Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer

Highlights

- miR-622 induces resistance to PARP inhibitors and cisplatin in BRCA1-deficient cells
- miR-622 levels in BRCA1-mutant ovarian tumors correlates with survival of patients
- The Ku complex is directly downregulated by miR-622 to suppress the NHEJ pathway
- MiR-622 helps to balance HR and NHEJ pathways for DSB repair during the cell cycle

Authors

Young Eun Choi, Khyati Meghani, Marie-Eve Brault, ..., Douglas A. Levine, Panagiotis A. Konstantinopoulos, Dipanjan Chowdhury

Correspondence

panagiotis_konstantinopoulos@dfci.harvard.edu (P.A.K.), dipanjan_chowdhury@dfci.harvard.edu (D.C.)

In Brief

Choi et al. show that expression of miR-622 induces resistance to PARP inhibitors and cisplatin in BRCA1-mutant ovarian tumors and correlates with survival of patients. miR-622 suppresses NHEJ by downregulating expression of the Ku complex and facilitates homologous recombination mediated repair of DNA double-strand breaks (DSBs) in the S phase of cycling cells.
Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer

Young Eun Choi,1 Khyati Meghani,1 Marie-Eve Brault,1 Lucas Leclerc,1 Yizhou J. He,1 Tovah A. Day,2 Kevin M. Elias,3 Ronny Drapkin,1 David M. Weinstock,2 Fanny Doo,2 Karin K. Shih,6 Ursula Matulonis,2 Douglas A. Levine,5 Panagiotis A. Konstantinopoulos,4,* and Dipanjan Chowdhury1,*

1Division of Genomic Stability and DNA Repair, Department of Radiation Oncology
2Department of Medical Oncology
Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
3Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA 02215, USA
4Division of Genomic Stability and DNA Repair, Department of Radiation Oncology
5Department of Surgery, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
6Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
*Correspondence: panagiotis_konstantinopoulos@dfci.harvard.edu (P.A.K.), dipanjan_chowdhury@dfci.harvard.edu (D.C.)
http://dx.doi.org/10.1016/j.celrep.2015.12.046
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

High-grade serous ovarian carcinomas (HGSOCs) with BRCA1/2 mutations exhibit improved outcome and sensitivity to double-strand DNA break (DSB)-inducing agents (i.e., platinum and poly(ADP-ribose) polymerase inhibitors [PARPis]) due to an underlying defect in homologous recombination (HR). However, resistance to platinum and PARPis represents a significant barrier to the long-term survival of these patients. Although BRCA1/2-reversion mutations are a clinically validated resistance mechanism, they account for less than half of platinum-resistant BRCA1/2-mutated HGSOCs. We uncover a resistance mechanism by which a microRNA, miR-622, induces resistance to PARPis and platinum in BRCA1 mutant HGSOCs by targeting the Ku complex and restoring HR-mediated DSB repair. Physiologically, miR-622 inversely correlates with Ku expression during the cell cycle, suppressing non-homologous end-joining and facilitating HR-mediated DSB repair in S phase. Importantly, high expression of miR-622 in BRCA1-deficient HGSOCs is associated with worse outcome after platinum chemotherapy, indicating microRNA-mediated resistance through HR rescue.

INTRODUCTION

Approximately 15%–20% of patients with epithelial ovarian cancer (EOC) harbor germline (10%–15%) or somatic (6%–7%) BRCA1 or BRCA2 mutations (TCGA, 2011). Furthermore, epigenetic silencing of BRCA1 via promoter hypermethylation occurs in ~10%–20% of EOCs. Due to the underlying defect in DNA repair via homologous recombination (HR), patients with BRCA1/2-inactivated EOCs exhibit enhanced sensitivity to platinum analogs and other cytotoxic drugs that induce double-strand DNA breaks (DSBs) such as the poly(ADP ribose) polymerase inhibitors (PARPis) (Fong et al., 2009). Of these drugs, olaparib was granted accelerated approval by the US Food and Drug Administration for use in EOC patients with germline BRCA1/2 mutations (Fong et al., 2009). However, a substantial fraction of these patients do not respond or eventually develop resistance to these agents, suggesting that de novo and acquired platinum and PARPi resistance is a significant clinical problem in HR-defective EOCs. The most common mechanism of resistance to these agents in BRCA1/2-mutated tumors is secondary intragenic mutations restoring BRCA1 or BRCA2 protein functionality; 46% of platinum-resistant BRCA-mutated EOCs exhibit tumor-specific secondary mutations that restore the open reading frame of either BRCA1 or BRCA2 (Norquist et al., 2011).

