other formats.

7.2.16 Internal Data Formats

The performance of many operations on large images is limited by main
memory bandwidth and can be improved by using a data type no longer than
is necessary to represent the data values. To facilitate this, Pyvox supports
essentially the full set of data types provided by the underlying C language.
The sole exception is plain char, although both signed and unsigned char are

139

supported; the reasoning is that a type of unknown signedness is worthless for
numerical work and the Pyvox array type is not intended for text processing.

7.2.17 Random Variates

Fully specifying random variates to be generated can be very complex, but
many users need only a common set of distributions.

To support the casual user, Pyvox supplies a default high-quality random
number generator with simple calling sequences but which is initialized from
the current time and supports only discrete uniform (pyvox.randi), contin-
uous uniform (pyvox.randu), and normal (pyvox.randn) distributions.

(Not yet implemented.) For the more advanced user, Pyvox provides a
new Python type random, which is a random number generator initialized
by a seed supplied by the user and which can support a larger class of distri-
butions. (It might also be reasonable to allow the user to specify the type,
but the crystal ball is not yet clear on this point.)

Pyvox does not directly support the generation of complex-valued ran-
dom variates, since any serious user needs to decide how the variance is to be
distributed between the real and imaginary parts, and the covariance of the
real and imaginary parts; more generally, the user must define the joint prob-
ability distribution for the real and imaginary parts. A calling sequence that
supports this complexity is conceptually no simpler than simply generating
the real and imaginary parts separately and combining them into a complex
array. Related to this is the fact that there seems to be no clear definition
of what is meant by a “standard” normal or uniform distribution in complex
variables. There is, of course, some loss of efficiency in this approach, but
there doesn’t seem to be any compelling use case for what is only a minor
efficiency improvement.

For somewhat similar reasons, Pyvox also provides floating-point random
variates only in type double; as before, the complexity added to the calling
sequence does not seem justified by a use case.

7.2.18 Error Management

The error management mechanisms are intended to serve three categories of
users: Pyvox users writing in Python; Pyvox developers writing in C and
Python; and BIPS/Voxel Kit users writing in C. For each category of user,
an error report should show the context in which it occurs and a description

140

of the error at the appropriate language level. Pyvox developers and perhaps
BIPS/Voxel Kit users from C may also wish to abort execution and do stack
traces using a debugger.

There are also various constraints on the implementation. BIPS and the
Voxel Kit should not depend on Python or Pyvox, so that they can be used
from C, but any errors found should be converted into Python exceptions for
Python users. The setjump/longjump facility of C should be avoided, since
its portability is doubtful. Multi-threading should be supported (but is not
yet implemented).

There are three distinct levels of error severity. Warnings indicate anoma-
lies that can probably be safely ignored; the error handler may be configured
to silently ignore warnings, print a message and continue, or convert warnings
into errors. Errors indicate that the requested operation failed to complete
successfully. The handler may be configured to pass the error back to the
caller to be handled there; print an error message and call exit() with a
failure status; or to call abort(), which normally dumps core for inspection
by a debugger. Panics indicate that the software cannot safely continue,
perhaps because permanent data structures have been damaged; the handler
always prints an error message and calls abort().

The errm.h file defines a set of numeric error codes which specify different
classes of errors. When an error occurs, one of these codes is saved in a
thread-local variable for use by the caller. None of the existing code ever
looks at this variable, but this may change in the future; in particular, they
may be used to select a specific Python exception to be raised. A second
thread-local variable is set to a descriptive string which describes the error
for a human user. (NOTE that the error management code is not yet thread-
safe.)

Pyvox functions called directly from Python convert the error code and
message into a Python exception and return that to their callers in the usual
fashion. There are several macros defined in errm.h to facilitate this. The
ReturnPyvoxError macro constructs an exception using an error code and
message given explicitly, for errors detected in a top-level Pyvox function, and
returns NULL to the caller to indicate an error; the XReturnPyvoxError does
the same thing, except that it returns a non-zero value to indicate an error.
The ReturnPyvoxLibError and XReturnPyvoxLibError are similar but use
an error code and message already set by a lower-level function. There are
two other functions set error context and clear error context which
are used to set the name of the top-level function as seen by the Python

141

programmer; the context string provided is included in the Python exception
generated and serves to define the error context in terms intelligible to the
Python programmer.

Lower-level Pyvox functions, plus all Voxel Kit and BIPS functions, use
different macros that do not depend on Python. The NZReturnError and
ZReturnErrormacros set the error code and message from explicit arguments
and return non-zero and NULL values respectively; the NZReturnLibError

and ZReturnLibError macros are parallel but use an error code and message
already set by a lower-level function.

Destructors get special handling, because they are called at random times
that are apparently unrelated to the code currently being executed. The er-
rors detected by a destructor are treated as warnings and normally just print
an error message before continuing; the developer who wishes to investigate
further can configure warnings to convert to errors and work with a core
dump.

BLAS and LAPACK currently return an error flag to their callers but
do not set the thread-local error code and message; this can be expected to
change in the future.

