

Susan Furth, MD, PhD CKiD Principal Investigator ECC

CKiD Investigators

CKiD Coordinators

CKiD Study Goals

- Recruit and Retain CKiD participants
- Define risk factors for CKD progression
- Define effects of CKD progression on:
 - Cardiovascular Disease risk factors
 - Neurocognitive development/function
 - Growth failure

Study Design

- Observational Cohort Study
 - 5 year study initially, 10 year renewal

(Oct 2003 – Jul 2008, Aug 2008 – Jul 2013, Aug 2013 – Jul 2018)

- Cohort 1 enrollment: Apr 2005 Aug 2009
- Cohort 2 enrollment: Feb 2011 March 2014
- Cohort 3 to be enrolled: Aug 2016 July 2018
- Cohort 1: 586 Children age 1 to 16 with mild to moderate kidney dysfunction: 30-90 ml/min|1.73m²
- Cohort 2: 305 Children age 1 to 16 with mildly impaired kidney function: 45-90 ml/min|1.73m²
- Cohort 3: 190 Children age 0.5 to 16 with Non-Glomerular disease for less than 5 years

CKiD Baseline Characteristics (Median or %) of Children by CKD Diagnosis, N= 891

	Glomerular	Non-Glomerular
<u>Characteristic</u>	N=275	N=616
Male	53%	66%
African-American	31%	19%
Hispanic Ethnicity	16%	14%
Age, years	14	10
Age at CKD onset, years	8.5	0.0
Years since CKD onset	3.5	9.3
SCr (Enzymatic), mg/dL	1.1	1.1
Cystatin C (Siemens Healthcare), mg/L	1.2	1.5
Urine protein:creatinine (uP/C)	0.7	0.3
iGFRc, ml/min/1.73m ²	59.4	46.2
Systolic BP ≥ Expected 95 th %ile – 5	+8%	+8%
Diastolic BP ≥ Expected 95 th %ile – 5	+5%	+8%
Self- Reported Hypertension	56%	43%
Left Ventricular Hypertrophy	15%	11%
IQ	96	98
Child Overall QOL	79	77
Premature (Gestational Age< 36 weeks)	9%	13%
Low Birth Weight (< 2500 grams)	15%	20%
Height Percentile – 50	-9	-23
BMI Percentile – 50	+32	+12

Distribution of Chronic Kidney Disease Diagnoses, N= 891

Glomerular CKD Diagnosis		(n)			%(n)	
		-275	Non-Glomerular CKD Diagnosis	n=616		
Focal Segmental Glomerulosclerosis	29%	(79)	Obstructive Uropathy	24%	(149)	
Hemolytic Uremic Syndrome	19%	(52)	Aplastic/Hypoplastic/Dysplastic Kidneys	24%	(146)	
Systemic Immunological Disease (including SLE)	14%	(38)	Reflux Nephropathy	19%	(118)	
Chronic Glomerulonephritis	8%	(23)	Other ^a	12%	(71)	
Familial Nephritis (Alport's)	7%	(19)	Autosomal Recessive Polycystic Kidney Disease	4%	(23)	
gA Nephropathy (Berger's)	6%	(17)	Renal Infarct	3%	(21)	
/lembranoproliferative Glomerulonephritis Type I	4%	(12)	Pyelonephritis/Interstitial Nephritis	2%	(13)	
lenoch Schonlein Nephritis	3%	(9)	Syndrome of Agenesis of Abdominal Musculature	2%	(13)	
Dther	3%	(7)	Congenital Urologic Disease	2%	(11)	
diopathic Cresentic Glomerulonephritis	3%	(7)	Medullary Cystic Disease/Juvenile Nephronophthisis	2%	(11)	
Congenital Nephrotic Syndrome	1%	(4)	Cystinosis	2%	(11)	
lembranous Nephropathy	1%	(4)	Wilms' Tumor	1%	(7)	
lembranoproliferative Glomerulonephritis Type II	1%	(3)	Methylmalonic Acidemia ^b	1%	(6)	
Sickle Cell Nephropathy	<1%	(1)	Perinatal Asphyxia	1%	(5)	
			Autosomal Dominant Polycystic Kidney Disease	1%	(4)	
			Branchio-oto-Renal	1%	(3)	
			Vactrel or Vacter Syndrome	<1%	(2)	
			Oxalosis	<1%	(2)	