The interplay of the two major mechanistically distinct DSB repair pathways, HR and non-homologous end-joining (NHEJ) (Chapman et al., 2012b; Ciccia and Elledge, 2010), is also critical for resistance to platinum and PARPis. Surprisingly, the sensitivity of BRCA1-mutant tumors to PARPis is almost completely abolished by loss of the NHEJ factor 53BP1 (Bouwman et al., 2010; Bunting et al., 2010; Chapman et al., 2012a), which also correlates with the restoration of competent HR. Furthermore, a recent small hairpin RNA (shRNA) screen for hairpins promoting survival of BRCA1-deficient mouse mammary tumors to PARPis identified 53BP1 and REV7, a factor implicated in NHEJ, as the top hits (Boersma et al., 2015; Xu et al., 2015). However, unlike BRCA1/2 reversion mutations, these resistance mechanisms have not been shown to be clinically relevant for patients with BRCA1/2-inactivated EOCs. However, it is feasible that the NHEJ pathway may be relevant for PARPi resistance in
EOCs, and other NHEJ factors may contribute to the resistant phenotype.

Here, we uncover mechanism of resistance to PARPi and platinum in BRCA1-mutated EOCs that involves microRNA (miRNA)-mediated regulation of NHEJ. Specifically, we have identified a miRNA, miR-622, that regulates the expression of the Ku-complex and specifically suppresses NHEJ during S-phase. Consistent with this effect, overexpression of miR-622 rescues the HR-deficiency of BRCA1 mutant ovarian tumor lines and induces resistance to PARPi and platinum-based drugs. Furthermore, expression of miR-622 in two cohorts of patients with BRCA1-inactivated EOCs correlates with reduced disease-free survival after platinum-based therapy, suggesting direct clinical relevance in patients with EOC.

RESULTS

miR-622 “Desensitizes” BRCA1-Mutant Cells to PARPi Inhibitors and Platinum-Based Therapy

Recently, we used PARPi sensitivity as a marker for HR deficiency to conduct a functional screen for identifying miRNAs that downregulate HR in a breast cancer line, MDA-MB231 (Choi et al., 2014). We characterized the miRNAs (miR-1255b, miR-193b*, and miR-148b*) that suppress HR by downregulating the expression of BRCA1, BRCA2, and RAD51. Strikingly, in that screen, six miRNAs (miR-644, miR-492, miR-613, miR-577, miR-622, and miR-126*) (Choi et al., 2014) demonstrated a surprising trend of inducing PARPi resistance. Our original screen was conducted to assess the impact of these miRNAs on PARPi sensitivity in a BRCA proficient breast cancer line MDA-MB231.

Considering BRCA-mutant cells are responsive to PARPi, we also examined the impact of these miRNAs in a BRCA1-mutant breast line, MDA-MB436. There was no significant impact of miR-644, miR-492, miR-613, miR-577, and miR-126* on PARPi sensitivity in MDA-MB231 and MDA-MB436 cells (Figure S1A); however, miR-622 significantly induced resistance to the clinical-grade PARPis olaparib and veliparib specifically in the MDA-MB436 cells (Figure S1B). Furthermore, we tested the impact of miR-622 on PARPi sensitivity on the BRCA1-mutant EOC line UWB1.289 and found that overexpression of miR-622 caused resistance to both PARPis, olaparib and veliparib (ABT-888) (Figure 1A). Interestingly, miR-622 expression also caused resistance to the platinum-based chemotherapeutic agents carboplatin and cisplatin in the BRCA1-mutated UWB1.289 cells (Figure 1A). Importantly, restoring BRCA1 expression in UWB1.289 cells completely negates the impact of miR-622 on PARPi sensitivity and also sensitivity to platinum drugs (Figure S1C). In order to exclude the possibility that the BRCA1-mutant lines MDA-MB436 and UWB1.289 have acquired other unaccounted mutations that may contribute to the phenotype induced by miR-622, we expressed miR-622 in BRCA1 null mouse embryonic fibroblasts (MEFs) and assessed sensitivity to olaparib and cisplatin. Consistent with our previous results, miR-622 significantly “desensitized” BRCA1−/− MEFs to both drugs (Figure 1B) but did not impact the sensitivity of their wild-type counterparts (Figure S1D). Together, these data suggest that the impact of miR-622 on PARPi- and platinum-based therapy is specific to the loss of BRCA1.