There are also three older error reporting functions warning, fatal, and
panic which print an error message and then continue or terminate the
program. These are suitable only for the top level of command line programs
and are being gradually eliminated from all other code, except that panic is
still sometimes used to report assertion failures and similar severe problems.

7.2.19 Regression Tests

The test directory contains a set of scripts for regression testing and a
master script test all that invokes all the non-interactive tests in turn and
summarizes the results at the end; the master script is invoked by make

regress for easy testing. There are a few tests for measuring the performance
of the Pyvox code, and for testing either interactive functions or low-level C
functions which are independent of the master test script.

For the most part, the C extensions are tested only through Python rather
than being tested independently.

The tests are intended for regression and smoke testing, not for detailed
diagnosis of problems. The idea is that the built-in tests detect errors; the
developer or porter must then write his own custom tests to diagnose the
error.

142

One common motif for testing, especially in the resampling code, is to
compare the answers from a slow reference implementation that can be easily
verified by inspection against a fast but obscure implementation which is
used for production; to help ensure testing coverage, the test cases are often
generated randomly.

7.2.20 C

Most of Pyvox, and all of the low level functions, are written in ANSI C (1999)
because the language is well standardized, lends itself to efficient software,
and good open-source optimizing compilers are readily available for a variety
of different platforms; the fact that I am experienced with and comfortable
with C was also a consideration.

The implementation is theoretically still compatible with the older 1989
ANSI C standard, but certain features will be omitted. However, no effort
is being put into testing and maintaining C89 compatibility, and you should
expect to have to work at actually getting Pyvox to compile and run under
C89.

C++ might have been a possibility except that I didn’t have any expe-
rience with it, and it was not clear that C++ would be compatible with
Python. C++ also seems to encourage inefficient programming, which is
not a good thing for this application. C++ does support some tempting
capabilities, such as exceptions, so an upgrade to C++ is still possible.

Fortran 77 might have been more efficient for the lowest-level operations
(because the aliasing rules permit better optimization) but does not support
data structures or structured programming; Fortran 90 does but open source
compilers are not available. Other languages including Ada and Java were
excluded simply because I have no experience with them.

7.2.21 Python

Although Pyvox is written primarily in C, its applications will normally
use an interactive scripting language to support rapid development. The
language chosen is Python, because it is well-suited to C extensions, has a
well-defined syntax and sematics, supports a reasonable implementation of
objects, and is portable to a variety of platforms including Unix, Windows,
and Macintosh. Perl was rejected because it does not facilitate extensions
in C and because its semantics is rather ad hoc; any language in which

143

experimentation is necessary to determine how to do an operation is not
well suited to a large software project. Tcl does not support objects and
has a rather limited semantic model. Java was rejected because I have little
experience with it and it seems more suited for compilation than interactive
design.

It is also important to note that Pyvox has been designed to support
a single scripting language. Attempting to support multiple scripting lan-
guages requires either restricting capabilities to the common subset of the
languages or providing multiple variants suited to each language. A second
and perhaps more important advantage of supporting only one scripting lan-
guage is that non-performance-critical portions of Pyvox can then be written
in that language rather than in C.

7.2.22 LaTeX

Useful software requires documentation, and documentation requires choos-
ing a word processor or document compiler. I standardized on TeX/LaTeX
more than a decade ago because it is unsurpassed at typesetting mathemat-
ics; while that particular virtue is largely irrelevant to this project, I see no
reason to change a winning strategy. TeX has also proven highly portable
and stable. Its major disadvantage is that it takes a long time to learn how
to use effectively.

7.2.23 LAPACK and BLAS

Volume image analysis requires some numerical linear algebra, including
eigenvalues, least squares, solution of linear systems, and so on. Various
packages are available for this, even some in C. The current state of the art
package for linear algebra is LAPACK, supported by BLAS. The major dis-
advantage of LAPACK and BLAS is that they are written in Fortran, and
portably interfacing C and Fortran code is messy at best. However, many
platforms will have optimized versions of BLAS and it seems foolish not to
take advantage of these where available.

The policy that I’ve adopted is to use the platform-specific LAPACK and
BLAS libraries if available, but to use an internal light-weight version, which
is a subset of CLAPACK, a translation of LAPACK into C. This decision
will be reconsidered if things become too messy, but it seems to be working
reasonably well so far.

144

Additional packages for optimization and special functions are likely to be
needed in due course; once C/Fortran interfacing is worked out, it becomes
possible to use Fortran packages for this purpose as well.

7.2.24 Vectorization over Rows

As has already been discussed, it is inefficient to do most operations pixel-by-
pixel; arranging to spread the overhead over many pixels works better. The
BIPS layer essentially provides an abstract vector processor for this purpose.
If multiple operations must be done, it is also inefficient to vectorize over
an entire large image because the image must then be brought into cache
multiple times; it is better to bring into cache a portion of the image and
perform the multiple operations on that portion, before bringing in the next
portion of the image. While it is theoretically possible to optimize the size
of the portion brought into cache, it is difficult to do well in practice. Pyvox
generally compromises by bringing in one row or scanline of an image at a
time; a row is defined as a set of voxels with the same first n−1 coordinates.
A row typically contains 128–1024 voxels, which is enough to amortize the
loop overhead without overflowing the cache.

