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Abstract 

 

Transcriptional coexpression of genes that encode interacting products is 

fundamental to organismal biology, yet the functional architecture and evolution of 

cis-regulatory elements that orchestrate coexpression remain largely unexplored.  In 

this study, I exhaustively mutagenized 19 regulatory elements that drive coexpression 

of Ciona muscle genes, and obtained quantitative estimates of the activity of the 77 

transcriptional regulatory motifs that comprise these elements.  I find that individual 

motif activity ranges broadly within and among elements, and among different 

instantiations of the same motif type.  The activity of orthologous motifs is strongly 

constrained between the two genomically highly divergent Ciona species, suggesting 

that precise control of element function is superbly important for survival of the 

organism.  By contrast, motif arrangement, type, and activity varies greatly among the 

elements of different coregulated genes.  Thus, architectural rules governing 

regulatory function are flexible, but become highly constrained evolutionarily once 

they are established in a particular element. 
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Chapter 1 Introduction 
 

The majority of a complex metazoan genome encodes sequence that is not 

transcribed into RNA (‘non-coding’ DNA).  A significant fraction of such non-coding 

DNA is responsible for regulating the spatiotemporal specificity of gene transcription.  

Such regulation is the first major step in the regulation of the flow of biological 

information from a genotype, encoded in DNA, a molecule that largely functions as a 

repository of information, to phenotype, produced by biologically active molecules 

such as RNA and protein (Jacob and Monod 1961; Britten and Davidson 1969).  It is 

this regulation that controls the development of complex organisms; composed of a 

multitude of distinct cells types that each contains the same genetic blueprint.  

Sequence elements that regulate gene expression come in a variety of forms, but here I 

will be principally concerned with cis-regulatory elements that control the complex 

specificity of gene expression and their associated basal promoters. 

The overarching goal of this research is to improve our understanding of the 

functions that connect genotype to phenotype.   More specifically, my interests lie in 

deciphering the mechanisms by which non-coding DNA produce phenotypes via gene 

expression and the effect of sequence changes on such phenotypes on macro- and 

micro-evolutionary timescales.  To address these interests, I have used two 

complementary approaches: a molecular dissection of cis-regulatory function and an 

experimental and data analysis framework that inform the evolutionary process.  It is 

my hope that determining the functional consequences of non-coding sequence 

changes will address such disparate topics as the genetic basis of butterfly wing 
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pattern variation or the inherited changes that distinguish humans from our closest 

primate relatives, in addition to being beneficial for the prediction and amelioration of 

human disease processes.   

 

Mechanisms of non-coding DNA function 
 

Cis-regulatory elements control the function of DNA by regulating temporal and 

spatial specificity (Small et al. 1991; Hoch et al. 1992; Corbo et al. 1997), the effects 

of environmental stimuli on gene expression (Thanos and Maniatis 1992; Garrity et al. 

1994), as well as controlling the quantity and specificity of the transcript produced.  

Cis-regulatory elements are typically assembled from compact collections of 

sequence-specific transcription factor binding sites (‘motifs’) (Crowley et al. 1997; 

Berman et al. 2004; Zhou et al. 2004), which represent the fundamental units of cis-

regulatory function.  Cis-elements also have an inherent higher-order structure: the 

presence of particular regulatory motifs is not sufficient for biological activity, but 

elements require such motifs to be in particular arrangements, with particular spacing, 

orientation, order, and location.  This higher-order arrangement of regulatory motifs is 

hereby referred to as ‘regulatory architecture.’  The regulation of gene expression is 

thought to occur through the binding of transcription factors to regulatory motifs in 

cis-elements that are able to modulate the assembly and activity of the basal 

transcriptional machinery assembled at the gene promoter.  Cis-regulatory elements 

perform a simple, biological computation: based on the protein complement of a 

particular cell and the specific cis-regulatory architecture of an element, they integrate 
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multiple regulatory inputs to produce specific and distinct gene expression patterns 

(for an extensive review, please see Davidson 2001). 

 

Experimental dissection of cis-regulatory function 
 

The interpretation of the cis-regulatory genetic code is hampered by two important 

characteristics, its degeneracy and apparent redundancy.  Degeneracy is evident in the 

sequence specificity of transcription factor binding sites. While individual 

transcription factors preferentially bind to particular sequences, this preference is 

probabilistic.  Typically, transcription factors do not simply bind to a single specific 

sequence but are instead able to bind to groups of similar sequences.  I will refer to the 

probabilistic model of such collections as ‘motif types,’ whose specificity is often 

represented in the form of a Position Specific Scoring Metric (‘PSSM’).  While such 

sequence differences may result in protein binding of varying affinity and functional 

consequences, relatively little data exists to quantitatively characterize the effects of 

binding site degeneracy.   

Moreover, the vast majority of sequences within a given genome with significant 

similarity to a transcription factor binding site are in fact not bound by the protein (I 

will call such sequences ‘false-positive’ motif predictions) and thus do not modulate 

gene expression (Lieb et al. 2001).  Therefore, due to the short length (sequence 

specific transcription factors typically recognize sequences of 4 to 15 bases) and 

degeneracy of such protein binding sites, the identification of transcription factor 

binding in large genomes based on primary sequence data alone, or in combination 
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with low-resolution experimental data, is extremely difficult.  The confident 

annotation of regulatory motifs thus requires one to distinguish functional regulatory 

motifs from false-positive motif-like sequences with experimental resolution at, or 

close to, the level of individual transcription factor binding sites. 

Secondly, transcription factor binding sites are often difficult to identify because 

they often appear to act ‘redundantly.’  The modification or deletion of transcription 

factor binding sites is often asserted to produce no phenotypic effect in the presence of 

similar sequences in the local vicinity (Buttgereit 1993; Laney et al. 1996; Belting 

1998; Piano et al. 1999; Hersh et al. 2005; Pappu et al. 2005).  However, such studies 

are often hampered by the interpretation of a negative result: the lack of a detectable 

phenotype might be attributable to insufficient functional sensitivity or simply 

ignorance as to the nature of the phenotype and/or a proper assay for it.  An alternative 

hypothesis tested in this work is that individual regulatory motifs are responsible for 

non-redundant quantitative fractions of the total regulatory activity of a cis-element 

(e.g., Galant et al. 2002).  Regardless of the specific mechanism producing small or 

undetectable phenotypic changes, they nonetheless further increase the difficulty of 

the identification and characterization of cis-regulatory elements and their constituent 

motifs. 

However, given proper experimental resolution and sensitivity to quantitative 

differences in phenotype such redundancy, a specific type of genetic interaction, can 

be rigorously characterized.  Genetic and functional interactions between individual 

transcription factor binding sites are critical for a comprehensive understanding of cis-

regulatory element function, as evidenced by the complex interactions (of a form 
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different from ‘redundancy’) shown to dominate the molecular function of well-

characterized regulatory elements such as the eve stripe 2 element (S2E).  At S2E, 

multiple binding sites for overlapping activators and repressors function together to 

produce a novel expression domain (Stanojevic et al. 1991; Small et al. 1991; Small et 

al 1992; Arnosti et al. 1996; Ludwig et al. 2000;). 

The exquisite experimental resolution characterizing the molecular architecture at 

S2E has resulted in its treatment as a paradigm for cis-regulatory element function.  

While this paradigm might hold as an excellent example for many other regulatory 

elements involved in the process of developmental pattern formation, it may not 

represent a model for other classes of cis-elements.  For example, even-skipped 

enhancers establish new expression domains by integrating the regulatory inputs of 

multiple positive and negative factors, some functioning as morphogens, that are 

distributed across a syncytial embryo.  It may be possible, however, that the regulatory 

architecture of other classes of cis-elements differs from this model, for example those 

elements that regulate genes expressed in differentiated cell types after initial 

developmental pattern formation has been established.  Such genes may be regulated 

by transcription factors whose expression patterns have already been confined to the 

same tissue-restricted expression patterns.  Given that the regulatory computation 

necessary at terminal differentiation cis-elements appears much simpler, might the 

elements driving such expression patterns be governed by a different set of 

architectural rules? 

The analyses presented in this study aim to address the molecular degeneracy and 

redundancy of cis-regulation with increased experimental resolution and a novel 
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analytical framework.  This approach allows one to unambiguously distinguish 

functional regulatory motifs from false-positive motif-like sequences due to motif-

level experimental dissection of cis-elements and the quantitative assessment of the 

phenotypic effects of such perturbations.  Moreover, the quantitative gene expression 

measurements produced in this study allow for the rigorous analysis of genetic 

interactions between regulatory motifs within a cis-element. 

Lastly, the resolution and quantification produced by this study allow one to 

analyze a fairly novel quantity: the cis-regulatory activity of individual regulatory 

motifs.  Experimentally based measurements of individual motif activity permit the 

analysis of regulatory architecture at an unprecedented level of resolution.  Estimation 

of this quantity also permits the characterization of the effects of differential motif 

activity on the selective pressure exerted on the motif.  Such analyses are a necessary 

step towards a more comprehensive understanding of the effects of sequence changes 

on non-coding DNA. 

 

Coordinate gene regulation 
 

Another interesting mechanistic aspect of cis-regulation is the phenomenon of 

coordinate gene regulation.  Quite simply, genes whose products are involved in the 

same molecular process must be expressed at the same time and place in order for 

their products to functionally interact.  Such coordinately expressed gene sets, often 

called ‘gene batteries,’ largely determine the function of the cell types they are 

expressed in; for example, muscle cells are muscle cells in part because the genes of 
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the multiprotein complex of the muscle strand are expressed together in large 

quantities in this cell type.  The fundamental importance of such coexpressed gene sets 

is underscored by their conservation across large evolutionary distances (Stuart et al. 

2003).  Despite its centrality to organismal biology, the mechanistic basis of gene 

coexpression remains poorly characterized.  

Coordinate regulation of genes that must be expressed in the same patterns is 

generally thought to be achieved by cis-regulatory elements that share functional 

characteristics and therefore respond at the transcriptional level to similar regulatory 

inputs (Davidson 2001; Yilpel et al. 2001; Berman et al. 2002; Zhou et al. 2004; Segal 

et al. 2003; Johnson et al. 2005).  Whether these shared characteristics are encoded by 

similar element architectures, what the underlying structural and functional 

commonalities are, and how the function of coregulatory elements evolves has been 

largely unexplored.   

One approach that has enlightened this question is systems-level analysis of gene 

expression data and computational analyses adjacent non-coding sequences.  Starting 

from the hypothesis that genes with similar expression patterns are likely to be 

regulated by similar regulatory inputs, several studies have identified the regulatory 

factors responsible for the gene expression pattern as well as their constituent 

regulatory motifs (Pilpel et al. 2001; Segal et al. 2003; Johnson et al. 2005).  These 

studies have suggested that groups of coexpressed genes are typically regulated by 

small groups of transcription factors.  The regulatory motifs identified in such analyses 

generally correspond to transcription factor binding sites whose instantiations within 
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individual regulatory elements provide the statistical signal for the identification of the 

module. 

One interpretation of the success of such systems-level studies, which usually do 

not involve experimental dissection of individual cis-elements for functional 

components, is that a collection of co-expressed cis-regulatory elements may adhere to 

a defined grammar and that there may exist distinct syntactical rules for the 

responding cis-elements to achieve coregulation.  Such rules might involve the 

necessity of a stereotypic collection of transcription factors providing the regulatory 

input, and commonalities in the cis-regulatory architectures of co-expressed genes (as 

suggested in Senger et al. 2004).  

Alternatively, given that selection acts via phenotype (in this case, the precise 

timing and pattern of gene expression) on the genotype (the primary sequence of the 

cis-element), it is conceivable that coregulation is not achieved with strictly defined 

rules but with a diversity of mechanisms that all generate the same output.  Such 

flexibility would be possible if diverse cis-regulatory architectures could produce the 

same phenotypic output, if regulatory inputs were interchangeable, and if functional 

interactions between regulatory motifs were either flexible or relatively unimportant.  

The resolution of functional studies in multicellular systems has thus far been 

inadequate to definitively rule out either of these two alternatives, though I note that 

among the diversity of different coregulation modules there will likely be a variety of 

behaviors, not all of which will be clearly ‘strict’ or ‘loose’.  The quantitative 

characterization of cis-regulatory architecture in this study permits a comparison, 



 9 

across coregulated cis-elements, of regulatory motif content, activity, arrangement, 

and interactions. 

 

Evolution of cis-regulation 
 

A second major area of inquiry into mechanisms of cis-regulation concerns the 

functional evolution of each cis-element that interprets regulatory inputs.  After their 

initial establishment, over subsequent evolutionary time, cis-elements continue to be 

subject to the forces of mutation and selection.  To date, the vast majority of molecular 

evolutionary analyses have been conducted on coding DNA.  However, it was 

suggested over twenty years ago that diverging gene expression mechanisms might 

account for a large proportion of the phenotypic differentiation between species (King 

and Wilson 1975).  This hypothesis has been supported in recent years with a number 

of lines of evidence.   