Expression of miR-622 Correlates with Response to Platinum Chemotherapy in BRCA1-Inactivated EOCs

To evaluate the association between miR-622 expression and platinum response in EOCs with BRCA1 inactivation, we assessed data from the ovarian TCGA dataset (TCGA, 2011). In that dataset, 89 EOCs (all high-grade serous ovarian carcinomas [HGSOCs]) exhibited BRCA1-inactivation; 38 EOCs harbored BRCA1 mutations (out of 316 EOCs that underwent whole-exome sequencing), while 51 tumors (out of 489 tumors with DNA promoter methylation data) harbored BRCA1 epigenetic silencing via promoter hypermethylation. All patients underwent surgery followed by platinum-based chemotherapy. We evaluated the association between miR-622 expression and platinum response using various cutoffs for low versus high miR-622 expression. In all cases, we consistently found that tumors with higher miR-622 expression were associated with inferior response to first-line platinum-based chemotherapy and worse survival. Specifically, using median miR-622 expression as a threshold to classify BRCA1-inactivated EOCs as exhibiting high versus low miR-622 expression, we found that BRCA1-inactivated tumors with high expression of miR-622 were associated with worse disease-free survival (DFS) (median DFS 14.7 versus 19.8 months, respectively, log rank p = 0.03) and overall survival (OS) (median OS 39 versus 49.3 months, respectively, log rank p = 0.03) compared with tumors with low miR-622 expression (Figure 1C). Conversely, there was no association between miR-622 expression and outcome, DFS, or OS in the remaining tumors in the TCGA dataset, i.e., those without BRCA1 mutations and without BRCA1 promoter hypermethylation (data not shown). This trend was particularly evident in tumors with the highest miR-622 expression, i.e., those whose miR-622 expression was in the highest quintile. Specifically, BRCA1-inactivated tumors whose expression levels for miR-622 were in the highest quintile were associated with worse DFS (median DFS 13.7 versus 18.1 months, respectively, log rank p = 0.005) and OS (median OS 35.3 versus 48.3 months, respectively, log rank p = 0.001; Figure 1D).

Furthermore, we compared tumors with the highest miR-622 expression versus those with the lowest miR-622 expression. Specifically, when comparing the top 5, 10, or 15 tumors with the highest miR-622 expression to the lowest 5, 10, or 15 tumors, respectively, we consistently found that the tumors with the highest miR-622 expression were associated with inferior response to first-line platinum chemotherapy, i.e., worse DFS and OS compared to the tumors with the lowest expression (Figures 1E and S1E).

Given the absence of other miRNA expression datasets with sizeable numbers of ovarian tumors with BRCA1-mutations or BRCA1 promoter hypermethylation, we explored the correlation between miR-622 and outcome in tumors with low BRCA1 expression in a different, clinically annotated ovarian cancer dataset (Shih et al., 2011). This dataset included miRNA and mRNA expression data from 60 patients with newly diagnosed FIGO stage III or IV tumors with serous histology, including 3 tumors with BRCA1 mutations. As shown in Figure S1F, we found similar correlation between high miR-622 expression and inferior outcome to first line platinum based chemotherapy.
miR-622 Impacts NHEJ-Mediated Repair of DSBs