A typical loop nest for a point operation looks like this:

Setup for the entire image

Loop over the rows of the image

Setup for the current row

Loop over the voxels in the row

A typical loop nest for a neighborhood operation looks like this:

Setup for the entire image

Loop over the rows of the image

Setup for the current row

Loop over the voxels of the neighborhood

Setup for the current neighbor and row

Adjust loop limits for image boundaries

Loop over the voxels in the current row and neighbor

7.2.25 FIXME Notes

Pyvox is (and probably will always be) incomplete; thus it is inevitable that
there will be sections of code that are unfinished, have known or suspected

145

bugs, do not handle special cases, and could be made faster or otherwise
improved. The principle here is to be honest about the state of the code.
All such unresolved issues are marked with the special string FIXME in the
source code so that they may be easily found by a search command; a few
such issues appear in the user documentation are are marked by the same
string. The TODO file is a higher-level list of open problems, ideas, and issues.

An early attempt was made to distinguish between bugs and enhance-
ments, marking the latter with the string ADDME, but it proved too difficult
to make the distinction consistently.

7.2.26 Generic Types and Pointers

Much of the C code in Pyvox is written to apply generically to most or
all of the C numeric types, and makes heavy use of generic pointers and
occasional use of generic variables. The following rules should make generics
easier to work with (but are not guaranteed to be consistently followed).
Pointers to variables or arrays of generic type should normally be passed as
void * and converted to unsigned char * for address arithmetic; in the
usual case, arrays will be densely packed with no space between successive
elements. There is a special union type anytype declared in exim.h which
defines a variable large enough to hold a single value of any numeric type; it
is possibly to define arrays of anytype, but they will be sparsely packed and
are not compatible with most other functions, which expect densely packed
arrays.

7.2.27 Data Conversion

Numeric values in Pyvox can exist in any of four domains, and functions are
available to convert between these domains.

The C domain is the most primitive. The data type and format are
implicit in the variable name (via its declaration) and cannot vary over time.

The Voxel Kit domain support homogeneous arrays of uniform type; the
type is defined by an auxillary variable, either contained in the voxel array
struct or in some separate variable. All the numeric types defined by C
are supported. (But pointers and chars with indefinite signedness are not
supported.) There are three subdomains. The voxel array contains a homo-
geneous array of values plus a voxel array struct that describes the array
and specifies the data type. A scalar voxel array is a voxel array that has

146

Table 7.1: Parsing Python Arguments. These functions convert specific types
of arguments in Python into a form easily useable in C code.

Name Function
PyvoxValue Check Convert PyObject* to anytype*

PyvoxLong Check Convert PyObject* to long

PyvoxLongSeq Check Convert PyObject* to long[]

PyvoxDouble Check Convert PyObject* to double

PyvoxDoubleSeq Check Convert PyObject* to double[]

PyvoxDoubleSeq AsDouble Convert PyObject* to double*

PyvoxComplex Check Convert PyObject* to double complex

PyvoxComplexSeq Check Convert PyObject* to double complex[]

PyvoxArray Check Convert PyObject* to voxel array*

PyvoxArray CheckSrc Convert PyObject* to voxel array*

PyvoxArray CheckDest Convert PyObject* to voxel array*

Pyvox CheckAxes Convert PyObject* to array axes info
Pyvox ParseShape Convert PyObject* to array shape info
PyvoxIntype Check Convert PyObject* to internal type code
PyvoxExtype Check Convert PyObject* to external type code

rank 0 and contains only a single value. The anytype union can contain a
single value of any type; the type must be passed as a separate parameter to
any function that supports this union. In addition, a pointer to an anytype

union may be cast to the appropriate pointer type and passed to a pure C
function that expects a pointer.

The Python domain supports a subset of the C numeric types (long,
double, and double complex) and are always wrapped in a struct that specifies
the type of the data.

The external domain supports numeric data in external data files in stan-
dard bit lengths and formats.

Tables 7.1 through 7.6 summarize the functions available for convert-
ing between domains; the C/Python conversion functions included the the
Python C API are not listed here. See the source code for usage and call-
ing sequences. Note that the names and exact functionality are subject to
change, now that I see what a mess the current version is.

147

Table 7.2: Converting between C and Python. These functions will convert
between a PyObject * and any of a C array element, C scalar variable, or
an anytype*.

Name Function
pyvox get value Convert any C type to PyObject*

pyvox set value Convert PyObject* to any C type

Table 7.3: Converting between C and the Voxel Kit. These functions support
conversions between between elements of voxel arrays and C variables.

Name Function
bips locate Compute pointer to element of a C array
exim set value Set element of a C array from a double

exim get value Get element of a C array as a double

vxl locate Compute pointer to element of a voxel array
vxli locate Compute pointer to element of a voxel array
vxl get voxel Get element of a voxel array as a double

vxl set voxel Set element of a voxel array from a double

vxl create scalar Create scalar voxel array from a double

vxl store scalar Initialize a scalar array from a double

Table 7.4: Converting between Python and the Voxel Kit. These functions
convert between Python numbers and elements of voxel arrays.