First, it now appears that in many metazoan genomes, there are a larger number of 

functional bases in the non-coding portion of the genome than the coding.  Based on 

the work of Siepel and Cooper (Cooper et al. 2005; Siepel et al. 2005) one can 

estimate the fraction of non-coding sequence that is evolving under selective 

constraint.  This fraction could be an over estimate, due to the presence of other non-

coding sequence types that may be evolving under purifying (e.g., unannotated non-

coding RNAs) and it may also be and underestimate, if, as has been recently 

suggested, that pervasive adaptive evolution is responsible for a large fraction of 
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sequence changes.  However neither of these concerns seems likely to significantly 

bias a comparison to coding DNA. 

Second, a handful of experimental studies have demonstrated the phenotypic 

consequences of non-coding sequence changes.  In particular the work of Sean 

Carrol’s lab has characterized several species-specific non-coding sequence changes 

producing phenotypic effects among the drosophilids (Gompel et al. 2005; Hersh 

2005; Jeong 2006; Prud’homme et al. 2006).  Similarly, recent work has suggested 

that non-coding sequence variants are responsible for ecologically important 

phenotypic differentiation in sticklebacks (Shapiro et al. 2004) as well as the extreme 

variation in size of dog breeds (Sutter et al. 2007).  In addition, several recent studies 

have identified non-coding sequence variants as causative lesions for human 

phenotypes and diseases, including lactase persistence (Tishkoff et al. 2007), 

polydactyly (Lettice et al. 2002), Hirschsprung disease (Emison et al. 2005), and 

cancer (Rioux et al. 2007). 

Thirdly, several recent studies have addressed the most immediate phenotypic 

effect of cis-regulatory change, gene expression patterns. Across multiple inter-species 

comparisons, analyses of genome-wide (or nearly so) expression levels have suggested 

that the expression patterns of many genes have evolved under varying levels of 

stabilizing or purifying selection (Rifkin et al 2003; Khaitovich et al 2005; Lemos et 

al. 2005; Gilad et al. 2006), thereby demonstrating the evolutionary relevance of 

quantitative changes in cis-regulatory function. 

An understanding of the changes permitted by the evolutionary process and their 

resulting phenotypic effects will, in combination with high resolution functional data, 
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enlighten efforts to understand the relationship between non-coding genotype and 

phenotype, as well as enhance our ability to predict the functional consequences of 

extant sequence variation (for example, in large scale disease association studies). 

 

Evolutionary constraint in cis-regulatory sequences 
 

The phenotypic effects resulting from sequence changes in functional non-

coding sequences suggests that, as a class, functional non-coding sequences will 

evolve at reduced rates due to the effects of purifying selection.  In the case of genes 

that produce the components of a universally important and highly conserved function 

(such as the muscle strand proteins encoded by the genes of this study), purifying 

selection dominates over positive selection because a vastly larger number of 

mutations that affect the system are deleterious than are advantageous.  The 

predominance of purifying selection leads to a reduction in the evolutionary rates of 

functionally important cis-elements, which is referred to as ‘evolutionary constraint’ 

(Kimura 1983).  

Numerous investigations have leveraged the signal of constraint to identify cis-

regulatory elements (e.g., Gibbs 2004; Woolfe et al. 2005; Pennacchio et al. 2006), 

suggesting that constraint is the norm in cis-regulatory regions.  Similarly, several 

analyses of functionally verified regulatory elements have shown them to be more 

constrained than ‘background’ genomic DNA (Moses et al 2003; Encode Project 

Consortium 2007).  The genomic distribution of conserved noncoding sequences has 

also hinted at their functional relevance.  Such sequences are overrepresented near 
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genes with complex expression patterns (Nelson et al. 2004; Woolfe et al. 2006), in 

long introns and intergenic regions (Halligan and Keightly 2006).  They are also 

clustered in primary sequence (Bergman et al. 2002; Webb et al. 2002) and such 

clustering is conserved (Bergman et al. 2002).  Based on inter and intra-specific 

sequence comparisons, it is also clear that the decreased evolutionary rate in conserved 

non-coding sequences is due to purifying selection, as opposed to mutation rate 

heterogeneity (Drake et al. 2006; Casillas et al. 2007). 

 

Sequence turnover in cis-regulatory sequences 
 

Sequence constraint does not, however, imply rigid conservation and a number of 

theoretical (Stone and Wray 2001), comparative (Richards et al. 2005; Margulies et al. 

2007), and experimental analyses (Dermitzakis and Clark 2002; Dermitzakis et al. 

2003; Moses et al. 2006) have suggested that a significant fraction of putative 

transcription factor binding sites might evolve quickly under little evolutionary 

constraint.  The theoretical analyses of Stone and Wray suggested that due to the short 

length and degeneracy of cis-regulatory motifs, similar motifs might arise de novo via 

local point mutations within regulatory regions relatively often.  Through evolutionary 

simulations, the authors demonstrated that this process might produce binding site 

flux, in which the creation of new binding sites allows for the accumulation of 

sequence substitutions in older regulatory motifs, eventually leading to their functional 

replacement by such new motifs. 
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Several comparative sequence analysis based studies have also suggested that cis-

regulatory DNA is evolving under low levels of selective constraint.  Most 

prominently, the sequencing and analysis of the Drosophila pseudoobscura genome 

demonstrated that, as an annotation class, cis-regulatory DNA is only slightly more 

constrained than random intergenic DNA.  Recently, the ENCODE consortium 

(Margulies et al. 2007; ENCODE Project Consortium 2007) produced estimates of 

mammalian evolutionary rates and generated experimental data pertaining to cis-

regulatory function from multiple high-throughput experimental platforms.  Analysis 

of the overlap of these data sets also suggests the existence of a large amount of 

functional non-coding DNA evolving under only minimal amounts of selective 

constraint. 

Several more directed experimental studies have suggested the existence of large-

scale regulatory motif turnover.  Two surveys conducted by Dermitzakis and Clark 

identified potential cases of regulatory motif turnover in Drosophila and mammalian 

genomes (Dermitzakis and Clark 2002; Dermitzakis et al. 2003).  More recently, Alan 

Moses, Mike Eisen, and colleagues conducted an analysis of Zeste binding across the 

Drosophila melanogaster genome, complemented by extensive comparative sequence, 

evolutionary, and computational cis-regulatory analyses, which concluded that 5% of 

Zeste binding sites are turned over within a survey of four Drosphilids (Moses et al. 

2006).  Perhaps the best-studied example is that of the Drosophila eve stripe 2 

element, which during the course of evolution has maintained its precise phenotypic 

output despite significant functional sequence turnover (Ludwig et al. 2000; Ludwig et 

al. 2005). 
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Evolution of cis-coregulatory mechanisms 
 

No case study has so far experimentally determined the functions of a large 

number of cis-coregulatory motifs that mediate gene expression in the tissues of 

higher organisms, and analyzed them in light of their evolutionary trajectories. The 

contrast between studies that suggest the predominance of constraint or motif turnover 

undoubtedly reflects the vast diversity of possible outcomes of evolution’s 

experiments; on the other hand, the diversity of conclusions underscores that our 

insights into the architecture and evolution of cis-regulatory function are based on 

either low-resolution data across many loci or on higher resolution experiments on a 

handful of single elements (such as the eve stripe 2 enhancer). To my knowledge, 

there exist no high-resolution, quantitative studies of cis-regulatory function whose 

conclusions are supported by many loci that have evolved under similar evolutionary 

constraint. 

I reasoned that a high-resolution experimental characterization of cis-regulatory 

architecture, in which the activities of individual regulatory motifs are characterized, 

might shed light on many of the unanswered aspects of cis-regulatory evolution.  Such 

data may inform us about the underlying functional causes of motif conservation or 

turnover in several ways.  First, the experimental resolution provided will allow the 

unambiguous differentiation of functional and false positive motif sequences, thereby 

reducing sequences that may bias estimates of sequence evolution.  Secondly, 
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comparisons of motif activity with the evolution of their sequence and function will 

inform us about the determinants of motif turnover. 

Therefore, to address certain fundamental properties of coregulation, namely its 

regulatory architecture, its evolution of function, and its sequence turnover in cis-

elements, I embarked on a comprehensive, high-resolution, functional and 

evolutionary study of 19 genes coregulated by the Ciona muscle module (Johnson et 

al. 2005).  The muscle module directs specific expression of these genes in the 36 

muscle cells of the developing tadpole larva.  17 of the genes function in the same 

macromolecular complex, the muscle filament, emphasizing the requirement for tight 

coregulation of these genes that is also evident from whole mount in situ hybridization 

time courses (Johnson et al. 2005).   

Ciona lends itself to quantification of the function of tissue-specific positive 

regulatory elements, as each transfection with a reporter construct usually results in 

more than fifty, and often more than a hundred, transgenic animals (for a thorough 

review of Ciona as an experimental model system please see Johnson 2005).  This 

allows for the rapid production of in vivo expression measurements of reporter 

constructs in the proper developmental context.  Statistical analyses of control 

transfections showed that each muscle cell decides autonomously whether to express a 

reporter gene, which led us to devise a scoring scheme that estimates the fraction of 

muscle cells expressing the reporter in a field of transfected embryos.  In conjunction 

with stereotyped and reproducible transfection and assay conditions, this provides for 

a unified system of quantification across all loci and across all constructs that 

measures the probability of any given cell expressing the transgene.  The unit of the 
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scores I report here is therefore “muscle cell expression probability”.  The scores of all 

constructs can be directly compared and provided as input into statistical modeling of 

function.  The combination of quantification of expression probability and multivariate 

regression modeling allowed the estimation of the functional contribution of 

individual regulatory motifs.  The high resolution of the regulatory constructs 

facilitated motif-level characterization of the molecular architecture of cis-

coregulatory function and of the evolutionary dynamics of this system. 

Our coregulated gene set comprises six single-copy genes from C. savignyi and 

their six orthologs from the sister species, C. intestinalis: α-Tropomyosin 1, α-

Tropomyosin 2, Myosin Binding Protein, Troponin I, Troponin T, and Creatine 

Kinase.  In addition, seven genes of C. savignyi that belong to multicopy gene families 

were dissected: Muscle Actin (MA), Myosin Light Chain (MLC), and Myosin 

Regulatory Light Chain (MRLC).  MA is encoded by at least twelve presumably 

isofunctional genes in the C. savignyi genome, and I dissected the regulatory regions 

of two of them.  Similarly, MLC is encoded by at least four genes (I dissected two) 

and MRLC is encoded by at least six genes (I dissected three). 17 of the 19 genes 

function in the same macromolecular complex, the muscle filament, emphasizing the 

requirement for tight coregulation of these genes that is also evident from whole 

mount in situ hybridization time courses (Johnson et al. 2005).   
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Chapter 2  High resolution dissection of cis-regulatory function 
 

Identification of cis-elements 
 

All constructs utilized in this study are based on initial wild type constructs 

that contain 2-5kb of upstream sequence from each gene, the endogenous promoter, 

the start codon, and small amounts of exonic sequence fused in frame to the lacZ 

reporter gene.  In order to make use of a wide dynamic range of expression probability 

for assaying the function of the mutagenized constructs, I tuned the transfection 

protocol (see Methods) so that most wild type constructs drove expression in over 

30% but less than 80% of muscle cells, as opposed to the 100% that would be the 

norm for the endogenous locus.  

I built hundreds of constructs, assayed in well over 2,000 transfections, to 

define, for each locus, the cis-regulatory elements responsible for the majority of the 

transcriptional activity.  Such cis-element identification was achieved with the 

production, at each locus, of a series of deletion constructs that were transfected in 

replicate and scored qualitatively.  Putative cis-elements were identified as sequences 

that, when deleted, resulted in a significant decrease in the expression probability of 

the reporter.   

Deletion constructs removed sequences from the ‘full-strength’ constructs, 

typically from the end distal to the endogenous promoter, although a small number of 

deletions were created from the promoter proximal end or internally.  This distal 

deletion bias is the result of a technical concern:  Because the purpose of this study 
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was to characterize the nature of tissue-specific positive cis-regulatory elements; and 

due to the relatively unannotated state of the Ciona genomes, I was cautious not to 

delete either unrecognized coding sequences or sequences of the basal promoter.  The 

accidental deletion of coding sequences could produce frame shift mutations resulting 

in ‘false-negative’ expression measurements.  Similarly, the deletion or mutation of 

sequences in the basal promoter could decrease or eliminate expression in a non-

tissue-specific manner.  The compact cis-elements identified explained between 55% 

and 100% of the function in the wild type construct. 