The NHEJ pathway is composed of at least two branches: the well-studied classical NHEJ (C-NHEJ) and the poorly understood alternative end-joining (A-NHEJ) (Deriano and Roth, 2013). The molecular details and biological function of A-NHEJ remains largely unclear (Deriano and Roth, 2013). Loss or depletion of factors promoting C-NHEJ (such as 53BP1) or essential for C-NHEJ (such as Ku70) induces PARPi resistance in BRCA1-deficient mouse cells (Bunting et al., 2010, 2012). To test whether miR-622 indeed impacts NHEJ, we assayed for C-NHEJ- and A-NHEJ-mediated repair of the yeast endonuclease, I-SceI-induced DSBs, using the EJ5-GFP reporter and EJ2-GFP reporter, respectively. These are integrated fluorescence-based reporters (Bennardo et al., 2008) that allow for efficient quantification of the two distinct NHEJ pathways at targeted DSBs. We observed that miR-622 significantly impedes C-NHEJ (Figure 2A) and enhances A-NHEJ (Figure 2B). This is consistent with studies showing that depletion of C-NHEJ factors increases the frequency of A-NHEJ (Fat-tah et al., 2010). Depletion of 53BP1 and Ku70 induces PARPi resistance in BRCA1-mutant cells by restoring HR-mediated repair of DSBs and significantly enhancing genomic stability.
after PARPi treatment (Bunting et al., 2010, 2012). Consistent with its impact on NHEJ, we observe that expression of miR-622 in Brca1−/− MEFs causes a significant decrease in the level of genomic instability (chromosomal aberrations) induced by olaparib treatment (Figure 2C). To address the mechanism by which miR-622 promotes genome integrity in BRCA1 mutant cells, we tested whether its expression could cause an increase in irradiation-induced Rad51 foci, a measure of the HR pathway. We found that expression of miR-622 in UWB1.289 cells caused a statistically significant increase in Rad51 foci (Figure 2D). Importantly, none of these effects are due to alterations in the cell cycle caused by the miR-622 mimics (Figure S2A).

miR-622 Regulates Expression of the Ku Complex

To investigate the mechanism by which miR-622 influences NHEJ and impacts PARPi sensitivity, we used a candidate-based approach whereby all genes implicated in NHEJ were screened for miRNA recognition elements (MREs) of miR-622 using the PITA algorithm. This algorithm is unique in allowing G:U wobbles or seed mismatches and identifies base pairing beyond the 5′ end of the miRNA, predicts the sites not restricted to the 3′ UTR of mRNA, and identifies non-canonical MREs for specific miRNA/mRNA combinations (Lal et al., 2009). Using this algorithm, miR-622 was predicted to target the transcripts of 53BP1, Ku70, Ku80, APTX, and APLF (Figure S3). We assessed the impact of overexpressing miR-622 in UWB1.289 cells on the mRNA level of these genes and observed a significant reduction in the transcripts of 53BP1, Ku70, and Ku80 (Figure 3A). Subsequently, we determined the impact of miR-622 on the protein level of their putative targets. Overexpressing miR-622 reduces the protein levels of Ku70 and Ku80 in UWB1.289 cells. The basal expression of the Ku proteins is lower in MEFs, and the impact of miR-622 on Ku70 and Ku80 in Brca1−/− MEFs is even more pronounced (Figure 3B). On the contrary, there was no detectable impact of miR-622 on
53BP1 protein levels in the UWB1.289 cells. To test for association of miR-622 with the Ku70 and Ku80 transcripts, we captured miRNA-mRNA complexes using streptavidin-coated beads from cells transfected with biotinylated forms of the miRNA mimic (Lal et al., 2011; Orom and Lund, 2007). The amount of Ku70, Ku80, and 53BP1 transcripts was measured in the pull-downs, and the enrichment was assessed relative to pull-down with biotinylated control mimic and also with GAPDH. Consistent with our previous results, miR-622 selectively pulled down Ku70 and Ku80 transcripts, but not the 53BP1 transcript (Figure 3C). To verify further that Ku70 and Ku80 are targets of miR-622 and confirm that the interaction is mediated by the predicted MREs, we used luciferase reporter assays. The predicted MREs (Figure 3D) were cloned in the 3' UTR of the luciferase gene, and expression was monitored in cells transfected with the miR-622 mimic (Figure 3E). As anticipated, there was significant decrease in luciferase activity, and expression was “rescued” by point mutations that disrupt base pairing between miR-622 and their corresponding

Figure 3. Identifying and Validating Targets of miR-622
(A and B) Expression of DNA damage response (DDR) genes is impacted by miR-622. UWB1.289 cells were transfected with control mimic or miR-622 mimic and mRNA levels of predicted DDR genes were analyzed by real-time qPCR using gene-specific primers and normalized to GAPDH (A). Cell lysates were then analyzed by immunoblot for factors that had statistically significant reduction in mRNA in cells transfected with miR-622 (B). Images were quantified by ImageJ software and the mean ± SD of three independent experiments is graphically shown.

(C) Interaction of target transcripts with miR-622. UWB1.289 cells were transfected with biotinylated-control mimic or biotinylated miR-622 mimic. The immunoprecipitated RNA was analyzed by real-time qPCR using gene-specific primers and normalized to GAPDH.