Name Function
parray get voxel Get voxel array element as a PyObject*

parray set voxel Set voxel array element from PyObject*

varray create scalar Create scalar voxel array from PyObject*

varray init scalar Initialize scalar voxel array from PyObject*

PyvoxType FromInt Convert numeric type code to PyObject *

148

Table 7.5: Converting between Python and external data formats

Name Function
pyexim export Convert Python number to an external format
pyexim import Convert external format to a Python number

Table 7.6: Converting between C and external data formats

Name Function
exim export Convert C values to an external format
exim import Convert external data to C
exim swap bytes Change byte order in external data

7.2.28 Signed Sizes and Indices

Array sizes and indices are stored as signed rather than unsigned longs. The
advantage of using unsigned values is that you can specify counts and indices
that are twice as large, but there is a formidable set of disadvantages: you
cannot easily and safely take the difference of two indices, and the difference
may exceed the range of values representable in either signed or unsigned
longs; and you cannot safely compare a count or index to a signed value with-
out treating a negative signed value as a special case. Considering that the
size of virtual memory and disk files is usually no more than twice LONG MAX,
the extra trouble of unsigned counts and indices doesn’t seem worth it.

7.2.29 Upcalls

The usual practice is that the Python layer calls functions and methods
defined in the C layer, but it is occasionally necessary or useful for functions
written in C to call functions or methods written in Python; such calls are
referred to as “upcalls” since they go from the lower level to the upper.

An upcall to a Python function is done using the PyObject CallFunction

of the Python C API; see the function upcall function in pyvox.c for an ex-
ample. It may be necesary to map the name of the function or method into a
Python object; this is done using the C API function PyDict GetItemString

149

with the Python dictionary of the class or module in which the function is de-
fined. The dictionary of the pyvox module is passed down to the C level dur-
ing initialization of the module calling the set pyvox dict function, which
caches the dictionary in the global C variable pyvox dict. Dictionaries for
other classes or modules can be added as necessary.

Similarly, an upcall to a Python method uses the PyObject CallMethod

of the C API; see upcall method in pyvox.c for an example. In this case,
the API expects the method name as text, so it is not usually necessary to
look up the name.

Variables in the Python layer can presumably be looked up by name in
the appropriate dictionary to obtain a Python object, but there are as yet
no actual examples of this.

7.2.30 Inlineable Functions

The inline keyword, which is standard in C++ and C99 and often available
as an extension in C89, causes the function definition which it prefixes to be
expanded inline rather than called when that function is invoked; this usually
improves performance and can be significant for heavily used functions.

The configuration script checks whether or not the compiler accepts the
inline keyword or some equivalent and defines a C macro in the file config.h
appropriately. For an inlineable function defined and used within a single file,
it is sufficient to qualify that function definition as static inline.

Handling an inlineable function used in more than one source file is trick-
ier. If inline is supported, then the function definition should be qualified as
static inline and included in each source file that needs it; if not, then the
function definition must be qualified as extern and contained in exactly one
source file. The Pyvox configuration script handles the complexity by defin-
ing two additional macros in config.h. The macro HAVE INLINE is defined
if the compiler supports inline or an equivalent, and undefined otherwise;
it is used to control where the inlineable functions are actually defined. The
macro inlineable is defined as either static inline or extern under the
same condition and is used to qualify inlineable functions appropriately for
the compiler.

150

7.2.31 The /usr/bin/env Hack

The location at which Python is installed depends on the platform: It is usu-
ally installed at /usr/bin for systems for which it is included as a standard
feature (e.g. Linux) but at /usr/local/bin when it is not standard and is
added later by the system adminstrators. To handle this variability, the first
line of scripts should be set to #! /usr/bin/env python, which will find
python, wherever it may be in the path and call it. The env is intended to
make temporary changes in the environment, but may be adapted for the
present purpose.

7.3 Open Issues

7.3.1 Merging Pyvox and Voxel Arrays

The current distinction between Pyvox arrays and voxel arrays (i.e. between
Pyvox and the Voxel Kit) is a historical artifact due to the original design
decision to support use of the Voxel Kit from C, without requiring any use
of Python. Given that quite a bit of functionality is now written in Python,
it may be time to relegate this design decision to the dustbin of history and
combine the pyvox array and voxel array structs into a single struct that
combines their functions.

7.3.2 Commented Data Files

The ancestral C version of Pyvox had a notion of “commented data files,”
which were essentially plain text files including comments that could easily
be ignored or removed. The idea is not used anymore in the new Python-
based code but might be useful enough to reimplement in Python; on the
other hand, it could be killed entirely. The relevant files are src/cdata.c,
src/decomment.c, include/cdata.h, man/man1/decomment.1, and man/man5/cdata.5.