 

Quantitative fine-scale dissection of compact cis-elements 
 

The deletion series described above identified compact cis-regulatory elements of 

approximately 100 nucleotides.  Even at this level of resolution, however, it remained 

impossible to distinguish functional regulatory motifs from motif-like sequences with 

no regulatory activity.  As a result, I could not make firm conclusions about the 

detailed molecular architecture underlying gene coexpression or about the extent of 

homologous motif turnover.  To improve the dataset, I applied two approaches.  First, 

I developed a quantitative assay and scoring system that allowed us to characterize 

gradations of regulatory activity (as opposed to binary calls of active/non-active) in a 

robust fashion.  Second, I refined the resolution of our experiments by conducting a 

high-resolution mutagenesis scan, guided in part by predictions of motif sequences. 

Dissection of the fine-scale molecular architecture of each cis-regulatory element 

was performed with a combination of small deletions (5-10bp) and site-directed 
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mutageneses that removed specific motifs or short sequences not matching the motifs.  

The three motifs utilized here are the Cyclic AMP Response Element (CRE; Kusakabe 

et al. 2004; Chen et al. 2005; Johnson et al. 2005), the Ciona MyoD motif (Blackwell 

and Weintraub 1990; Johnson et al. 2004; Meedel et al. 2007), and the Ciona Tbx6 

motif (Yagi et al. 2005).  All had been previously shown to be involved in muscle 

gene expression (see above references), and the present study provides no evidence of 

any other motifs involved in this process.  These short subsequences were 

mutagenized in isolation or in a large number of combinations to produce 220 

constructs that form the basis for all quantitative analyses in this study.  Mutagenesis 

was carried out using two methods: (1) Fine-scale deletions, of approximately 5 to 10 

nucleotides, that deleted individual putative regulatory motifs from the distal end of 

the construct, and (2) Site-directed mutations that scrambled the sequence of a motif, 

while maintaining local GC content and spacing between adjacent sequences (Fig. 

2.1). 

Initial analyses of five independent transfections and assays of the same constructs 

(“biological replicates”) showed that the results were remarkably reproducible 

presumably because thousands of cells are assayed in each transfection, and because I 

had developed stereotypic transfection conditions.  The replicates also resulted in 

stable estimates of activity for each construct, as revealed by the standard deviation of 

the fraction of expressing cells for each construct (mean SD = 0.074 efu, median SD = 

0.064 efu).  I therefore assayed, for nearly every fine-scale construct, at least five 

biological replicates (mean = 5.04).  In the end, the dataset upon which quantitative 
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analyses were performed consisted of 1237 transfection assays that yielded a total of 

85,506 transgenic embryos (Fig. 2.2). 

At each locus, the data clearly distinguish functional regulatory sequences from 

non-functional background sequences.  The identified regulatory sequences control 

~85% percent of assayed activating function across all loci.  The subset of constructs 

that targeted individual motifs modified the expression frequency by 0% to 75%, 

leading to two important conclusions.  First, many motif-like sequences were deleted 

or mutated with no significant functional consequences detectable in our assay.  Such 

sequences therefore represent false-positive motif predictions that cannot be 

distinguished from functional motif predictions on the basis of primary sequence 

alone.  Second, there exists a broad, quantitative gradient of function among 

regulatory motifs.  Therefore, functional motifs, even those matching the same 

consensus binding site, vary in the amount of regulatory function they contribute to 

the locus.  The exact determinants of individual motif activity remain unknown, but, 

given that activity is not significantly correlated with strength of match to the motif 

consensus matrix, local or regional sequence context is certainly important. 

 

Quantitative framework for the estimation of motif function 
 

The density and depth of the dataset presented the opportunity to address 

several novel questions about cis-regulatory architecture.  However, a quantitative and 

biologically meaningful representation of the functional architecture of each cis-

element required an analysis framework to estimate the activity of each motif.  To 
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develop a framework I needed: (a) a robust metric for the measurement of reporter 

expression level, (b) an analysis of the basic descriptive statistics of our data set, (c) an 

analysis of the importance of genetic interactions versus independence among motifs, 

and (d) a proper mathematical framework to relate explanatory (motifs) and dependent 

(expression measurements) variables. 

 

Expression frequency scoring 
 

The transfection of most functional reporter constructs produces a collection of 

embryos that express the reporter at varying levels (see Methods).  The sources of this 

embryo-to-embryo variation in reporter expression are ambiguous, but at least partly 

due to transgene mosaicism (Zeller 2004; Zeller et al. 2006) and cell autonomous 

stochasticity of gene expression (Fiering et al. 2000; Raser and O’Shea 2004; Raser 

and O’Shea 2005).  Traditionally, electroporated Ciona embryos have been scored by 

the percentage of embryos that express the reporter in the cells of interest.  However, 

given the embryo-to-embryo variation mentioned above, I reasoned that scoring 

transfections based on the percentage of stained cells of interest would be a more 

informative metric (note that such a visual scoring system allows the experimenter to 

ignore ectopic expression).    Similar cell-type specific scoring metrics have been 

previously employed to score Ciona transgene expression (Bertrand et al. 2003; Oda-

Ishii at al. 2005). 

Several lines of evidence suggest that this scoring metric is robust. First, a 

comparison of embryo based and cell cased scores (Fig. 2.3) reveals that the cell based 
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scoring metric has more resolving power for moderate to strong reporter constructs.  

This increased resolution appears to result from the early saturation of the embryo 

based score; all embryos have a stained muscle cell well before all muscle cells stain.  

While it might be the case that increased high-end resolution comes at the cost of 

decreased low-end resolution (note Fig. 2.3 A change in slope), greater resolving 

power for moderate to strong constructs is of more practical interest given structure of 

this particular data set. 

Second, an analysis of the distribution of stained cells per embryo 

demonstrates that a cell based scoring metric captures a cell autonomous probabilistic 

shift in the frequency of reporter expression (Fig. 2.3; see also Methods).  Across all 

transfections, as the percentage of stained muscle cells increases (or the percentage of 

class 0 embryos decreases) there is a sequential increase in the percentage of embryos 

stained in greater numbers of cells.  Again, this suggests that an increase in the 

percentage of embryos staining is driven by an increased percentage of muscle cells 

staining, which are effectively randomly distributed across a collection of embryos. 

 Third, a cell-based scoring metric produces results with decreased variance 

across replicated transfections of the same construct.  This trend is seen in both the 

raw variance (Fig. 2.4 A) as well as variance as a fraction of the mean expression 

frequency of a construct (Fig. 2.4 B).  This suggests that cell-based scoring metrics are 

a more accurate summary of the underlying biological reality.  Fourth, construct 

activities measured as the percentage of muscle cells stained are directly proportional 

to lacZ RNA levels as measured by quantitative RT-PCR (Fig. 2.5).   
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Descriptive statistics of data set 
 

 Due to the stereotyped transfection and scoring techniques developed over the 

course of this investigation, the electroporation of Ciona embryos produces expression 

measurements suitable for quantitative downstream analyses.  Overall, the mean 

variance of all ~1200 replicated transfections is 0.011efu.  This equates to a mean 

variance as a fraction of the mean expression frequency of 0.044.  The overall 

distributions of these two statistics can be seen in Fig. 2.4 A, B, and C.  89% of 

replicated transfections have variances that are less than 10% of the mean expression 

frequency of the construct (Fig. 2.4). 

As seen in Figure 2.2 C, the variance in expression frequency varies as a 

function of the mean, with decreased variability in the tails of the distribution of 

means and greater variability seen at moderate expression levels.  This distribution 

suggests that the distribution of stained muscle cells might be best modeled as a draw 

from a multinomial distribution (Sokal and Rohlf 1995).  As predicted for percentage 

based scoring metrics, some of this variance-mean dependence is removed by 

subjecting the raw expression measurements to the angular transformation (Fig. 2.4 C 

and D).  

Due to the structure of the data set and the relative paucity of true experimental 

replicates (~5 per construct) I assessed the normality of the data by constructing a 

distribution of standard deviates (Fig. 2.6; see also Methods).  The untransformed 

distribution of standard deviates exhibits a significant rightward skew and platykurtic 

dispersion.  Both of these deviations from normality probably result from 
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measurements at or near the bounds of the frequency distribution used in this study.  

These deviations are partly reduced by either a square root or angular transformation.    

The distribution of variance and individual deviates are further discussed below, with 

regards to model choice. 

 

Analysis of genetic interactions 
 

To arrive at specific estimates of motif activity, which would be needed for all 

downstream analyses, I searched for a realistic statistical modeling framework.  To 

accurately model the function of cis-elements at the level of individual regulatory 

motifs, I needed to determine whether cis-elements are built from motifs that each 

function largely independently or whether cis-element function can only be accurately 

described using models that account for functional interactions between individual 

motifs.  The presence of motif interactions would necessitate statistical frameworks, 

such as ANOVA, that accommodate interaction effects between explanatory variables.  

However, if motifs appear to act independently, simpler approaches, such as linear 

regression, that require the estimation of fewer parameters, might be appropriate.  

In order to determine what types of statistical approaches would best allow 

quantitative modeling of regulatory function within the cis-elements, I conducted an 

analysis of genetic interactions among a suitable subset of the fine-scale mutants.  An 

assessment of the frequency and magnitude of genetic interactions is necessary to 

determine if statistical analyses of cis-element function must account for inter-motif 

interaction effects, or if simpler models assuming motif independence are sufficient. 
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The pertinent subset of data from our experiments were the expression values for 

18 sets of constructs, where a set is defined as two constructs that each contain a single 

motif mutant, one construct that contains the double mutant, and relevant wild type 

constructs.  The approach used had been successfully used in the quantification of 

interactions between gene deletions or amino acid substitutions (Tong et al. 2004), in 

regulatory network analysis (Segre et al. 2005), and in theoretical evolutionary and 

population genetics (Elena et al. 1997). Quantitative comparisons of the expression 

frequencies of each member of the set allow determination as to whether the 

individual mutations genetically interact. 

I examined the distribution of interaction terms under an additive model and a 

multiplicative model (Cordell 2002).  In the multiplicative model, the relationship 

between the functional consequences of a double mutant, Wxy, and the product of the 

single mutants, WxWy, defines the genetic interaction of the two mutations, denoted as 

εm = Wxy - WxWy.  In the additive model, interactions are defined as εa = (1 – Wx) + (1 

- Wy) - (1 - Wxy).  In our study, W is the expression frequency of double or single 

mutant constructs relative to the expression driven by the wild type construct.  Across 

18 such comparisons, εm varies from –0.39 to +0.26, with 10 comparisons ranging 

between 0 and -0.1 (εmean = -0.039, εmedian = -0.0034, εvariance = 0.023).  Slightly larger 

interaction effects were observed for εa (εmean = 0.20, εmedian = 0.15, εvariance = 0.15) 

(Fig. 2.7). 

Two principal conclusions emerge from this analysis:  First, neither ‘buffering’ nor 

‘antagonistic’ interactions between regulatory motifs is a pervasive functional feature 

of Ciona muscle cis-regulatory elements.  Second, the constituent motifs of an element 
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appear to function with a range of interactive effects. Such interactions appear small 

enough to model cis-element function, to a first approximation, with models that 

assume genetic independence of individual regulatory motifs.  Thus, while all cis-

elements of this study are built from clusters of regulatory motifs, such clustering is 

apparently not a requirement imposed by genetic interactions between the motifs 

themselves. 

 

Statistical modeling of regulatory motif function 
 

Based on the results of our interaction studies, I chose models without interaction 

terms, which have the added benefit of avoiding over parameterization.  Inherent in 

our experimental design is the repeated testing of the functionality of individual motifs 

in multiple independent constructs.  For each locus, I had between 6 and 30 distinct 

constructs for which expression frequency was measured, and which had particular 

combinations of 2-6 motifs present in wild type form, or either deleted or 

mutagenized. Because of this redundancy, the functional contribution of each motif 

could be estimated more accurately than with single data points.  It should be noted 

that for each parameter added to the models (e.g., interaction terms) this redundancy is 

decreased and the risk of model over fitting is increased. 

For the regression analyses, every tested motif becomes a categorical explanatory 

variable that contributes some frequency of muscle cell expression, with the wild type 

motif encoded as presence of the variable, and the mutagenized or deleted motif 
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encoded as its absence.  The regression then provides estimates of each motif’s 

activity by producing the best fit of the data to the model. 

I explored four different modeling scenarios, whose results are summarized in Fig 

1.8, Fig. 2.9, and Table 1.1. 

 

Additive model: 
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which were log transformed and solved as linear models. 

