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· Functionality ·

Primary Aim: To enable swift and efficient translation of cutting-edge academic research into clinically useful tools[1].

– Spec ia l i zed  Appl icat ions   –

Imaging Signature of EGFRvIII in GBM [5] Computational Study 

of Brain Connectivity [6,7]
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of Glioblastoma

· Future Work ·
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Breast Density Assessment [8,9]

(Cancer Risk Estimation)
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50,000 mammography 

screening exams
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Specialized Segmentation

CTPET

Lung Tumor [10] LIBRA [8,9]

Segmentation [3,4]

ITK-SNAP
Quantitative Feature Extraction

Textural

Voxel-based/ROI based 

texture features

Gray-Level

Matrices

Local Binary 

Patterns

1st Order Statistics Histogram-related

Intensity-basedVolume / Morphology

Model Training Functionality | Brain: Distinct radiographic subtypes of GBM[14] | Breast: Comprehensive parenchymal texture characterization | Deep Learning pipelines for segmentation[17]

• Racial disparities

• Strong associations with breast cancer risk

• Density changes after bariatric surgery 

captk@cbica.upenn.edu

@CBICAannounce

github.com/cbica

@CBICA

Published in Nature Scientific Data[12]

enriching the TCGA-GBM & TCGA-LGG datasets with 

manual tumor segmentations and radiomic features, 

publicly available on the TCIA webpage.

Personalized Radiation Dose Escalation in areas of 

higher likelihood of recurrence: Application of our 

predictive maps to a trial funded by Abramson Cancer 

Center and to an NRG trial.

GBM Recurrence Prediction [13, 14]

(Predictive Maps of Peritumoral Infiltration)

High Probability
of Recurrence

Low Probability
of Recurrence

Post-recurrence scan, with nodular 
enhancement in the predicted areas

Infiltration heatmap in 
pre-op T1-Gd

Cross-Platform ExtendableOpen-Source

1. Clinical experts: facilitating use of complex algorithms for clinically relevant studies through a user-friendly interface.

2. Computational experts: allowing for batch-processing and integration of new algorithms.

Easy to use
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Pre-processing [2]

GBM Survival Prediction [15]

Kaplan-Meier Survival Curves
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HR(low&high):  10.64 (95% CI 5.9-19.3, p<0.001)

HR(med&high): 3.88   (95% CI 2.3-606, p<0.001)

HR(low&med):   2.77   (95% CI 1.8-4.2, p<0.001)

Low SPI
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High SPI

Web-access ible

ipp.cbica.upenn.edu

(HPC-shared resources 
for computationally 

demanding pipelines)

Spatial Distribution Atlases
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