7.3.3 Parameter Files

The ancestral C version of Pyvox had a notion of “parameter files,” which
were essentially plain text files for specifying the parameters used for multiple
programs in an image analysis protocol. The idea is not used anymore in
the new Python-based code but might be useful enough to reimplement in

151

Python; on the other hand, it could be killed entirely. The relevant files are
src/param.c, param.h, and man/man5/param.5.

7.3.4 Image Views

It is potentially useful to allow two voxel arrays to share the same data, pos-
sibly with different indexing schemes. The (so far hypothetical) mechanism
for enabling this is called image views. Another application would be to al-
low access to the data of another array-like object (such as a PIL image or a
Numeric array) without needing to copy that data.

There are some nasty problems involved in doing this well, and we haven’t
yet put much time into it. For example, changing the order of dimensions
will create massive inefficiencies in a naive rowwise iteration. Another issue
is that array-like objects usually assume that they manage their own storage
and might move the shared data without notice.

7.3.5 Huge Images

We define a huge image as one which will not fit into virtual memory but
must be handled as a mosaic of pieces defined by disk files. Pyvox does
not attempt to handle these automatically, but it is an idea for the future.
(Assuming that 64-bit machines do not obviate the need.)

7.4 Development Prerequisites

Those who want to participate in developing Pyvox itself will need a few
more tools than are necessary to compile and install it. Gnu autoconf and
m4 are used to create the configuration script. LaTeX, dvips, and ps2pdf are
used for the Reference Manual; groff or some equivalent is needed for the man
pages. Either etags (for emacs) or ctags (for vi) is helpful for rapidly finding
particular functions. Of course, substantial knowledge of the Python C API,
scientific programming, C programming, and image processing algorithms
wouldn’t hurt any.

152

7.5 Directory Layout

The source directory for Pyvox contains the following subdirectories for spe-
cific types of files.

The bin directory is reserved for the compiled object files and programs.
The bitmaps directory contains the X Window icons used by the qdv

image viewer.
The doc directory contains the original TeX files for the documentation,

plus their conversions into dvi and pdf formats.
The examples directory contains a variety of image processing scripts

written using Pyvox, plus man pages.
The include directory contains the C header files used by Pyvox.
The lib directory contains the compiled object library files, and various

Python modules that implement Pyvox. These make rather strange bedfel-
lows and this directory may get split into two.

The lite directory contains the lightweight LAPACK and BLAS im-
plementation used when Pyvox cannot find a native implementation. Its
contents are divided into lapack and f2clib subdirectories to distinguish
components taken from different sources.

The local directory is reserved for site-specific files and is guaranteed
never to be touched by configuration or any of the make *clean targets.

The man directory contains the man pages for the installable programs in
Pyvox; man pages for the examples are included in the examples directory.

The scripts directory contains various small image processing applica-
tions written using Pyvox and which will be installed with the Pyvox pack-
age. It also contains a non-installable script pycompile which is used to
byte-compile the Pyvox libraries.

The src directory contains the C source code for Pyvox proper, including
applications but excluding examples and test scripts. Header files are kept
in the include directory.

The test directory contains test programs and scripts for testing Pyvox.

153

7.6 Architecture and Code Organization

7.6.1 Voxel Kit

The Voxel Kit is a collection of higher level C functions for volume image
processing, at roughly the level treated in image processing textbooks, plus
various related functions. The Voxel Kit is instantiated in the shared library
libvoxkit.so and may be called directly from C language programs, or used
from Python via the Pyvox extension.

The image processing functions within the Voxel Kit are defined in the
files voxel.c, voxel.h, and vxli.h. Most of the per-pixel operations within
the Voxel Kit are actually done by BIPS, which can be optimized to specific
platforms.

BIPS

The BIPS (Basic Image Processing Subroutines) level defines a relatively
small set of image processing primitives from which higher level operations
can be built and which can reasonably be hand-optimized for specific target
platforms; the functions in the Voxel Kit are built from BIPS routines and
should not have to be modified for efficiency on different platforms. The rela-
tionship between the Voxel Kit and BIPS is essentially the same as between
LAPACK and BLAS for those familiar with numerical linear algebra. BIPS
includes the files bips.c and bips.h.

Exim

Exim is a set of functions for translating between external (file) and internal
(native) representations of data and is used to permit external two’s com-
plement binary integers, unsigned binary integers, and IEEE 754 floating
point data to be read or written on any ANSI C platform; it includes the
files exim.h and exim.c. It is designed to accomodate many different ex-
ternal data formats, although only the most common formats are currently
supported. Pyexim, consisting of the file pyexim.c, encapsulates exim as a
Python extension (although only the data type names are currently imple-
mented).

154

Language Extensions

The files errm.c, errm.h, memm.c, and memm.h encapsulate the standard
C error handling and memory management facilities into something more
convenient. The files rand.c and rand.h implement a high-quality random
number generator.

7.6.2 Pyvox

Pyvox is an image processing extension to the Python language written partly
in C and partly in Python. It calls on the Voxel Kit and other libraries for
much of the actual processing.

Pyvox defines the two public Python modules pyvox.py and exim.so.
The first of these provides access to the image processing functions; the
second to the data import/export functions of exim. In addition, there are
two pure Python modules optim.py, which implments a set of optimization
algorithms; and regis.py which implements a basic set of image registration
methods.