Italics indicate urologic diagnosis

^a In Cohort 1, 28 of the 62 KIDs with non-glomerular "other" primary diagnosis were classified as urologic diagnosis

^b Methylmalonic Acidemia was added as a new primary diagnosis category in May 2013

Data Source: December 2014 & CKDDX December 2014

Data Collection

		Pre-Study	V1A	V1B	Even Follow-up	Odd Follow-up
	Consent	•				
Basic	Questionnaires/Forms	•	•	•	♦	♦
	Physical Examination		•	•	•	•
	Blood & Urine Samples		Х	X	X	X
Kidney	Iohexol-based GFR		Χ		X	
	Estimated GFR	X	Χ		X	X
CVD	ABPM & Lipid Profile					
	Echocardiogram					
Neuro	Pediatric Quality of Life					
	Cognitive Development					
	Behavioral Assessment ^b					▲ a
Growth	Tanner Staging		•		•	•
	iPTH & hsCRP			•		•
Stored	Biological Samples			X	X	X
	Genetic Sample			X		

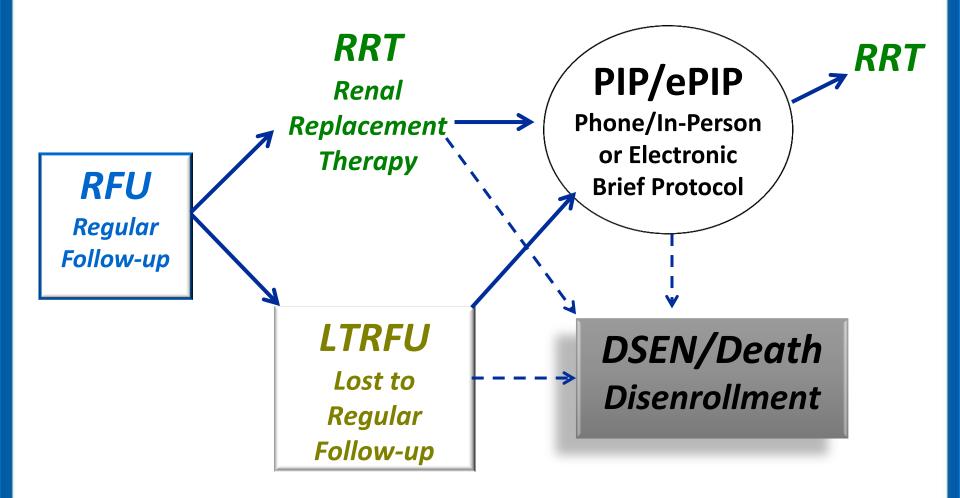
^a Behavioral Assessment discontinued beginning at V9

CKiD Cohort as of December 2015 891 = 586 + 305 V1a Visits with at least one measurement of GFR 275 (31%) 616 (69%) Glomerular **Non-Glomerular** 78^a (28%) 150^b (24%) 197 466 EVENT **EVENT EVENT-Free EVENT-Free**