 

Logistic model: 
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Logistic models (eq. 4) were attractive for two principal reasons: proper treatment 

of bound frequency distributions and use of binomial error functions.  As a result, 

logistic models predict the activity of minimally sufficient clones well (Fig. 2.9).  
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However, direct estimation of individual motif activity with logistic regression models 

is difficult to interpret biologically.  Multiplicative models (eq. 3) also seemed a 

reasonable choice given the genetic independence of the data under a multiplicative 

estimate of epistasis (Fig. 2.7).  Such models, after logarithmic transformation, could 

be solved by simple linear regression.  However, multiplicative models consistently 

explained less expression variation than additive models (Fig. 2.9, Fig. 2.10, and Table 

1.1).  Models built from angular transformed expression frequencies (eq. 2) were 

appealing because they removed some of the dependence of expression variance on 

the mean (Fig. 2.4) and explained slightly more of the experimental variance than non-

transformed additive models(Fig. 2.10). In practice, all four model types performed 

quite well (Fig. 2.9) and I therefore chose to focus on the simplest additive model (eq. 

1) due to its methodological transparency and the inherent interpretability of its 

measurement (muscle cell expression frequency). 

Therefore the majority of the data presented in this text (except where specifically 

noted) are derived from non-transformed additive multivariate linear regression 

models.   

 

Quantification of individual motif function 
 

The distribution of regulatory function produced by the regression models 

definitively shows, as qualitatively suggested by the initial large deletion series, that 

the majority of regulatory function rests in compact elements (min. 25 bp, max. 151 
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bp, mean 49bp).  In fact, across all 19 loci, the mean fraction of function attributed to 

specifically interrogated motifs is 82%.   

The residual function not accounted for by specific regulatory motifs most likely 

represents additional regulatory motifs that I failed to identify and characterize.  

Therefore, only 18% of the total cis-regulatory function I detected is not attributed to 

one of the three types of specific muscle regulatory motifs.  I have no evidence for any 

additional regulatory motif types with a quantifiable effect despite extensive 

experimental testing of these loci, though I cannot formally rule out their existence. 

Across 19 cis-regulatory elements, I quantified the function of 77 putative 

regulatory motifs, which effect the probability of muscle cell expression to varying 

degrees, from –0.14 to 0.45 efu (Fig. 2.8 B).  One motif appears to have a repressive 

function (-0.14 efu), and three motifs have a slightly negative value that is statistically 

indistinguishable from 0.  39 motifs have significantly non-zero activating function. 

Importantly, this analysis suggests the existence of numerous false positive motif 

predictions (i.e., motifs whose activity is indistinguishable from zero) that, by 

definition, would not be identified based on primary sequence information alone. 

 

Model Accuracy and Robustness 
 

As discussed above, the data from each of the 19 loci was modeled independently 

under four different modeling scenarios.  Comparison of explanatory variable 

coefficient estimates across models demonstrates surprising robustness to model 

assumptions.  As graphically illustrated in Fig. 2.8A and numerically in Table 1.1, all 
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pairwise comparisons of model coefficients are significantly correlated (Spearman’s 

rho 0.77-0.97). 

Model robustness and overall accuracy is even better demonstrated by 

comparisons between the observed reporter activity of each construct and the activity 

predicted by each of the model types.  As seen in Fig. 2.9 and Table 1.1, each of the 

four model types produce predicted construct activities that are highly correlated with 

the observed data (Spearman’s rho 0.88-0.95).  While all four models perform quite 

well, the additive and logistic models produce the best fit to the data, and the 

multiplicative model consistently performs the worst. 

Careful examination of Fig. 2.10A reveals several important aspects of model fit to 

and deviation from the observed data.  First, both additive models, as well as the 

multiplicative model, often generate predictions of negative expression measurements 

for constructs of weak observed activity.  This results from the differing assumptions 

of the underlying modeling processes.  All of the linear models assume normally 

distributed, unbounded data and are therefore able to produce such predictions.  In 

contrast, logistic regression models (and our experimental scoring metric) assume a 

frequency distribution bounded at zero and one.  Whether this deviation represents a 

biologically significant result (e.g., a net repressive effect of some of the constructs 

with zero measurable activity) or a modeling flaw could be experimentally addressed.  

Second, several loci are modeled relatively poorly by all model types.  Close 

inspection of the underlying data at these loci suggests that the cis-elements might be 

better modeled by accounting for inter-motif interactions. 
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The quality of the regression models can be assessed by the fraction of 

experimental variance they explain (Fig. 2.10 A).  As mentioned briefly above, the 

average coefficient of multiple determination (R2) across all 19 models is 0.82. These 

R2 values also reinforce the trends observed from Fig. 2.9, and demonstrate the 

differences in data fit across loci.   

Examination of each of the models and their underlying constructs allows us to 

estimate the fraction of regulatory activity that the models attribute to regulatory 

motifs, as opposed to function attributed to larger stretches of DNA that has not been 

resolved (Fig. 2.10 B).  The combination of constructs, expression measurements, and 

statistical models typically assigns 70-80% of the total regulatory activity of the locus 

to individual motifs that have been experimentally resolved.  Troponin T exists as a 

significant outlier in this regard, as less than 30% of its cis-regulatory activity has been 

assigned to specific motifs.  In this instance, the data suggest the existence of an 

additional region of compact regulatory activity, approximately 500 nucleotides 

upstream of the well-dissected region. 

Lastly, I was able to assess the distribution of the residual error from each model 

(Fig. 2.11).  Importantly, model residuals appear to be distributed fairly normally and 

without a dependence on the observed activity of a clone. 
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Figure 2.1. Quantitative dissection of cis-regulatory architecture.  
Initial reporter constructs (top) were built by fusing 2-5kb of sequence (brackets under 
locus schematic) immediately 5’ of the first identifiable exon (orange boxes) in frame 
with the lacZ reporter (top right).  Constructs with regulatory activity were initially 
dissected with deletion series (truncated lines) that located regions of concentrated 
function (grey bar) .  Fine-scale deletions and site-directed mutations (open circles) 
targeted putative motifs (filled circles).  Constructs are represented as matrices (‘X’) 
of categorical explanatory variables (1s and 0s) whose replicated transfections yield 
expression frequencies (matrix Y of yn,i).  Functional contributions of individual 
motifs (B1-B5) are estimated with regression models. 
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Figure 2.2. Summary of all quantitative analyses.   
The data are presented as two panels, left representing all constructs generated from 
single-copy orthologous loci, right representing those generated from Ciona savignyi 
specific paralogous loci.  Within each panel, two aspects of the data are displayed.  At 
left, each construct is schematized as a series of colored boxes, which represent its 
particular combination of regulatory motifs (MyoD in green, Tbx6 in blue, and CRE in 
red)or uncharacterized nucleotide segments (black).  Constructs are sorted along the 
vertical axis by locus, as in Appendix 1.  At right, the expression measurement 
(horizontal axis, in efu) resulting from each transfection of each construct is depicted 
as an individual circle.  Replicate transfections of the same construct are drawn along 
the same line. 



 35 

 

 
Figure 2.3. Expression Frequency Unit overview.   
(A) Comparison of two possible scoring metrics.  Each point depicts the expression 
level of an individual transfection, measured in two scales: percentage of stained 
embryos (x-axis) and the percentage of stained muscle cells (y-axis).  (B) Shifting 
distributions of expression frequencies.  Individual transfections (sorted along the x-
axis by the mean percentage of stained embryos) are depicted as a set of six points.  
Each point represents the fraction of embryos from a given transfection in each 
scoring class: 0 (red), 1 (orange), 2 (yellow), 3 (green), 4 (indigo), 5 (violet). (C-D) 
Depicted as in (A-B), but representing the mean values of replicated transfections for 
each construct. 
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Figure 2.4. Distribution of experimental variance.   
(A-B) Decreased variance associated with the efu scoring metric.  (A) Each point 
represents the variance under two scoring metrics for replicate transfections for each 
construct:  percentage of embryos staining (x-axis) and percentage of muscle cells 
staining (y-axis).  (B) Similar to (A), each point depicts the variance as a fraction of 
the mean for replicate transfections of each construct.  (C-D) Variance as a function of 
the mean.  (C) Each point depicts two summary statistics for replicate transfections for 
each construct: mean percentage muscle cells staining (x-axis) and variance of this 
measurement (y-axis).  (D) Layout as in (C), but statistics were calculated after 
subjecting the raw data to the angular transformation. 
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Figure 2.5. Quantitative PCR validation.    
The expression level driven by six constructs of varying activity were assayed with 
two scoring metrics: the fraction of muscle cells stained for the reporter (x-axis) and 
transcript levels, as determined by quantitative RT-PCR for lacZ RNA (y-axis).
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Figure 2.6. Distributions of standard deviates.   
Data presented as a histogram, standard deviate bins plotted along the x-axis and 
counts per bin plotted along the y-axis.  Bars of different colors (from dark to light 
grey) represent untransformed, angular, square root, and log transformed data, 
respectively.  
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Figure 2.7. Genetic interactions between regulatory motifs.   
(A)  Sample of constructs required for the assessment of genetic interactions between 
two regulatory motifs.  Each line represents an individual construct.  The top line 
depicts the ‘wild type’ construct, with 5 regulatory motifs (colored circles).  Lines 2 
and 3 depict constructs containing site-directed mutations in single regulatory motifs 
(open circles).  Line 4 depicts a double mutant construct.  Below the panel of 
constructs are drawn the equations used for the estimation of the phenotypic effect of 
single and double mutants. (B) Histogram of genetic interactions for each of 18 
possible comparisons.  Binned ε values plotted along the x-axis and counts per bin 
along the y-axis.  For each set of constructs ε was calculated under a multiplicative 
(grey bars) and additive (white bars) models of epistasis (relevant equations at top 
right). 
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Figure 2.8. Estimation of motif activity.  
(A) Robust estimation of model coefficients.  Three regression models were built for 
all 19 genes: additive model (black), angular transformed additive model (magenta), 
and multiplicative model (cyan).  Each explanatory variable is represented as a trio of 
points, one for the coefficient estimated from each model.  Coefficients for each 
variable were sorted along the x-axis by the activity estimated using the additive 
model and each coefficient plotted along the y-axis.  (B) Cis-regulatory function of 77 
individually resolved motifs.   Activity and standard error plotted on y-axis, motifs 
sorted along x-axis by estimated activity. Color indicates motif type: red, CRE; green, 
MyoD; blue, Tbx6.  Note that panel (A) depicts all model coefficients, while panel (B) 
only plots variables that represent putative regulatory motifs of 6-10 bases, as opposed 
to larger stretches of DNA, that are included in panel (A). 
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Figure 2.9. Observed and predicted construct activities.  
(A) Construct-by-construct comparison, for each gene, of mean observed activity 
(grey) or activity predicted by four different regression models: additive (black), 
angular transformed/additive (magenta), multiplicative (cyan), or logistic (orange).  
Constructs sorted (along x-axis) by gene as in Table S2.  Mean expression 
measurements or estimates in expression frequency units plotted along y-axis. (B) 
Data as in (A), Constructs are sorted along x-axis by measured activity. 
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Constructs

observed additive multiplicative angular logistic

1.00 0.95 0.88 0.94 0.95 observed

1.00 0.92 0.95 0.95 additive

1.00 0.89 0.87 multiplicative

1.00 0.95 angular

1.00 logistic

additive multiplicative angular logistic

1.00 0.97 0.95 0.82 additive

1.00 0.88 0.77 multiplicative

1.00 0.84 angular

1.00 logistic

Coefficients

Table 1

Non-parametric Spearman's rho correlation coefficients 

comparing the results of different modeling scenarios on 

predicted or observed construct activity (left) or explanatory 

variable coefficients
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Figure 2.10. Performance of each regression model type.   
(A) Variance explained by models. Each point depicts the coefficient of multiple 
determination (R2) for a combination of regression model type and gene.  R2s for each 
gene plotted along the y-axis, sorted by gene along the x-axis.  Color depicts model 
type: additive (black), angular transformed additive (red), multiplicative (cyan). (B) 
Fraction of activity attributed to compact motifs plotted along y-axis, sorted by gene 
along the x-axis (order as in (A)).  Colors as in (A). 
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Figure 2.11. Distribution of regression residuals.   
(A) Model error as a function of observed construct activity.  Each construct is 
depicted as a set of four points, each point representing the difference between the 
observed construct activity and the activity predicted by a particular model.  Data are 
plotted by observed construct activity (x-axis) and model error (y-axis).  Each model 
type is symbolized by a different color: additive (black), angular transformed additive 
(magenta), multiplicative (cyan), and logistic (orange).  (B) Histogram of model 
residuals.  Model error binned along the x-axis and counts per bin plotted along the y-
axis.  Colors as in (A). 
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Chapter 3 Functional architecture and evolution of cis-regulatory 
elements that drive gene coexpression 

 

Diverse regulatory architectures produce similar phenotypic outputs 
 

Having obtained quantitative estimates of motif activity, I examined each cis-

element’s functional architecture. Our data show that expression of each gene is 

controlled by subsets of three regulatory motif types.  These three motif types, Tbx6, 

MyoD, and CRE, and only these three motif types, are responsible for all the well-

resolved cis-regulatory activity defined in this study.  The existence of a tailbud 

embryo “muscle module” that confers coregulation, which was initially characterized 

by the statistical enrichment of motif sequences in muscle-specific promoters (Johnson 

et al. 2005) is therefore refined and corroborated. 

