Targeted Radiotherapy for Refractory Neuroblastoma

Mindy Yang
Neuroblastoma

- Malignancy of postganglionic sympathetic nervous system
 - Persistence of embryonic progenitor cells give rise to neuroblastic tumor cells
- Most common solid tumor in children
- Diverse clinical/biological behavior
 - Spontaneous regression vs. extremely malignant and widely disseminated disease
- Genetic predisposition
 - *PHOX2B*, *MYCN* mutations
Clinical Presentation

- Commonly begins in adrenal gland, nerve tissues of neck, chest, abdomen, or pelvis
- 50% of patients present with metastasis
 - Patients after one year of age have a 70% chance of exhibiting metastatic disease at the time of diagnosis
 - Usually very ill-appearing at presentation
Diagnosis and Staging

- Risk stratification (INSS)
- Relapse patients have < 10% survival
- Currently no standard therapies for relapsed or refractory neuroblastoma patients (high risk)

Figure 4: Survival of patients with neuroblastoma based on risk group

Patients treated between 1986 and 2001 in Children’s Cancer Group, Pediatric Oncology Group, and Children’s Oncology Group studies were classified as low-risk, intermediate-risk, and high-risk at diagnosis based on clinical and biological features. Kaplan-Meier survival analysis shows marked differences in event-free survival for these groups of patients. Data courtesy of W London, Children’s Oncology Group statistical office.
MIBG Background

- Meta-iodobenzylguanidine
 - Norepinephrine analog that concentrates selectively in sympathetic nervous system in more than 90% of neuroblastomas
 - Radioactive iodine (131I or 123I) combined with MIBG for diagnosis
 - At higher doses, used for therapy

Image courtesy of Maris et. al
MIBG Therapy

- Pilot studies in 1980’s and 1990’s using low doses established activity in palliative setting (Hutchinson, JNM 1991; Kang, JPHO 2003; etc.)

- Phase I trial established feasibility of dose intensification (Matthay, JCO 1998)

- Pilot trials combining MIBG with chemotherapy in US and Europe
131I-MIBG Phase II Study

- Phase II trial (2007)
 - Aims:
 - Response rate to 18 mCi/kg 131I-MIBG
 - Acute and late toxicities
 - Treatment: 2 hour MIBG infusion + in-patient stay
 - Response evaluation at 6 weeks
131I-MIBG Phase II Study Conclusions

- 131I-MIBG is a safe radiotherapeutic in heavily pretreated patients with refractory neuroblastoma
 - Peripheral blood stem cell support allows dose intensification
- 131I-MIBG is active against refractory neuroblastoma
 - Response rates in patients with relapse after HSCT 35-55% regardless of site
 - SD/NR often accompanied with clinical benefit
Toxicity

- Hematologic toxicity universal
 - 65% with ANC <200
 - 88% required platelet transfusion
 - 33% treated with 18 mCi/kg required PBSC support
- Non-hematologic toxicity minimal
Low-dose MIBG therapy

Primary Aim:

- Determine the response rate to low-dose (1.0-2.5 mCi/kg) repetitive 131I-MIBG treatment for patients with refractory neuroblastoma.

Secondary Aim:

- Determine the acute and long-term toxicity of low-dose repetitive 131I-MIBG treatment for patients with refractory neuroblastoma.

- Retrospectively compare response rate and toxicities to those obtained with high-dose MIBG therapy.
Low-dose MIBG therapy

- Eligibility criteria
 - Diagnosis: refractory or relapsed neuroblastoma
 - Age > 1 year
 - Disease status: failure to respond to standard therapy or development of progressive disease; disease evaluable by MIBG scan within 8 weeks of study entry
 - Prior therapy: patients must have fully recovered from prior therapy and at least 2 weeks should have elapsed since any anti-tumor activity
 - Organ function within specified limits
Low-dose MIBG therapy

- Similar protocol to Phase II Trial (2007)
- Observations involve
 - Physical exam
 - Complete blood count labs
 - Liver function tests
 - Thyroid function tests
 - Urine catecholamines
 - Tumor imaging
- Protocol pending approval
Ongoing Clinical Trials

- **MIBG Trials**
 - NANT 99-01 (MIBG/CEM/SCR Phase I)
 - NANT 01-02 (MIBG/CEM/PBSCR)
 - NANT 01-03 (CEP)
 - NANT 04-06 (Irino/VCR/MIBG)
 - **NANT 07-01 (Ultratrace MIBG)**
 - CHOP 830 (MIBG Phase II): Compassionate Use

- **Other therapies**
 - ABT 751: oral tubulin-binding agent
 - Immunotherapy
 - Tyrosine kinase inhibitors
 - Various cytotoxic agents
Acknowledgments

- Dr. John Maris

- Neuroblastoma Team (CHOP)
 - Dr. Yael Mosse
 - Jennifer Saggio
 - Diane Baniewicz
 - Tiffany Pierce-Schwartz

- Clinical Neuroscience Track
 - Dr. Steven Siegel
 - Dr. Roy Hamilton

- Child Neurology Foundation