^a 78 = 17 Transplants + 59 Dialysis + 2 Death

^b 150 = 72 Transplants + 76 Dialysis + 2 Death

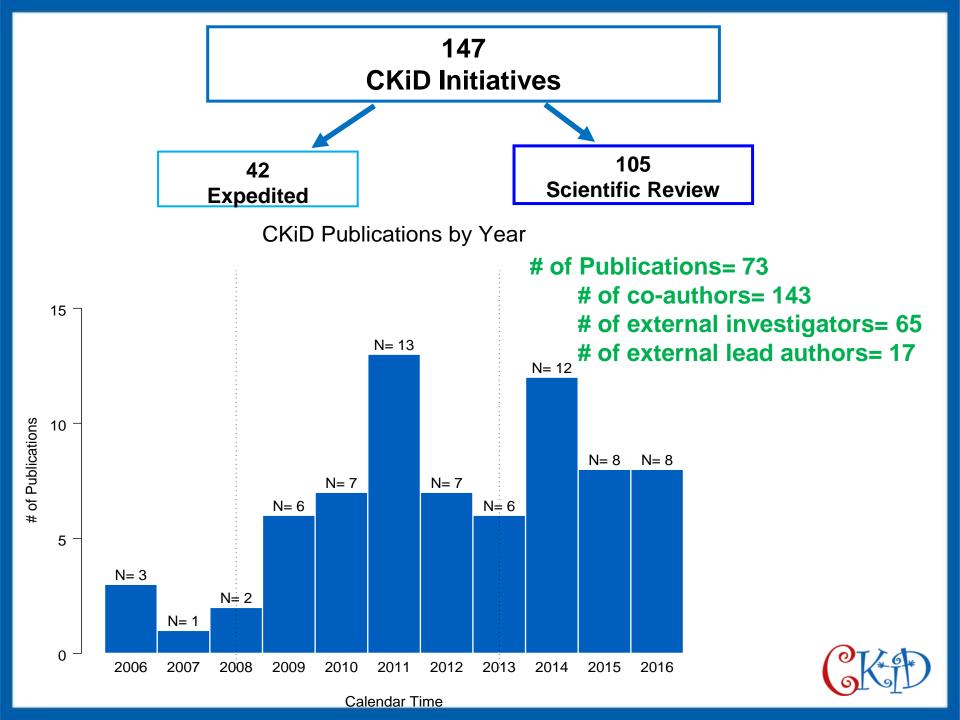
KIDMAC Index

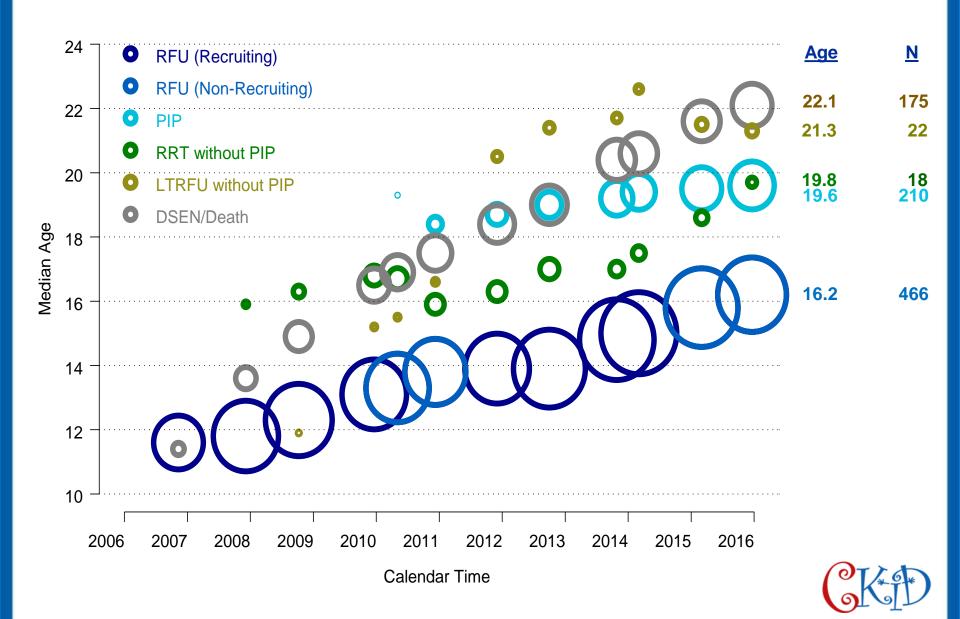

- N= 891= 275 Glomerular + 616 Non-glomerular
 - # African-American= 199
 - # of KIDs with ≥5 visits= 586^a
- # of person-years= 4491^b
- # of person-visits= 4247^c
- # of SCr= 4219^d
- # of iohexol studies= 2640
- # of Dialysis= 146 (11)
- # of Transplant= 92 (3)
- # of Continued follow-up visits (PIP/ePIP)= 517
- ^a Subset of clinical visits, excluding visit 15
- ^b Sum of LDATSTDY BSDATE
- ° # of clinical visits, excluding visit 15
- ^d Centrally or locally measured SCr

