
Target Audience:

1. Non-computational experts (radiologists, oncologists, clinicians, neuroscientists): facilitating use of complex algorithms for clinically relevant studies through a user-friendly, light-weight interface.

2. Computational Imaging Scientists: allowing for batch-processing, as well as integration of new algorithms into a GUI based on ITK, VTK, and OpenCV.

· 1st level · 

· Functionality ·

Primary Aim: To enable swift and efficient translation of cutting-edge academic research into clinically useful tools[1].
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· 2nd level ·

Imaging Signature of EGFRvIII in GBM [7] Computational Study of Brain 

Connectivity [8,9]

DTI-based

Resection Margin Estimation

Peritumoral Effects

of Glioblastoma

· Extendibility · · Future Work ·

Feature Integration
via

Machine Learning

Interaction [1]

Coordinate definition on 

various tissue types Region Annotation
Approximation by a 

sphere

External algorithm integration in CaPTk, is possible in:

Source level

Tightest integration, providing memory-level access to all interactive functionalities, hence allowing for

maximum optimization. The external application should be written in C++ and compiled alongside CaPTk.

Executable level

CaPTk offers a graphical interface to an existing application (not necessarily written in C++), allowing users

to leverage CaPTk’s functionality (e.g., interaction, feature extraction, modeling). Executable-level integration

requires minor additions to CaPTk’s source to create a menu option for the new application.

- Application to other neurological diseases: Meningioma; Multiple sclerosis

- Additional predictive tools for GBM: Survival[15]; Recurrence[16]; Distinct radiographic subtypes[17]

- Integration of brain cognitive deficit measurement: Vulnerability maps depicting brain connectivity, lead

to future cognitive deficits

- Incorporation of a lattice-based strategy for Breast Parenchymal Tissue Characterization

- Deep Learning pipelines for segmentation[18] and prediction tasks.
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Radiomics Predicting Patient Outcomes 

in Lung Cancer [10]

Predicting response to SBRT and overall survival. 
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Quantitative Feature Extraction [1]
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Published in Nature Scientific Data[4], enriching the TCGA-GBM & TCGA-LGG datasets

with publicly available manual tumor segmentations and radiomic features[5,6].

A contribution towards repeatable, reproducible and comparative quantitative studies:

• Enabling direct utilization of the TCGA/TCIA glioma collections 

• Allowing full utilization of their potential in clinical and computational studies
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