There is striking heterogeneity among the loci:  Elements are built from motifs of 

widely varying activity, from different combinations of motif types, and in diverse 

arrangements (Fig. 3.12).  For example, the cis-element at CK spans 31 bp and 

consists of one intermediate and one strong Tbx6 motif, while the AT1 cis-element 

consists of two weak CRE motifs, followed by two intermediate Tbx6 motifs  and a 

strong MyoD motif, across 35bp.  Though motif independence is prevalent, elements 

do somewhat differ in how much genetic interaction exists.  At MBP and AT2, for 

example, the additive model explains the data very well with high correlations 

between the predictions and the actual data (R2
Cs-MBP = 0.83 , R2

Cs-AT2 = 0.77) and with 

little function unexplained by the model.  Function at MA1, by contrast, is not 

described as well by models without interactions (Fig 1.9 and Fig. 2.10).  Thus, 
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although Ciona muscle genes are regulated by a common and restricted set of three 

transcription factors, their tight coexpression is achieved despite vastly different cis-

element architectures. 

Visual representation strikingly underscores this finding (Fig. 3.12), which 

presents an interesting contrast:  As a co-expressed gene set, Ciona muscle genes are 

coregulated by a common and restricted set of transcription factors, as defined by the 

co-occurrence of their putative binding sites across genes and by their statistical 

enrichment in the collection of regulatory elements (Johnson et al. 2005).  However, at 

the resolution of individual cis-regulatory elements, the tight coexpression seen for 

this set of genes is achieved despite vastly different functional motif architectures. 

 

Functional equivalence of motif types 
 

I performed substitution experiments at three loci to test, independently from the 

epistasis analyses, whether genetic interactions among motifs are important.  I 

reasoned that substituting one motif for another if specific interactions are required 

would not result in rescue.  I had to choose particular constructs from particular loci in 

which deletion of a single motif could result in complete loss of function, so in effect I 

selected loci that had the greatest chance of providing evidence for interactions. 

Each motif type is capable of conferring spatially and temporally specific function 

when introduced into the appropriate sequence context.  Muscle-specific gene 

expression is rescued when a different type of motif is inserted into a construct that 

had been rendered nonfunctional by site-directed mutagenesis or deletion of the 
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endogenous motif.  Notably, every motif substitution I attempted resulted in some 

degree of rescue.  At the C. intestinalis CK locus, scrambling of the Tbx6 motif at 

position -268 results in a significant decrease in expression probability.  However, if 

the site is mutated to either its reverse complement, to a MyoD motif, or to a CRE 

motif, muscle specific expression is restored (Fig. 3.13 A).  Similar results were also 

obtained with the Tbx6 motif at -108 in the C. intestinalis AT2 locus (Fig 2.2 B) and 

with the Tbx6 motif at -89 in the C. savignyi AT1 locus.  This demonstrates that the 

three motif types are at least partially functionally equivalent and that each motif 

transmits similar regulatory information to the transcriptional machinery. The 

interpretation that this reflects a significant degree of functional equivalence, in 

combination with the lack of prevalent genetic interactions provides a possible 

mechanistic explanation for the diversity of cis-regulatory architectures that control 

identical gene expression patterns at each locus examined.  

 

Conservation of orthologous motif function 
 

The resolution of our experimental data afforded the opportunity to quantify the 

functional cis-regulatory changes that occurred since the last common ancestor of the 

two Ciona species.  In stark contrast to the apparent flexibility of regulatory 

architecture, there exists little change in motif activity, order, or composition between 

orthologous elements of C. intestinalis and C. savignyi.  (I note that the Ciona species 

are as genomically divergent as mammals and birds, ruling out the possibility that 

these sequences have not been afforded enough time to accumulate change.)   
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At single copy genes, 26 of the 27 motifs with statistically significant activity have 

a clearly orthologous counterpart.  Orthologous motifs drive very similar, in many 

cases indistinguishable, amounts of activity (Fig. 3.14 A).  For example, both MBP 

orthologs are regulated by a strong MyoD, a weak Tbx6, and a weak CRE motif, with 

less than 0.039 efu average deviation in individual motif activity.  In total, the activity 

of orthologous regulatory motif pairs is highly correlated between the two species 

(Spearman’s ρ = 0.61, p < 0.005; Fig. 3.14 B).  To our knowledge, this represents the 

first time the function of individual cis-regulatory motifs has been quantified and 

compared with orthologous counterparts. In combination with the low rate of motif 

turnover, this relationship indicates that the conserved patterns of orthologous gene 

expression in this study have largely resulted from the maintenance of the ancestral 

cis-regulatory mechanism, as opposed to an evolutionary process that selects for a 

specific phenotypic output while allowing functional flexibility. 

 

Sequence conservation of functional motif sequences 
 

Strong constraint is evident at the sequence level as well.  The high functional 

resolution of our data afforded the opportunity to quantify the evolutionary processes 

affecting cis-regulatory motifs at base pair level resolution.  Functional regulatory 

motifs exhibit far fewer substitutions than the genome-wide average and therefore, as 

a group, appear to be evolving under a high level of purifying selection (Fig. 3.15 A; p 

< 3.8x10-10, Wilcoxon Rank Sum Test; see Methods).  The pair-wise identity between 
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C. savignyi / C. intestinalis orthologous functional motifs is 79%, whereas the 

genome-wide background identity is <20% (including indels).   

Pair-wise identity between orthologous sequences dramatically drops off outside 

the boundaries of the functional motifs, decreasing as a function of the distance from 

motif boundaries (Spearman’s ρ = -0.57, p < 0.05) and nearly reaching genome-wide 

background levels within 12 bp (Fig. 3.15 B).  This demonstrates that the motif 

sequences are subject to a far greater degree of evolutionary constraint than flanking 

sequence and that the functional motifs themselves are the units maintained by 

purifying selection.  However, I do note that there is some evolutionary constraint 

immediately surrounding the motifs, which may be indicative of structure or function 

that was not assayed in our experiments.  

Due to the tight selective footprint and the presence of non-functional motif-like 

sequences, evolutionary analyses relying solely on motif predictions, as opposed to 

functionally defined motifs, lead to biases in the direction of overestimating 

variability.  To cement this point, I mimicked lower-resolution data and examined 500 

bp regions encompassing our functional motifs.  Within these regions I assessed the C. 

savignyi/C. intestinalis pair-wise percent identity of high confidence motif predictions 

in the C. savignyi sequence.  To generate a conservation distribution of motif 

predictions, I collected local alignment windows from predicted motif positions within 

a region of 500 nucleotides encompassing the functional module.  To minimize false 

positive motif predictions, I only assessed predictions with LOD scores > 4.45, 

representing the 25th percentile of true positive motifs (see Methods).   
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The distribution of resulting pair-wise identity values is shifted significantly 

downward relative to the distribution built from functional motifs (Fig. 3.15 A;  

Wilcoxon Rank Sum Test, p < 0.05).  Therefore, the motif prediction set contains 

motifs that are either: (a) False-positives or sequences that, based on primary sequence 

alone, are indistinguishable from functional motifs, but do not contribute any 

regulatory activity to the locus, or (b) Extremely weak motifs whose function is below 

the detectable threshold of the transfection assay.   

In either case, such sequences accumulate substitutions at higher rates than 

significantly functional motifs; as a result, the inclusion of such sequences will 

downwardly bias estimates of sequence constraint.  This result is of particular interest 

because cis-regulatory data of similar moderate resolution is increasingly common as a 

result of modern high throughput experimental platforms, such as ChIP-chip or 

genome-wide DNAseI hypersensitivity data. 

Functional regulatory motifs also carry low levels of polymorphism compared to 

the rest of the genome. Across 13 significantly functional C. savignyi motifs at single 

copy genes, only 2 out of a total of 115 nucleotides were heterozygous in the 

sequenced C. savignyi genome, compared to the genome-wide average neutral 

heterozygosity of >8% (Small et al. 2007a).  This is unlikely to result from stochastic 

fluctuations in diversity as fewer than 4% of a sample of ~7,500 mock motif sets from 

across the C. savignyi genome display this little polymorphism (Fig. 3.16).  Therefore, 

not only has selection removed cis-regulatory motif substitutions over long 

evolutionary timescales, but it also appears to be acting on extant variation by 

removing deleterious polymorphism. 
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Sequence specificity of functional motifs 
 

I also combined all instances of functional motifs of the same type, including their 

surrounding sequence context, into PSSMs.  These functional, in vivo sequence 

specificities were compared to our initial PSSMs, which were built from either 

statistical over representation in a promoter set or in vitro binding data (see Methods).  

This analysis revealed that the functional cis-regulatory motifs identified in this study 

differ little in nucleotide specificity and lack any significant sequence specificity 

beyond the original borders of the motifs, as is visually demonstrated by a translation 

of PSSMs into sequence logos (Fig. 3.17).  Thus, neither evolutionary nor 

informational sequence analysis reveals any sequence-specific information to be 

contained beyond the edge of the motifs. 

 

Motif activity is correlated with sequence constraint 
 

The sequence changes that have occurred are not distributed evenly among the 

orthologous functional cis-regulatory motifs (Fig. 3.18).  Functionally “strong” motifs 

(those that disproportionately increase the probability of a cell expressing the reporter) 

have accumulated fewer substitutions than weak motifs.  In fact, motif activity is 

significantly correlated with percent identity in pair-wise C. savignyi-C. intestinalis 

alignments(Spearman’s ρ = 0.35, p < 0.05).  This is likely due to the fact that strong 

regulatory motifs are responsible for a larger fraction of the total function of a 
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regulatory element; substitutions in them will therefore result in greater phenotypic 

consequences and be subject to stronger levels of purifying selection, decreasing the 

evolutionary rate of the element.  This result demonstrates that: (a) the broad gradient 

of motif activity estimates I have quantified are biologically meaningful and (b) 

individual motif activity is a major determinant of motif substitution and turnover. 

 

Regulatory motif turnover 
 

Comparisons of orthologous elements can also identify motifs of significantly 

differential but complementary function, which represent candidate sites of 

compensatory evolution.  Two such motifs occur at the α-Tropomyosin 2 locus, 

Tbx6.-120 and Tbx6.-108 (Fig. 3.19 A).  At these sites, each species has one 

functionally strong and one functionally weak motif in a pattern complementary to the 

other species.  These functional differences correlate with substitutions away from or 

towards the motif consensus.  Importantly, the functional differentiation of these cis-

regulatory motifs is not the result of binding site gain or loss, but rather from fixation 

of substitutions that have modified their function. 

In addition to the analyses of regulatory architecture at the orthologous elements, I 

also dissected the cis-regulatory mechanisms of three groups of isofunctional paralogs 

in C. savignyi. The protein-coding sequences of these genes are evolving under 

purifying selection (dN/dS << 1) and their expression patterns have remained 

identical. Based on the topology of third position nucleotide trees built from the 

coding sequences of these genes, the gene duplication events appear to post-date the 
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C. savignyi/C. intestinalis speciation event (Fig. 3.20).  Alternatively, given that many 

of the paralogous genes are genomically clustered, gene conversion, or a cycle of 

repeated duplications and losses may be acting to homogenize paralogous loci. 

Regardless of the precise evolutionary history of these loci, the paralogous cis-

elements present a striking contrast to the highly constrained orthologous cis-elements.  

Their cis-regulatory architectures show a high degree of differentiation in the form of 

module and motif-level sequence turnover as well as functional divergence of well-

aligned motifs (Fig. 3.12 and Fig. 3.19 B).  For example, the elements regulating 

Myosin Light Chain 1 and 5 are unalignable and composed of different functional 

motifs, indicating that they are not homologous DNA.  At Muscle Actin 1 and 2, four 

functional motifs are well conserved while two have accumulated enough substitutions 

to make assessment of homology difficult.  Lastly, the Myosin Regulatory Light Chain 

(MRLC) 6 regulatory element is composed of functional motifs different from those of 

either MRLC4 or MRLC5, again suggesting rapid binding site turnover.  Given the 

amount of sequence turnover, it is not surprising that the functions of paralogous 

regulatory motifs are not significantly correlated. 