- # of sites= 54
 - # of active sites= 45
- # of NP Assessments= 2274
- # of Echos= 1530
- # of ABPMs=1368

Based on studies in 02Dec15 gfrsummary Based on CBL available SCr in 02Dec15 gfrsummary

Participation Status in CKiD




Repository Index

- # of participants with Biological samples archived= 752
 - # of biological samples archived= 90,509
 - # of biological sample shipped= 12,688
 - # of ancillary studies= 10
- # of participants with DNA samples archived= 720
 - # of DNA samples archived= 755
 - # of DNA samples shipped= 1,683
 - # of ancillary studies= 7
- Data collected as of July 31, 2014
 - # of records archived= 110,896
 - # of data files= 61
 - # of ancillary studies= 8

Evolution of Participation Status in CKiD

http://statepi.jhsph.edu/ckid/

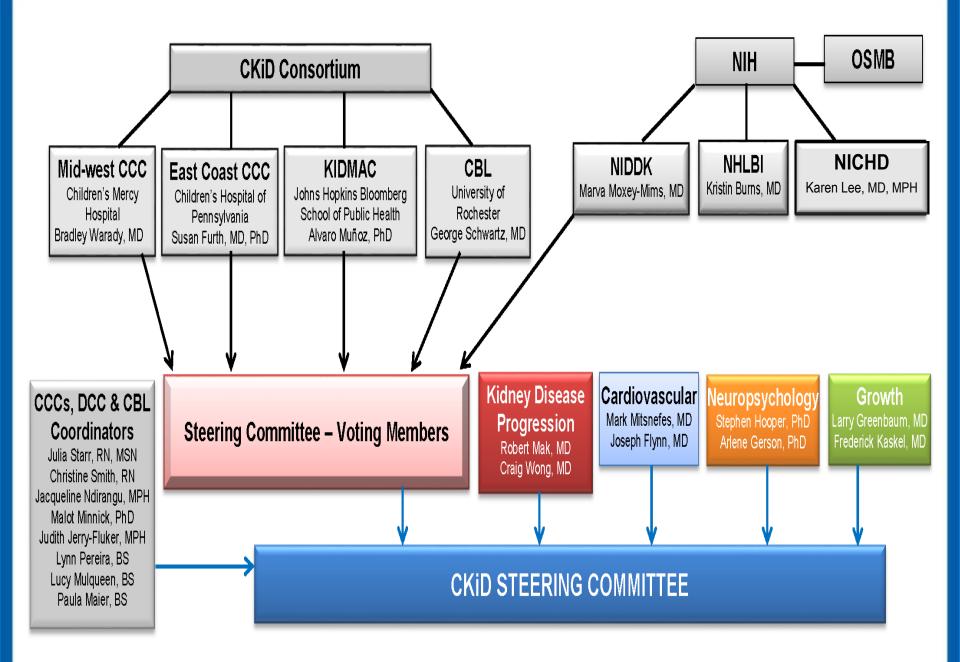
in Children Investigator **Coordinator's** Psychologist's Family **Publications** Home Study Study Information Administration Resources Corner Corner Corner & Dossier

About CKiD

The CKiD Study is a NIH-funded, multicenter, prospective cohort study of children aged 1 to 16 years with mild to moderate impaired kidney function. The primary goals of CKiD are to determine the risk factors for decline in renal function and to define how progressive decline in renal function impacts biomarkers of risk factors for cardiovascular disease; neurocognitive function and behavior; and growth failure and its associated morbidity. Two clinical coordinating centers (CCCs) (at Children's Hospital of Philadelphia and at Children's Mercy Hospital in Kansas City), a central biochemistry laboratory (at the University of Rochester), and a data coordinating center (at Johns Hopkins School of Public Health) formed a cooperative agreement to conduct the CKiD Study.

Study Aims

- To determine risk factors for progression of pediatric chronic kidney disease
- To examine the impact of CKD on neurocognitive development
- To examine the impact of CKD on risk factors for cardiovascular disease
- To examine the impact of CKD on growth


Chronic Kidney Disease

Clinical Coordinating Centers

CKiD Study Workshop June 19-20,2017

Contact Us CKiD Study Information Key Forms for Sites

Online BP Certification