The pyvox extension module defines part of its contents in Python, and
calls a C language extension module pyvoxC to define the rest. PyvoxC
consists of the files pyvox.h, pyvox.c, and parray.c, encapsulates the voxel
kit as a Python extension, and is compiled into a shared library pyvoxC.so.

Since the pyvoxC and exim modules need to share some of their internals,
they are thin wrappers that call a common shared library libpyvox.so.

7.6.3 Numerical Methods

C wrappers for LAPACK are defined in clap.h and clap.c; these have not
yet been made truly portable.

7.6.4 Applications

...both Python scripts and CLI C programs
The file qdv.c implements an interactive image viewer.

7.6.5 Examples

The directory examples contains a few Python scripts for image processing;
these are intended more as examples (or particular functions that we needed

155

at BBL) than as finished user applications.

7.6.6 Test Scripts

The test directory contains various scripts and programs for testing Pyvox;
most of these are intended as regression tests to verify that Pyvox works
correctly rather than as diagnostic tests to determine the precise location of
a bug.

7.7 Make Targets

This section summarizes the make targets that are useful for the developer;
see also the same-named section in the Installation chapter for additional
targets useful for users and installers.

The realclean target deletes everything that can be regenerated from
other source files in the distribution. You will need ps2pdf, autoconf, and
m4 installed to regenerate the deleted files, so don’t do this unless you really
mean it.

The tags target will regenerate the TAGS file used by emacs to rapidly
find the definitions of given names. If you prefer vi, make the obvious changes
to Makefile or Makefile.in.

The loc target runs a program to count the total number of lines of code
in Pyvox, not including code borrowed from other sources (e.g. LAPACK).
This requires the loc program, which can be obtained from the same place
you got Pyvox itself.

There are additional targets to make specific subsets of Pyvox; see the
Makefile for details.

7.8 The Testmode Script

Once the configure script has been run, the home directory for this package
contains a script testmode which will set the various path variables in the
environment to point to the appropriate places within the home directory.
Thus, after you source this script using the right shell command, the compiled
but uninstalled programs, scripts, and libraries in the home directory will be
preferred to any installed versions. This is a great convenience for testing
and debugging the code.

156

7.9 Coding Style

7.9.1 Rationale

The Open Source movement has removed some of the legal and social barriers
to the widespread distribution and reuse of source code but it has not directly
addressed the problem of ensuring that the available source code is worth
finding, understanding, and reusing. The following style rules used at BBL
are an attempt to make it as easy as possible for a prospective code recycler
to understand and evaluate the code that we write, and to provide as much
portability as possible, without imposing an unreasonable burden on the
author. None of these rules are dogma, but they are a good starting point;
you probably shouldn’t violate them without a pretty good reason. On the
other hand, the spirit of the rule is almost always more important than the
letter, except in a couple of areas where diversity seems to create too much
confusion.

For a (tongue-in-cheek) contrarian view, see the “Old Regime” section
below.

These rules are definitely C- and Unix-centric, because those are the
language and operating system that I use by choice. Feel free to modify for
your own preferences.

It is perhaps worth noting that these rules are not armchair theorizing;
they are the rules that I actually follow (most of the time) when writing code
that others may see or that I expect to be still using myself a year or two
from now. I thus have a real incentive to make the rules as simple as possible,
consistent with communicating what the reader needs to know.

...audiences for reuse: use program as black box; fix bugs in the black box;
use program as initial approximation to the desired program; use selected
functions; study algorithms and style;

...uses: black box; baseline; component store; education; bug fixing; good
(or bad) example;

...components: whole program; major modules; functions; data struc-
tures; algorithms; documentation

7.9.2 The Rules

• The package should be distributed as a tar file which is named in the
format pyvox-1.0.src.tgz, containing the name of the package, the version

157

number, the fact that it is source, and the file format (gzipped tar file). It
should unpack into a directory pyvox-1.0, using both the name and version
number.
• The distribution package should contain README, INSTALL, and NEWS

text files giving a introduction to the package, installation instructions, and
notes on recent changes. In the installation instructions are short, they may
be included in the README file.
• A man page or similar documentation should be included for each in-

dependent program or important file format. Alternatively, a full-fledged
reference or user’s manual may be done in TeX.
• Gnu autoconf should be used to automatically configure the programs to

the user’s system. There should be a Makefile (or Makefile.in) with at least
targets all and install.
• The source code should be POSIX-compatible wherever possible. OS-

specific coding should not be used, unless there is no other way to get the job
done; if unavoidable, it should be wrapped in appropriate ifdefs or bundled
into architecture-specific files.
• Standard (ISO) C should be used wherever possible. Any exceptions

should be commented and justified.
• You may assume IEEE 754 floating point and two’s complement integers

if you need to; it would be nice to comment these for the benefit of the poor
sod that doesn’t have a nice computer.
• Library functions that might be useable in other, possibly non-interactive

programs should be kept in separate source files and should not depend on
XView or other GUI functions.
• Each source file should begin with a banner comment similar to the ex-

ample below that gives the name of the file and briefly describes its contents–
enough that a reader can quickly decide if this file is likely to contain the bug
he’s currently trying to track down, or the algorithm that he wants to study
and copy. The first line, as illustrated, should give the name of the file and
a one-line description; the exact format shown should be used, so that the
one-line description can be automatically extracted for a table of contents.
The same format can be used for a major block section within a source file,
such as a group of functions for handling linked lists.