The combination  of functional and sequence analyses provides clear evidence that 

the evolutionary dynamics of these orthologous and paralogous cis-regulatory 

elements, even for genes operating in the same macromolecular complex, are 

strikingly different.  Thus, while I have shown that purifying selection acting on 

orthologous cis-regulatory motifs is strong enough to maintain conservation of 

regulatory motif sequence and function over vast evolutionary distances, paralogous 

cis-regulatory motifs exhibit far greater levels of motif turnover. I speculate that this 
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greater flexibility in elements of clustered multicopy genes is tolerated because 

changes in the activity of one element have a small effect on the total function of the 

cluster. 
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Figure 3.12. Differential cis-regulatory architecture.   
Each panel depicts the individually resolved cis-regulatory motifs at individual C. 
savignyi genes. X-axis represents bases from the predicted transcription start site. Each 
point represents an individually resolved motif (colors as above), with circle area 
proportional to motif function.  Grey circles represent unresolved cis-regulatory 
function.  Also indicated are the expression probabilities of the strongest clone at each 
locus.  Function values and standard error estimates are defined by regression. 
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Figure 3.13. Functional equivalence of motif types.  
Motif substitutions at the cis-elements of C. intestinalis CK (A) and AT2 (B). Color 
indicates motif type, with area proportional to activity as in Fig. 2B: red, CRE; green, 
MyoD; blue, Tbx6.  Each row is a construct, with the endogenous arrangement at top 
and mutants below.  Open circle is a scrambled sequence, “R” the reverse complement 
of the Tbx6 site.  Mean muscle cell expression frequency is at right.  
 
 
 
 



 57 

 

 

Figure 3.14. Conservation of orthologous motif activity.   
(A) Motif-level distribution of regulatory activity at six orthologous gene pairs.  
Distance from transcription start site and motif activity are plotted along the x- and y-
axes, respectively. Open and filled circles represent individually resolved C. savignyi 
and C. intestinalis motifs, respectively.  Circle color depicts motif type: Tbx6 (blue), 
CRE (red), and MyoD (green). (B) Function of all individually resolved motifs at 
orthologous loci. X and Y-axes depict estimates of C. intestinalis and C. savignyi 
motif function, respectively. Colors as in (A). Motif function and standard errors as 
estimated from regression. 
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Figure 3.15. Sequence conservation at regulatory motifs.  
(A)  Histograms of the C. savignyi-C. intestinalis pairwise percent identity of samples 
from background genomic DNA (black, filed circles), motif predictions from a 500bp 
window spanning the cis-element (gray, open triangles), and the functional motif set 
(black, open circles).  Note the dilution of conservation signal (high pairwise identity 
towards the right of the plot) when nonfunctional motifs are included in the analysis.  
(B) Mean pairwise percent identity of orthologous functional motifs at increasing 
distances from motif boundaries.  Position 0 represents the within-motif mean.  Red 
dashed line represents genome-wide mean. 
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Figure 3.16. Reduced polymorphism in functional motifs. 
Heterozygosity (x-axis) in 7500 samples (75 each from the 100 largest C. savignyi 
haplome alignments; 12), ordered by alignment (y-axis).  Each circle represents a 
single sample of 13 mock motifs.  Circles are shaded to highlight overlapping data, 
from highest (browns) to lowest (yellows) local point density (palette by 
colorbrewer.org).  The heterozygosity within functional motifs is indicated by the 
dashed line.
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Figure 3.17. Motif specificity. 
Sequence specificity of each motif type, represented as sequence logos derived from 
all functional motifs (plus 10 bases on either side), grouped according to motif type: 
(A) CRE, (B) MyoD, and (C) Tbx6.  Note the lack of significant sequence specificity 
outside the originally defined boundaries of each motif. 
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Figure 3.18. Increased sequence constraint at strong regulatory motifs.   
All significantly functional regulatory motifs are plotted as single points.  X-axis 
represents the pair-wise identity of the motif in a C. savignyi – C. intestinalis 
alignment.  Y-axis represents the activity of the motif, as estimated by regression.  As 
indicated at the top left, the data are significantly correlated by the non-parametric 
Spearman’s rho correlation test. 
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Figure 3.19 Examples of motif turnover.  
(A) Compensatory evolution of AT2 regulatory elements.  C. savignyi at top, C. 
intestinalis below.  Arrow direction and thickness represent Tbx6 motif orientation 
and strength of match to PSSM.  Bar plots depict activity of each Tbx6 motif, as 
estimated from additive regression models. (B) Functional turnover in paralogous 
motifs. Function of all individually resolved motifs at paralogous motifs is depicted on 
the X and Y-axes. Colors indicate motif type: Tbx6 (blue), CRE (red), and MyoD 
(green). Motif function and standard errors as estimated from regression. 
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Figure 3.20. Phylogenetic trees of multicopy muscle genes. 
Evolutionary relationships of (A) Muscle Actin, (B) Myosin Light Chain, (C) Myosin 
Regulatory Light Chain paralogs.  Trees built from third-position coding sequences by 
maximum likelihood (1).  Functional analyses reported in this study were carried out 
on genes shaded grey.   Several members of each multigene family are present in 
genomic clusters, schematically indicated on right.  Clusters are shown for C. savignyi 
only, as the assembly of these loci in C. intestinalis is fragmented.  Blue brackets 
represent genes occurring on the same supercontig.  Green brackets represent adult-
expressed genes, red brackets indicate notochord genes, and rose represents a 
cytoplasmic gene.  Figure 3.20 is a modification of a figure by Dave Johnson, based 
on his work and analyses.  
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Chapter 4 Conclusions 
 

My fine-scale characterization of the molecular architecture of coregulatory 

elements addresses several questions of basic importance for understanding 

mechanisms of gene regulation and their evolution: how individual motifs function, 

how such motifs form cis-elements, how cis-elements differ across co-regulated genes, 

and how sequence and function of cis-elements evolve at the motif level.  Certain 

findings represent conceptual advances in our understanding of mechanisms and 

evolution of gene regulation, while others are intriguing examples of biological 

phenomena that have been anticipated but not rigorously shown before due to a lack of 

functional resolution.  I do note, however, that the insights gained by the 

comprehensive dissection of one system, in this case the regulatory elements of 

terminal target genes, will not universally translate to other systems, particular those 

that involve complex interactions of negative and positive factors that set up 

embryonic patterning (e.g., Davidson et al. 2002; Stathopoulos and Levine 2005). 

I show that cis-coregulatory elements that drive muscle-specific gene expression in 

the developing Ciona tail exhibit very diverse architectures.  Only two rather general 

aspects of element architecture are shared among all loci:  the elements are compact 

and the regulatory motifs within them are of one or more of three types (Tbx6, MyoD, 

or CRE).  Beyond these generalities, at least five architectural specifics are 

heterogeneous among the set, with each element representing a unique instantiation of 

these characteristics.  These are (1) the number of functional motifs;  (2) the exact 

identities of the functional motifs;  (3) order and orientation of the functional motifs;  
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(4) spacing between the functional motifs; and (5) degree of functional contribution of 

each motif. 

In contrast to the heterogeneity in specific regulatory architecture, I find strong 

conservation of both sequence and function in orthologous regulatory elements, at 

motif level resolution.  To the extent that changes do occur in motif sequences, motif 

conservation correlates with the strength of motif function.  This is a reassuring result, 

underscoring that a change in a strongly functional motif is likely to have a greater 

deleterious impact on gene expression (and is therefore more intensely selected 

against) than a change in a weakly functional motif.  A complementary result is that 

sequence conservation drops off rapidly from the edge of functional motifs, reaching 

genome-wide background levels within a handful of bases.  It is therefore clear that 

regulatory motif sequences are subject to greater levels of purifying selection than 

even immediately adjacent nucleotides, underscoring the motif itself as the 

fundamental unit of regulatory function. 

An important practical point emerges from this particular conclusion:  

Evolutionary analyses are best complemented with high-resolution functional data if 

conclusions about the evolution of motif function are desired.  Due to the tight 

selective footprint and the presence of non-functional motif predictions, evolutionary 

analyses relying solely on motif predictions, as opposed to functionally defined 

motifs, lead to biases in the direction of overestimating variability.  To cement this 

point, I mimicked lower-resolution data and examined 500 bp regions encompassing 

our functional motifs.  Within these regions I assessed the C. savignyi/C. intestinalis 

pair-wise percent identity of high confidence motif predictions in the C. savignyi 
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sequence.  The distribution of resulting values is shifted significantly downward 

relative to the distribution built from functional motifs (Wilcoxon Rank Sum Test, p < 

0.05), illustrating how nonfunctional motifs of a larger region dilute the conservation 

signal provided by the actually functional motifs. 

Notwithstanding the general finding that motif function is highly conserved, our 

analyses also uncovered an apparent case of compensatory evolution in which 

sequence substitutions have modified the function of two adjacent regulatory motifs in 

a complementary fashion, at the α-Tropomyosin 2 locus (Fig. 2.8 A).  To our 

knowledge, this represents the first demonstration in a metazoan of cis-regulatory 

compensatory evolution to be characterized functionally at motif-level resolution. 

Precise quantification of motif function, as opposed to the binary encoding of a 

motif as functional or not, provided novel insights into cis-element functional 

architecture.  I have demonstrated that regulatory motifs of an element exhibit a range 

of functionality, ranging from below the detection limit of our assay to strong 

function.  Importantly, I found little evidence of genetic interactions (redundancy or 

synergism) among the motifs of an element, and, to a first approximation, the 

constituent motifs appear to function mostly independently and additively.  I note that 

motif function would have been usually interpreted as ‘redundant’ if I had used binary 

encoding (functional versus nonfunctional) instead of a quantitative scale to describe 

function. 

Further confirming additivity and independence of motifs is that each of the three 

motif types controlling muscle gene coexpression are at least partially functionally 

equivalent, as shown by the substitution experiments (Fig. 2.2).  Motif independence 
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and functional equivalence suggest that syntactical rules governing the assembly of 

cis-regulatory motifs into elements are quite flexible. 

The two most prominent developmental mechanisms that build a multicellular 

organism are pattern formation and cellular differentiation.  Previous studies of 

regulatory architecture and evolution were conducted in pattern formation systems, 

either by leveraging sequence comparisons and broad functional genomic data (Yuh et 

al. 1998; Ludwig et al. 2000; Bertrand et al. 2003; Oda-Ishii et al. 2005) or by 

studying a single regulatory element in detail (Dermitzakis et al. 2003; Moses et al. 

2006; Zeitlinger et al. 2007).  By contrast, I here dissect the regulation of coexpression 

during cellular differentiation, and introduce a quantitative framework for the direct 

experimental analysis of motif function.  Using the Ciona muscle system, I 

demonstrate that coexpression is driven by regulatory motifs of broadly varying 

activity assembled into a diverse array of cis-elements.  Despite this flexibility in cis-

regulatory architecture, motif-level sequence and function are exquisitely maintained 

in distantly related orthologs.  Thus, while a diversity of cis-regulatory architectures 

can generate nearly identical phenotypic outputs, the fitness landscapes separating 

them appear to be sufficiently rugged to strongly constrain their evolution (Wright 

1932). 

Our findings have significant implications for our understanding of 

polymorphisms affecting such coregulatory systems.  Polymorphisms in cis-elements 

will range in phenotype, depending on the amount of activity that the affected motif 

contributes to the function of its element;  the most direct evidence for this view is the 

wide range of effects on cis-element function by the individual motif mutants I tested.  
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Similarly, a polymorphism in a trans-acting factor will not affect expression of all 

targets equally but will instead have a target-specific effect whose magnitude is 

determined by the architecture of the target’s cis-element.  These conclusions illustrate 

the challenges that lie ahead for interpretation of genetic variation in gene regulatory 

systems, particularly in Ciona’s most advanced close relatives -- humans. 
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Chapter 5 Methods 
 

Molecular biology 
 

Reporter constructs were built using standard PCR cloning techniques (Johnson et 

al. 2005; Sambrook and Russell 2001) using a previously described vector backbone 

(Johnson et al. 2004; Johnson et al. 2005).  At each locus examined, I first built 

constructs with 2-5kb of endogenous sequence.  This sequence was amplified via PCR 

off genomic DNA:  either genomic DNA from the C. savignyi individual whose 

genome was sequenced or off a pool of genomic DNA extracted from 50 unrelated C. 

intestinalis individuals.  The use of either DNA of known sequence or pooled DNA 

was necessary for efficient PCR amplification, due to the high polymorphism rate in 

Ciona (Dehal et al., 2002; Vinson et al. 2005; Small et al. 2007b).  All subsequent 

constructs at each locus were built by modification of these initial reporter constructs, 

therefore all constructs at each locus are derived from the same haplotype. 