(D) Predicted MREs were obtained from PITA algorithm (http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html) and their mutants were generated by mutating nucleotides providing complementarity to miR-622. CDS (coding sequence) means the region in the gene where the MRE is located.

(E) Luciferase reporter assay to assess direct interaction of miR-622 with target genes. Individual or combinations of predicted miRNA recognition sites (MREs) for each putative target transcript of miR-622 were cloned into the luciferase reporter vector and transfected in UWB1.289 cells along with miRNA mimics. Renilla luciferase activity of the reporter was measured 48 hr after transfection by normalization to an internal firefly luciferase control.

(F) Luciferase reporter assay for wild-type or mutant MREs for miRNA-622 targets was performed as described in Figure 2I. Mean ± SD of three independent experiments is shown and statistical significance is indicated by *p < 0.05.
MREs in Ku70 and Ku80 (Figure 3F). Together, these results suggest that miR-622 regulates the expression of the Ku complex by direct interaction with Ku70 and Ku80 transcripts.

miR-622 Causes Resistance to PARP Inhibitor and Cisplatin by Downregulating Expression of the Ku Proteins

We examined the impact of Ku downregulation (using small interfering RNAs [siRNAs]) or inhibition (dominant-negative Ku; He et al., 2007) on olaparib and cisplatin sensitivity in parallel with miR-622 overexpression in UWB1.289 cells (Figure 4A) and in Brca1^{-/-} MEFs (Figure 4B). We observe that depletion/inhibition (efficacy of siRNAs shown in Figure S4) of the Ku complex and overexpression of miR-622 have a comparable effect on de-sensitizing BRCA1-deficient cells to both olaparib and cisplatin. To determine whether the effect of miR-622 on olaparib and cisplatin sensitivity was indeed mediated by Ku suppression, we utilized mouse Ku70 cDNA and rat Ku80 cDNA that lack miR-622 MREs. Next, UWB1.289 cells were co-transfected with miR-622 and mouse Ku70 cDNA or rat Ku80 cDNA. The Ku expression constructs lacking the miR-622 MREs rescued the expression of these genes in the presence of miR-622 mimic, further validating the predicted MREs (Figure 4C, right). Furthermore, individual
Physiological Relevance of miR-622-Mediated Suppression of the Ku Complex

To explore the physiological relevance of the interactions of miR-622 with Ku70 and Ku80 transcripts, we assessed their expression during the cell cycle, specifically during the G1 to S transition. When synchronizing UWB1.289 cells (profiles shown in Figure S5A), we observe that mRNA levels of Ku70 and Ku80 are reduced in S phase relative to G1 phase (Figure 5A). Interestingly, miR-622 inversely correlates with Ku70 and Ku80 transcripts and is significantly upregulated as cells move into S phase. Antagonizing miR-622 induces a specific increase in Ku70 and Ku80 transcripts (Figure 5B) in S phase. To further confirm the cell-cycle phase specificity of this phenomenon while avoiding the artifacts of synchronization, and in a diploid cell line (RPE-1) cells. The G1 cells and S/G2 phases were separated and isolated using fluorescence-activated cell sorting (FACS) selection. Consistent with the previous results, miR-622 expression inversely correlated with the Ku70 and Ku80 transcripts (Figure 5C) and inhibition of miR-622 in RPE-1 caused a significant increase in Ku70 and Ku80 transcripts in S phase (Figure 5D). To further elucidate the cell-cycle-based impact of miR-622 on the Ku proteins, we utilized luciferase assays (as in Figure 3). We confirmed that antagonizing endogenous miR-622 in S phase significantly increases luciferase activity of constructs with miR-622 recognition elements in the Ku70 and Ku80 transcripts, and this was negated by point mutations that disrupt base pairing between miR-622 and their corresponding binding sites in these transcripts (Figure S5B).