/**

defenst.c - Defenestrate a randomly chosen programmer

158

Author: A. L. Fanatic

This program examines /etc/group to obtain a list of users

belonging to the prog group, randomly selects one user from

that list, remotely examines any desktop machines owned by

the user, and forcibly replaces MS Windows by Linux. See the

man page for the complete gory details.

***/

• The banner comment for a source file containing the main program for
a standalone program should also describe in user-oriented terms what the
program does and what arguments it takes; or it should refer to the man
page or other documentation that provides this information. If it’s necessary
to read the program source to decide how to use it (or what it does), you
need more comments.
• Each function, or tightly connected group of functions should have a

banner comment in the form given below, which is slightly less emphatic. It
should begin with a one-line function name and description, and describe the
purpose and calling sequence of the function. Information contained in the
comments describing each argument need not be repeated.

/*---

fat2ext2fs - Remotely convert FAT to 2nd ext2fs file system

Given the IP address of a Windows system, this function

converts each FAT file system on that computer to a Linux

2nd extended file system. The names and contents of the files

are unchanged; the ownership and permissions are set according

to the parameters described below.

--*/

• The format for the banner comments should be followed to the letter,
to make it easier for automatic collection and indexing of those one-line
descriptions. (We’ll get around to writing that automatic indexing program
real soon now.)
• The type declaration and argments for each function are also written in

a stylized format, to convey as much information as possible with the least
programming effort. The ideal is that a programmer who reads the banner

159

description and argument descriptions can successully call the function in
question without having to examine any of the code.

int /* 1 => success; 0 => failure */

fat2ext2fs(

unsigned char ip[4], /* IP address of remote system */

char *passwd) /* Adminstrator’s password */

{

...definition of the function...

}

• The function name and the beginning and ending braces should be flush
left, again to facilitate automatic processing; no other braces should be flush
left, to avoid confusing our hypothetical automatic processor.
• Any of the fifteen standard indentation styles is acceptable, provided that

at least three spaces are used per level. But please try not to switch styles
more than five times per page.
• Use the string FIXME to mark known bugs and other potential problems

that you are brushing under the rug. If you’re really brave, add your initials
so we know who to blame.
• If you’re making a possibly dangerous change that might break something,

include an explanatory comment, your initials, and the date; this might make
life much easier for the poor sod that has to figure out what broke. This is in
addition to whatever comments you provided to the source control system; if
you insist on living dangerously, please leave some conspicuous cues behind
for those of us that might have to clean up after you.
• The type of each function should always be explicitly declared, even if int

or void.
• Function prototypes should always be used, and placed in header files for

functions used outside a single file. Functions used only in a single file should
be declared static.
• The code should compile without warnings under

gcc -Wall -Wmissing-prototypes

• You may assume that the reader understands C and common algorithms,
but not that he can read your mind to determine what variable names, data
structures, etc. mean.

160

• Dividing a function definition into paragraphs headed by an brief explana-
tory comment can be very helpful to the reader.
• An explanatory comment should be attached to any variable declaration,

except for temporary variables of obvious meaning.
• If you’re not sure whether it’s obvious, it’s not!
• More than a few comments tacked onto the ends of executable source

lines usually means that you need to rethink your algorithm, or that you
don’t trust the reader to understand C.
•White space (i.e. blank lines) is a useful way to visually break up your

code into meaningful blocks without being heavy-handed. Putting several
blank lines between function definitions makes it far easier to tell where one
ends and the next begins.
• A textbook example of a well-written (if useless) function is given below.

/---

area_in_common - Compute intersection of many bounding boxes

Given a linked list of bounding boxes, this function counts

the number of boxes on the list and computes the area of

their intersection.

--*/

struct bounding_box_rec {

struct bounding_box_rec *next; /* Pointer to next record, or zero */

double left, right, top, bottom; /* Boundaries of the box; */

} ; /* origin is to the top and left */

double

area_in_common(

struct bounding_box_rec *list, /* Head of the linked list */

double *area) /* Area of intersection */

{

int count; /* Number of boxes on list */

double left, right, top, bottom; /* Limits of intersection so far */

/* Initialize before walking over the list */

/* FIXME: This function will break if the list is empty. */

count = 1;

161

left = list->left;

right = list->right;

top = list->top;

bottom = list->bottom;

/* Walk the list, keeping track of intersection */

for (list = list->next; list != NULL; list = list->next) {

count++;

if (left < list->left) left = list->left;

if (right > list->right) right = list->right;

if (top < list->top) top = list->top;

if (bottom > list->bottom) bottom = list->bottom; }

/* Compute the area, which might be zero */

if (left > right || top > bottom)

*area = 0.0;

else

*area = (right - left) * (bottom - top);

return count;

}

7.9.3 The Old Regime

• Comments are for wimps; I can keep all the documentation in my head,
since no one else will ever need to read or modify the program.
• Anyone that needs to learn how to use the program can learn from me

directly.
• Anyone that needs to know what the file formats are can read the source

code and figure out how the input/output routines work.
• No one will ever want to use any feature of this program without going

through the GUI.
• No one will ever want to port this program to another platform. Even if

they do, everything that they need to know is in the source code.
• It works under my compiler. Why should I worry about POSIX compat-

ibility?