Truncation constructs were generated by PCR cloning, internal deletions were 

generated by overlap extension PCR.  Site-directed mutations were also  generated by 

overlap extension PCR so as to scramble the bases of the endogenous sequence while 

maintaining local sequence length, spacing, and GC content (see Table S2 for locus-

by-locus summary of all relevant constructs).  All constructs were verified by Sanger 

sequencing.  Reporter constructs were maxiprepped (BioRad Quantum Prep) and 

concentrations were adjusted to 5µg/ul prior to electroporation.  Detailed construct 

descriptions and primer sequences are available upon request. 
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Ciona husbandry and transfection 

 

I have expanded the following protocols to  provide all details that seemed relevant to 

me upon completion of my project. This protocol is largely an adaptation of  Bob 

Zeller’s methods (Zeller 2004; Zeller et al. 2006; 

http://www.bio.sdsu.edu/faculty/zeller.html).  I have made several significant 

modifications and provided expanded details.  Some of the nitty-gritty details are 

based on my own anecdotal evidence – adjustments I made because ‘they worked.’  

As with any protocol, some of these details are only important because, if always 

followed, they result in reproducible data. 

 

Husbandry 

 

Starting during the Winter of ’04-’05, all C. intestinalis used in my studies were 

collected near San Diego, CA, USA by Marine Research and Educational Products, 

run by Steve Le Page.  As of May 2007,   he can be reached at (510) 782-8936.  

Information is available on his website: http://www.m-rep.com.  When actively using 

animals, I received weekly shipments of ~40 animals, that were shipped overnight via 

FedEx, bagged in seawater next to cold packs.  Shipments ran ~$125 with shipping.  

Animals were typically collected over the weekend, allowed to sit in Steve’s tanks 1-2 

days, and shipped on Monday for a Tuesday delivery. 
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Upon arrival at Stanford, animals were immediately transferred to our aquarium.  

Starting August ’04, I used a WCA-3 acrylic tray system aquarium for storing Ciona, 

which was purchased for ~$5000 from Sea Life Supply: (831) 394-0848 or 

http://www.sealifesupply.com/aquaria.htm.  The aquarium set up was modified at 

Stanford by adding a T-valve drain.  Prior to the winter of ’05-06, this tank was filled 

with filtered seawater, purchased from PanOcean (I spoke with Will): (510) 782-8936 

and http://www.panoceanaquarium.com.  They charged $0.75 / gallon, with a 

minimum >100 gallon purchase (I don’t remember the exact cut off).  This was a 

hassle, so after winter ’04-’05 I switched to using artificial seawater, which has 

worked just as well.  I’ve used Instant Ocean brand salt mixture, purchased from 

Petco.  Aquarium salinity was maintained at 30ppt, pH between 8.0 and 8.3, and the 

temperature was kept at 18C with the aquarium chiller.  On occasion, I have used a 

marine aquarium buffering salt, Kent Marine Superbuffer-dKH, to maintain pH levels.  

On an approximately monthly basis, I performed ~25% water exchanges.  Prior to 

transfection, animals were kept in the tank under constant light (standard fluorescent 

bulbs) for >24 hours, usually >48.  I typically had gravid animals for 1-2 weeks.  For 

additional thoughts on Ciona husbandry, please see Joly et al. 2007. 

 

Transfection 

 

Prior to transfection, have ready: 
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1. All chemicals, spatulas, dishes, bottles (everything) used for Ciona work must 

be separate from other lab supplies.  Soap residue will make your life 

miserable – do not wash Ciona supplies with soap.  DO NOT take this lightly.  

On occasion, everything will stop working – throw out your Ciona solutions 

and start over.  Almost always works. 

2. Room at 18-20C.  I maintained this in R307 with a window AC unit. 

3. Incubator at 16C, with room for ~5-60 Petri dishes. 

4. Dissecting scope.  I’ve used our Leica MZ95 with a 6x zoom. 

5. Custom built electroporator (Johnson 2005; Johnson et al. 2005; Zeller et al. 

2006).  Set at 3000uF, 10ohms. 

6. Mini-centrifuge.  For spinning down embryos gently.  Fisher cat # 05-090-128. 

7. A lot of bench space.  Preferably with bench coat, as this protocol is pretty 

messy. 

8. Egg filter device.  Cut bottom 1” off a 50mL Falcon tube.  Cut a ~2x2” piece 

of 55 micron filter (Sefar Medifab # 3-100/44).  Screw filter onto tube using 

tube lid.  Cut off excess filter. 

9. 250mL glass beaker. 

10. 4L plastic bucket. 

11. Cuvettes.  800µL 4mm gap.  I reused these until they were visibly damaged – 

after use just wash several times with H2O, air dry. 

12. Pipettes: 

a. 25mL disposable 

b. 5 ¾” Pasteur, VWR#14673-010 
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c. 9” Pasteur, VWR#14673-043 

d. embryo picking pipette: ~3mm glass tubing.  With a flame, draw out 

one end to a point, break tip to leave a ~1mm opening.  Attach ~3mm 

plastic tubing to other end, fold over and staple to form a small “bulb.”   

13. 2 forceps 

14. 1 mini-scissors 

15. Maxi-prepped DNA (BioRad Quantum prep), at 5µg/µL.  Be careful with 

concentration/resuspension, this solution is viscous and pippetting is typically 

inaccurate.  Always check the final solution prior to transfection and adjust the 

volume added to transfection mix if needed (see below). 

16. Solutions (store at room temp unless noted): 

a. Protease type XIV solution. Aliquots are 2.5mg protease in 100µL TE 

pH 7.5.  One aliquot per dechorionation.  Store at -80C.  (Sigma catalog 

#P5147). 

b. Sodium thioglycolate.  100mg aliquots in 15mL conical tubes.  One 

aliquot per dechorionation.  Store at -80C. (Sigma catalog #T0632). 

c. 0.77M D-Mannitol.  Sterilized.  Aliquot into 50mL conical tubes – 

enough for ~100 transfections.  (Fisher M120-500). 

d. 20x PBS. 

e. 1M MgCl2 

f. 100mM K3Fe(CN)6.  Store at 4C. 

g. 100mM K4Fe(CN)6.  Store at 4C. 

h. Triton X-100 
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i. 4% XGal in Dimethylformamide.  Store at 4C in ~5mL aliquots, 

wrapped in foil to avoid light.  Fisher cat # BP1615-1. 

j. PBSTr: 1x PBS with 1% Triton X-100. 

k. Paraformaldehyde, 16% solution, EM grade.  Store at 4C. Electron 

Microscopy Sciences, cat # 15710. 

l. Embryo fixation solution (-paraformaldehyde). 500mM NaCl, 27mM 

KCl, 2mM EDTA. 

 

Just prior to transfection prepare: 

1. 2L submicron filtered artificial sea water (SMFASW), from the same tank as 

your animals (This is important – subtle changes in water chemistry seem to 

disrupt development).  I’ve used Nalgene bottle top filters, from Fisher #291-

4545. 

2. 1L SMFASW, as above, plus 20µg/mL Kanamyacin and 0.1mM EDTA 

(SMFASW+).  I always kept 1000X stocks in the 16C incubator in 50mL 

conical tubes. 

3. Plates: 

a. Per dechorionation: 

i. 1x 35mm dish (Falcon 35-3001), for dechorionation. 

ii. 5x 60mm dishes (Falcon 35-1007) 

1. 1x for fertilization control 

2. 4x for wash plates 
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iii. 1x 100mm dishes (Fisher 08-757-12), for dechorionation 

control. 

b. Per transfection: 

iv. 1x 100mm dish (Fisher 08-757-12) 

c. To prep plates: 

v. prepare molten agarose: 1g agarose / 100mL artificial sea water. 

vi. Allow to cool to ~55C 

a. Pour agarose onto first plate.  Transfer agarose to subsequent plates 

bucket-brigade style until you run out.  Repeat.  You only need a really 

thin coat of agarose on each plate. 

b. Allow agarose to set ~15 minutes. 

c. Add 30mL SMFASW+ to each 100mm plate, 15mL to each 60mm 

plate.  Make sure 35mm plates don’t dry out – I keep them upside down 

in the 16C incubator. 

4. Prepare cuvettes: 

a. Add 480µL 0.77M D-Mannitol 

b. Add 20µL 5µg/µL plasmid DNA in TE pH 8.0, mix well.  Check 

concentration of final solution, adjust volume as needed to achieve 

100µg.  See notes on constructs. 

5. To each aliquot of Sodium Thioglycolate, add: 

a. 10mL SMFASW.  Vortex to suspend.   

b. 25µL 10N NaOH.  Invert to mix.  Check pH – should be 11 – 

extremely important. 
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6. Allow protease aliquots to thaw on ice. 

7. Set up ‘fertilization plate’ – 1x per dechorionation - 1x 100mm plate (no 

agarose needed), add 30mL SMFASW. 

8. Turn on electroporator.  Check settings – 3000uF, 10ohms. 

 

Dissection/Fertilization/Dechorionation: 

1. Collect animals from tank.  I typically use 2-4 gravid animals per 

dechorionation (depending on the # of transfections I’m trying to squeeze in).  

I use a mini-cooler (~1L size).  I add some water from the tank to the cooler 

and put the animals in that. 

2. In a 100mm Petri dish, remove the tunic from each animal.  I use two forceps 

and a mini-scissors for this.  Squeeze the animal away from the base of the 

tunic, cut ½” off the bottom of the tunic.  Make a cut in the tunic from the hole 

in the base up along one side.  Using the forceps, slide the tunic off.  Trash the 

tunic. 

3. While animal is in Petri dish, carefully cut the oviduct and vas deferens of each 

animal (avoid cutting the intestine – seems to poison the reactions).  Some 

sperm and eggs will spill into the dish.  Use the forceps to squeeze out the 

remaining sperm and eggs.  Using a 5 ¾” Pasteur pipette, transfer sperm and 

eggs to fertilization plate. 

4. Repeat for each animal, gently swirl fertilization plate. 

5. After addition of sperm/eggs from 2nd animal, start timer. 

6. Let sit for 1.5 minutes. 
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7. Place embryo filter column into 250mL beaker, pour fertilization mix into 

filter column.  Water/sperm/etc. will move through the filter, eggs will be held 

on top.  Sometimes the filter will clog – if so, gently tap the filter column on 

the bottom of the beaker until flow resumes. 

8. Discard flow trough to 4L bucket. 

9. Wash eggs with 30-40mL SMFASW 

10. Repeat 8-9 2x 

11. When ~2mL remain on column after 3rd wash: 

a. Transfer ~20 eggs to 60mm fertilization control dish.  Lid dish. 

b. Pour enough Na-thioglycolate solution to cover the coated 35mm Petri 

dish (~1mL). 

12. Dump eggs onto 35mm Petri dish by inverting column.  Wash remaining eggs 

onto plate by squirting SMFASW from underside of filter (using fresh pipette). 

13. Allow eggs to settle on dish (30 seconds) 

14. Remove as much liquid as possible from dish w/o disturbing many eggs.  

Discard. 

15. Wash in ~2mL Na-thioglycolate soln. 

16. Repeat 13-15 2x. 

17. Remove liquid again. 

18. At this point, you should have ~3.5mL Na-thioglyoclate soln left.  Add 

protease aliquot to Na-thioglycolate soln. 

19. Wash in Na-Thioglycolate-protease soln.  Timer should read 6 minutes. 
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20. Move dish to dissecting scope – watch through scope to check dechorionation.  

Watch carefully until you get a feel for the process.  First, the outer follicle 

cells will fall off (should happen at about 9 minutes). Second, the inner chorion 

cells will fall off.  When this happens, the embryos will change color, from 

dull orange/brown to pink.  This step happens slowly at first, but as 12 minutes 

approaches, will rapidly move to completion. 

21. Allow the eggs to settle, gently shake dish, repeat ~3x.  I’ve found that shaking 

the dish  works better than swirling. 

22. When timer reads 9 minutes, gently swirl eggs with pipette, allow to settle, 

repeat. 

23. When timer reads 12 minutes 50-95% of the eggs should have lost their 

chorions. 

24. Allow eggs to settle, swirl dish to collect eggs in center. 

25. Using 9” Pasteur pipette, gently transfer eggs to 1st 60mm wash plate.  Transfer 

should be accomplished in 1 or 2 aliquots.  Do not allow air bubbles into 

pipette – it will kill your eggs and you should just start over.  Keep pipette as 

vertical as possible, which seems to keep eggs from sticking to the glass. 

26. Allow eggs to settle, swirl to collect at center of plate. 

27. Transfer eggs to next wash plate with fresh 9” pipette. 

28. Repeat 26-27 2x. 

29. Allow eggs to settle, swirl to collect. 

 

Electroporation: 
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1. Using 1mL adjustable pipette-man with standard plastic tips, collect 300µL 

eggs/water from last wash dish.  Keep tip vertical. 

