University of Pennsylvania Division of Biostatistics Subject Guide

BSTA 670: Programming and Computation for Biomedical Data Science

Credit points: 1.0

Semester: Spring 2024

Time: M/W 10:15-11:35am EST

Location: 701 Blockley Hall

Course Instructor: Kristin A. Linn

Assistant Professor of Biostatistics
Email: klinn@pennmedicine.upenn.edu

Office: 220 Blockley Hall

Office hours: Wednesdays 12-1pm; or by appointment

Location: 220 Blockley

TA Zhuoran Ding

Email: dingzh@pennmedicine.upenn.edu

Office hours: Tuesdays 1-2pm; or by appointment

Location: TBD

Pre-requisites: BSTA 620, 621, and 651; or permission of instructor.

Subject Aims: The course will cover programming and computational fundamentals in

Python and R. It will concentrate on computational tools that are useful for statistical research and computationally intensive analyses. The goal is for students to develop a knowledge base and skill set that includes a wide range of modern computational tools needed for statistical research and data science. Topics may include, but are not

limited to:

1. Reproducible research and programming

2. Algorithms

3. Simulation

4. Computer storage and arithmetic

5. Numerical Integration

6. Optimization

Course Materials: All course materials will be available on Canvas. Canvas is assessable

from the Penn library: https://canvas.upenn.edu

Software: A combination of R and Python will be used.

Textbook: None required.

Breaks: There will be **no class** on:

March 4 and 6 (Spring Break)

March 11 and 13 (ENAR conference) March 20 (Works in Progress day)

Assessment: All assignment materials will be submitted on Canvas. Grades will be

based on the following components:

Problem sets: 60% (4 @15% each)

Final project: 40%

Students are encouraged to discuss strategies for solving problem sets,

but all submitted code should reflect each student's unique implementation. **Evidence of shared code will be penalized.**

Late Policy: Late assignments will receive a maximum of half credit. An assignment

submitted 1 minute after the deadline will be considered late.

Assignments more than 3 days late will not be graded and will receive

no credit. If you have a pre-existing commitment or special

circumstance (e.g., conference travel, family emergency) please let

me know as far in advance as possible so that we can make

alternative arrangements for submitting your work.

Final Project: PhD students will replicate and extend the results of a recently

published Monte Carlo stimulation experiment. The final project will include an R package containing simulation code and a report written

in .Rmd that fully reproduces the simulation experiment.

MS students will have the option to complete the simulation project described above or perform an applied analysis of a public data set in a

Python notebook or Rmarkdown document.

Additional details about the final project requirements will be given

later in the semester.

All students will present their final project during one of two in-class presentation days: April 29 and May 1, 2024. **Attendance is required on both days.** 10 points will be deducted from the final project grade for each absence on these two days unless the absence is approved in

advance by Dr. Linn.

All project materials due on Canvas: May 3, 2024, by 11:59pm EST

Use of Generative AI Tools

I encourage you to use foundation models such as ChatGPT, GitHub Copilot, etc., in combination with critical thinking skills to further your educational development. If you use these models to obtain quick solutions, you will be missing out on learning opportunities and potentially stifling your own creativity. Keep in mind large language models may produce incorrect statements and fake citations, and code generation models may produce incorrect outputs. If you use materials produced by foundation models, you must cite them as you would any other reference materials. It is also important to "show your work" to get full or partial credit, i.e., please document what prompts you used to obtain your outputs.

Useful resources:

Git documentation and book by Chacon and Straub: https://gitscm.com/book/en/v2

Python documentation: https://docs.python.org/3/

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). *Introduction to algorithms*. MIT press.

Wickham, H (2015). Advanced R. CRC Press.

Matloff, N (2011). The Art of R Programming. No Starch Press.

Monahan, J (2011). *Numerical Methods of Statistics* (second edition). Cambridge University Press.

Givens, G.H., & Hoeting, J.A. (2013) *Computational Statistics*. Second edition. Wiley.

Cheney, W, & Kincaid D. (2008) *Numerical Mathematics and Computing*. Sixth edition. Thomson.

Boyd, S. P., & Vandenberghe, L. (2004). *Convex optimization*. Cambridge university press.