162

7.10 Coding Hacks

This section describes some known bugs in the code that Pyvox relies on,
and how Pyvox arranges to work around them.

7.10.1 Bugs in Python 1.5.2

There are a number of arguable bugs in Python 1.5.2, but since current
Python development is working on version 2.x, it is pointless to report these
and expect them to be repaired; so we just work around them. Upgrading to
Python 2.x is the right thing to do, but we just haven’t actually done it yet;
some preliminary work suggests that there will be few problems in doing so,
except for Red Hat’s perverted practice of naming version 1.5.2 as python

and version 2.x as python2. Anyway, here are the “bugs”:

• foo[] is invalid syntax, even though it’s the logically consistent expres-
sion to get the value of a scalar array. We handle this by permitting
and ignoring any scalar subscript.

• math.sqrt(-1) produces an OverflowError rather than a NaN or a
DomainError. This doesn’t really affect anything and is ignored.

• The C API for the len() function returns type int rather than long;
this may not be big enough for a voxel array on a platform where int
is only 16 bits. We claim to support only 32-bit platforms.

• Python does not appear to support IEEE 754 even if the underlying C
implementation does. FIXME: What the heck did I mean by this?

• /usr/local is not on the default sys.paths; this doesn’t affect Pyvox
itself but might confuse the user.

• x[i:j] always tries to call the sq slice method even if it doesn’t
exist and the mp getitem method does; similarly x[i:j] = v always
calls sq ass slice rather than mp setitem. We work around this by
providing the sq slice and sq ass slice methods even though they
are logically redundant.

• PyNumber Check(ob) == true does not guarantee that ob is a built-in
number type, nor that it supports all of the number functions.

163

7.10.2 Solaris isalpha Bug

There is a bug in the Solaris implementation of the function isalpha and its
relatives. The ANSI standard specifies that these functions take an argument
of type int; under the usual promotion rules, or under the standard prototype
which specifies an argument of type int, an argument of type char should be
cast to type int. Sun, however, implements these functions as a macro that
does a table lookup without doing the cast first; the gcc compiler detects
this and generates a cryptic warning message subscript has type ‘char’

when it sees a expression of the form isalpha(c) where c is an expression
of type char. To avoid these warning messages, we use isspace((int)c) to
include the necessary cast explicitly. This should not cause problems on other
systems, but is explained here to avoid puzzling any human programmer who
might be reading the code.

7.10.3 getsubopt Bug

The Gnu and Solaris C libraries both provide an implementation of getsubopt
and the two implementations are compatible. However gcc under Linux fails
to provide a prototype for this function in stdlib.c while gcc under Solaris
does provide a prototype. Any programs that use getsubopt must contain
various hackery that attempt to provide a prototype only when it is needed;
Pyvox does not currently contain any such programs but might in the future.

7.11 Release Checklist

The following release checklist is of little interest to anyone except the Pyvox
maintainer, but this is a convenient place to store it.

1. Build and regression test on the current test platforms. Fix or explain
away any bugs.

2. Update the NEWS and README files as needed. Commit them to the
repository.

3. Choose the new version number and update the pyvox.ver file.

4. Regenerate the files doc/pyvox.pdf and ./configure if necessary and
commit to the repository.

164

5. In a working directory, check that all the files seem to be there and are
consistent with the repository. Then use them with a tag in the form
pyvox-nn-nn, using the tag command.

6. Export the new release to a working directory (~/src is a good place
for this) and name the top directory with the version number, e.g.
pyvox-nn.nn.

7. Tar and gzip, in the form pyvox-nn.nn.src.tgz.

8. Try making the exported version, just as a quick check that eveything
is there.

9. Put one copy of the tgz file in /img/devel/distrib.

10. Add to the BBL website and update the web page.

11. Email announcements as appropriate.

165

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorenson. LAPACK Users’ Guide. Society for Industrial and Ap-
plied Mathematics, Philadelphia, 1992.

[2] David M. Beazley. Python Essential Reference. New Riders, second edi-
tion, 2001.

[3] Bill O. Gallmeister. POSIX.4: Programming for the Real World. 1995.

[4] Samuel P. Harbison and Guy L. Steele, Jr. C: A Reference Manual. Fifth
edition, 2002.

[5] Donald Lewine. POSIX Programmer’s Guide: Writing Portable UNIX
Programs. 1991.

[6] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C: The Art of Scientific Computing.
Second edition, 1992.

166