2. Transfer eggs to cuvette, mix twice, gently.  Volume should be 800µL.  Don’t 

create/add any air bubbles to the mix.  If so, remove with pipette. 

3. Place cuvette in shock pod. 

4. Flip charge switch on. 

5. Wait ~3 seconds.  I typically take this time to switch pipette tips. 

6. Flip charge switch off. 

7. Press discharge button. 

8. Remove cuvette.  (successful electroporation results in the creation of small 

bubbles in the transfection mix). 

9. Pour contents of cuvette into 100mm transfection plate. 

10. Repeat 1-9 for each transfection. 

11. Add lids to plates, allow post-electroporated embryo plates to sit out for 5 

minutes. 

12. Carefully transfer plates to 16C incubator. 

13. Notes: 

a. Stop when timer reaches 22 minutes.  Electroporations after this time 

point will have reduced efficiency, reduced embryo survival, and 

delayed embryo growth. 

b. From 4 adults, I have no problem getting 15 transfections – the limiting 

factor is time. 

c. Always include a positive control plasmid to transfect. 
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d. Pay attention to order of transfections – note in the morning if any of 

the plates are ‘off’. 

 

Embryo collection/fixation/staining 

1. Embryos are fixed at 13.5-15.5 hours post fertilization.  Embryo collection 

typically takes 3-5 minutes per plate, depending on survival rates and practice.  

Think through when you need to start collecting embryos. 

2. Using the embryo picking pipette, transfer 100-500 embryos from each plate to 

a 1.5 mL eppie tube. 

3. Keep eppies with embryos at 16C until fixation. 

4. Spin down embryos in mini-centrifuge (<700g) for ~30 seconds. 

5. Remove as much water as possible with 5 ¾” Pasteur pipette (down to 

~100µL). 

6. Add 264µL embryo fixation buffer + 36µL 16% paraformaldehyde to each 

tube. 

7. Invert twice gently. 

8. Let tubes sit at room temp x 30 minutes. 

a. While waiting, make embryo staining buffer: PBS plus 1mM MgCl2, 

3mM K3Fe(CN)6, 3mM K4Fe(CN)6, 1% Triton X-100. 

9. Spin down embryos (as above). 

10. Remove as much liquid as possible. 

a. Fixation soln must be treated as hazardous waste. 

11. Add 500µL PBSTr. 
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12. Let tubes sit at room temp x 5 minutes. 

13. Spin down embryos. 

14. Remove liquid. 

15. Repeat 11-14. 

16. Add 500µL embryo staining buffer. 

17. Repeat 11-14. 

a. Staining buffer must be treated as hazardous waste. 

18. Add 1.5mL staining buffer + 1mM X-Gal. 

19. Mix by gentle inversion. 

20. Incubate tubes for 4 hours at 37C. 

21. Spin down embryos. 

22. Remove as much liquid as possible. 

23. Add 1.5mL PBS. 

24. Store embryos in eppies at 4C until ready to image. 

 

Imaging/Scoring: 

1. Transfer embryos to 12 well non-coated tissue culture plates (Greiner bio-one 

# 665-180). 

2. Take a picture of each well. 

a. I used the Tan/Baker lab dissecting scope.  The scope itself was almost 

the same as ours, but the digital camera was connected to a computer 

via firewire, so I could make adjustments to focus/lighting/zoom on the 

fly. 
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3. Score each image using MARKER 

a. http://mendel.stanford.edu/SidowLab/downloads/Marker/Marker.zip 

b. Each embryo is scored on a 0-5 scale, representing 0%, 1-20%, 21-

40%, 41-60%, 61-80%, and 81-100%, respectively, of muscle cells 

expressing the transgene.  Calculate a weighted average, estimating the 

fraction of muscle cells stained for a given transfection. 

 

The scalability of this protocol: 

I routinely use this protocol to do 60 transfections per day, each generating ~75 

stained transgenic embryos.  This is accomplished in two sets of two batches of 

dechorionations/transfections.  Each batch of transfections takes approximately one 

hour and I wait about 2 hours in between batches.  This delay is necessary to provide 

enough time the next day for embryo picking, fixing, and staining.  I do this 2x2 in 

order to keep the staging between experiments as tight as possible (with only a pair of 

fertilizations, the two batches will only be off by 30 minutes). 

 

To make use of a wide dynamic range of expression frequency for assaying the 

activity of the mutagenized constructs, I tuned the transfection protocol so that most 

wild type constructs drove expression in over 30% but less than 80% of muscle cells 

(Table S1, column 3) , as opposed to the 100% that would be the norm for the 

endogenous locus.  Initial analyses of five independent transfections and assays of the 

same constructs (“biological replicates”) showed that the results were remarkably 

reproducible presumably because of the thousands of cells assayed in each 
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transfection, and because of stereotypic transfection conditions.  The replicates 

resulted in stable estimates of activity for each construct, as revealed by the standard 

deviation of the fraction of expressing cells for each construct (mean SD = 0.074 efu, 

median SD = 0.064 efu;  Fig. S8). 

 

Quantitative RT-PCR 
 

 Embryos were transfected and allowed to develop as described above.  Total 

RNA was extracted from transfected embryos at 14 hours after fertilization as follows.  

Approximately 100 embryos were collected in approximately 100uL of artificial sea 

water.  Embryos were then homogenized on ice with a glass dounce after addition of 

500uL embryo lysis buffer (100mM NaCl, 20mM Tris, pH 8.0, 10mM EDTA, 1% 

SDS, 250ug/mL proteinase K, in DEPC treated water).  Homogenate was incubated at 

42C for one hour followed by two extractions of acidic phenol:chloroform and a final 

chloroform extraction.  RNA was precipitated with sodium acetate and ethanol, after 

which pellets were then washed in 75% ethanol.  RNA was suspended in 50uL DEPC 

treated water and digested with DNAse I at 37C for 30 minutes, followed by 

extraction with acidic phenol chloroform.  RNA was then precipitated overnight in 4M 

LiCl at 4C.  After washing with 75% ethanol, pellets were resuspended in 20uL DEPC 

treated water.  1ug total RNA was used for oligo-dT primed first-strand cDNA 

synthesis with SuperScript III reverse transcriptase (Invitrogen).  5% of the resulting 

cDNA was used for quantitative real-time PCR using the DyNAmo HS SYBR Green 

qPCR kit (Finnzymes).   
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Alignments and interspecific sequence analyses 
 

All local alignments were constructed as reported previously (Johnson et al. 2005). 

Scaffold-level alignments for each orthologous locus were collected from VISTA-

LBNL (http://pipeline.lbl.gov/cgi-bin/gateway2?bg=Cioin2&selector=vista). 

To estimate the amount of identity in motif-like sequences anywhere in the 

genome, I generated a background distribution by sampling.  From each scaffold-level 

alignment, a set of sequences with a size distribution determined by the sizes of the 

functional regulatory motifs was sampled.  In total, 21,000 mock motifs were 

generated, whose average identity (including insertions and deletions) was 21% (solid 

line in Fig. S6B). 

To calculate sequence conservation at motif-adjacent positions I assessed the 

average identity at varying distances (pooling both 5’ and 3’ directions) from all 

orthologous functional motifs.  All flanking positions that were themselves within 

functional motifs were treated as missing data.  Identity within motifs was averaged 

across all motifs, and yielded a single value of 79% (position 0 in Fig. S6B). 

 

Motif analyses 
 

Initial position specific scoring matrices (PSSMs) (Fig. S2) were generated as 

follows.  MyoD and CRE matrices were built from CisModule predictions (Johnson et 

al. 2005) that were modified to be symmetrical because of their presumed palindromic 
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nature.  The Tbx6b/c matrix was built from in vitro binding data (Yagi et al. 2005). All 

three PSSMs included 1% added pseudocounts.  Motif predictions were calculated as 

LOD scores (Johnson et al. 2004) 

! 

S = log
f (b,i)

p(b)
i=1

L

"  

where the motif is of length L, the PSSM is f(b, i)) , with the frequency f of each base 

b at each position i.  Background nucleotide frequencies, p(b), were taken from the C. 

savignyi genome-wide average, which is 63.8% for G or C and 36.2% for A or T. 

To investigate whether there is any sequence-specific signal outside motifs I 

aligned all functional motif sequences of the same type and built PSSMs and included 

10 flanking bases on either side of the motif.  As is evident from the sequence logos 

(built with WebLogo; Crooks et al. 2004) there is no sequence-specific information 

beyond the border of the motif (Fig. S6C-E).  Comparison of the motif portions of 

these logos with those of the initial logos reveals, as expected, close similarity of the 

PSSMs. 

 

Intraspecific sequence comparisons 
 

To ask whether functional regulatory motifs have been subject to purifying 

selection in the C. savignyi population, I compared levels of polymorphism in 

functional motifs to the rest of the genome. 

Polymorphism levels were calculated as heterozygosity, by comparison of the two 

haplotypes of the C. savignyi genome assembly (Small, K.S., et al. 2007a).  The 13 
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statistically significantly functional motifs at single copy genes were covered by both 

haplotypes.  Only 2 out of a total of 115 bases of these motifs were heterozygous, 

compared to the genome-wide average neutral heterozygosity of >8% (Small, K.S., et 

al. 2007a).  This is unlikely to result from stochastic fluctuations in diversity as fewer 

than 4% of a sample of ~7,500 mock motif sets from across the C. savignyi genome 

display this little polymorphism (Fig. S7).  Therefore, not only has selection removed 

cis-regulatory motif substitutions over long evolutionary timescales, but it also appears 

to be acting on extant variation by removing deleterious polymorphism. 

 

Statistical analyses 
 

All data analyses were conducted using R (R Development Core Team 2006) and 

custom perl scripts.  14 outlier transfections, as identified by Dixon’s test (Sokal and 

Rahlf 1995), were removed from the total of 1237 quantitatively assayed transfections.  

Multivariate regression models were constructed for each locus, for each homolog, 

independently.  For simplicity, I refer to ‘motifs’ in outlining the methodology, though 

some tested sequences were larger regions not bearing motifs.  45 clearly redundant 

constructs were consolidated to simplify model building and avoid 

overparameterization.  All data analyses presented in the text are therefore based on 

the 175 constructs used to build the final models. I call the partial regression 

coefficient of each explanatory variable ‘Motif activity.’  Motif activity standard 

errors and tests of significance are derived from the same models.  I considered motif 

activity to be statistically significant at p < 0.05.  Linear regression models were built 
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using the R lm function.  Logistic models were built by maximum likelihood using the 

R glm function with a binomial error distribution. 
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Appendix 1 Summary of Regression Models 

Gene Species1

Strongest 

construct (efu)

Function in 

motifs

Number of 

explanatory 

variables (X)2

Number of 

Constructs 

(Y) 2

Number of 

Transfections

Variance 

explained 

(R2)2 p-value

AT1 C. i. 0.54 101% 7 13 68 0.6 5.50E-10

C. s. 0.56 72% 7 14 71 0.62 4.90E-11

AT2 C. i. 0.55 70% 7 11 62 0.57 5.80E-08

C. s. 0.61 82% 7 15 82 0.75 2.20E-16

CK C. i. 0.71 87% 7 10 46 0.72 1.50E-09

C. s. 0.58 96% 7 10 46 0.79 3.30E-14

MBP C. i. 0.56 59% 4 8 39 0.79 1.80E-11

C. s. 0.43 85% 4 8 40 0.83 1.10E-12

TI C. i. 0.59 79% 5 10 49 0.86 2.20E-16

C. s. 0.55 55% 5 10 52 0.73 5.80E-12

TT C. i. 0.77 47% 5 12 54 0.73 9.10E-13

C. s. 0.74 24% 4 9 37 0.89 8.60E-15

MA1 C. s. 0.32 100% 7 8 37 0.58 3.00E-04

MA3 C. s. 0.54 96% 7 8 40 0.72 2.50E-07

MLC1 C. s. 0.25 100% 3 5 19 0.49 1.50E-02

MLC5 C. s. 0.23 100% 3 6 21 0.34 6.50E-02

MRLC4 C. s. 0.42 100% 4 8 42 0.56 2.80E-06

MRLC5 C. s. 0.35 100% 3 6 24 0.88 1.70E-09

MRLC6 C. s. 0.23 100% 3 7 32 0.3 1.70E-02

mean 0.5 0.82 5.21 9.37 45.32 0.67

median 0.55 0.87 5 9 42 0.72

sum 99 178 861

1 C.i., C. intestinalis;  C.s., C. savignyi

2 See Fig. 1 and Supplemental text, section 5.
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Appendix 2 Summary of Constructs Used in Quantitative Analyses 
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