Recruitment of the MRN (Mre11-Rad50-Nbs1) complex is the first step in HR. From a functional standpoint, there is a competitive interplay between the Ku complex and the MRN complex (Galestrini et al., 2013; Foster et al., 2011). Specifically, the overexpression of Ku proteins reduces recruitment of Mre11 to DSBs in S/G2 phase when HR is the preferred DSB repair pathway (Clerici et al., 2009). Therefore, we examined the Mre11 foci during S phase in irradiated cells transfected with miR-622 antagonimers. Consistent with increased Ku levels, antagonizing miR-622 causes a significant decrease in Mre11 foci (Figure 5E). Furthermore, the subsequent step in HR, which is the resection of broken DNA ends and RPA2 foci formation, is also reduced by antagonizing miR-622 (Figure 5F). Importantly, antagonizing miR-622 does not impact the ionizing radiation (IR)-induced generation of DSBs (monitored by γ-H2AX; Figures 5E and 5G). Together, these results strongly suggest that miR-622 plays a role in the optimal expression of the Ku complex during the cell cycle and potentially facilitates the initiation of HR-mediated DSB repair in S phase.

DISCUSSION

There is tight regulation of the DSB repair pathways during the cell cycle as HR is restricted to S/G2 phase and NHEJ is predominant in G1 but has moderate activity throughout the cell cycle. Importantly, the choice of DSB repair pathways during the cell cycle is critical for maintaining genomic stability. A decisive factor in this choice is the competition between DNA end protection (which is necessary for NHEJ) and DNA end resection (which is necessary for HR). Depletion of end-protecting factors (such as 53BP1) allows DNA end resection in G1 phase, thereby impairing NHEJ and causing genomic instability (Helmink et al., 2011; Escribano-Diaz et al., 2013). Conversely, ectopic expression of BRCA1 in G1 phase via the inhibition/deletion of miRNAs suppressing BRCA1 also allows DSB end resection, leading to unrepaired DSBs (Choi et al., 2014; Dimitrov et al., 2013). During the S/G2 phase of the cell cycle, the relatively error-free HR pathway is preferred, and NHEJ needs to be restricted. The mechanism via which the NHEJ pathway is restricted in S phase remains unknown. Here, we uncover regulation of this step by miR-622. We find that miR-622 plays an important role in maintaining the balance between HR and NHEJ repair pathways during the cell cycle by regulating optimal expression of the Ku complex. The Ku complex is pivotal in pathway choice, as it competes with the MRN complex to capture broken DSB ends and divert it toward the C-NHEJ pathway. miR-622 suppresses NHEJ through targeting of the Ku complex during S phase and enhances initiation of HR-mediated DSB repair in S phase by facilitating the recruitment of Mre11. Therefore, ectopic overexpression of miR-622 can limit NHEJ and boost the HR pathway.

Another important finding of our study is that this role for miR-622 in maintaining a balance between DSB repair pathways may mediate resistance to PARPi and platinum agents in BRCA1-inactivated tumors. Elucidating mechanisms of platinum and PARPi resistance in BRCA1-deficient EOCs is critical in order to identify approaches that suppress de novo and emerging resistant clones. Pharmacological effects that alter the cellular response to PARPi, including increased expression of ABC transporters such as the P-glycoprotein (Pgp) efflux
pump, have been associated with PARPi resistance in BRCA1-mutated breast and ovarian cancer, but their clinical relevance for platinum resistance remains unclear. Furthermore, although a number of resistance mechanisms have been described (Konstantinopoulos et al., 2015), only secondary BRCA1/2 mutations restoring BRCA1/2 protein functionality have been validated in multiple EOC patient cohorts. It is noteworthy that most of these models systems have not investigated ovarian carcinomas, thereby undermining their clinical relevance. In this regard, our study highlights a mechanism of PARPi resistance in BRCA1-deficient EOC patients involving miR-622 overexpression and represents an extension of its physiological role in maintaining the balance of DSB repair pathways. Importantly, unlike 53BP1 loss, which confers only PARPi resistance, this resistance mechanism confers resistance to both platinum and PARPis. Although miRNA expression has been recently implicated in mediating HR deficiency and response to platinum and PARPis (Liu et al., 2015), we implicate a miRNA in doing exactly the opposite, i.e., mediating PARPi and platinum resistance by rescuing HR deficiency.

Figure 5. Impact of miR-622 on DSB Repair during the Cell Cycle

(A–D) Expression of miRNA and target transcripts in synchronized cells. (A) UWB1.289 cells were synchronized with mimosine, and the relative amount of miR-622 or target mRNA for G1 or S phase was determined by real-time qPCR (normalized to RNU1). (B) UWB1.289 cells were transfected with control ANT or miR-622 ANT and subsequently synchronized with mimosine. Expression of target mRNA was assessed by real-time qPCR in G1 and S phases (normalized to GAPDH). (C) RPE1 Fucci cells were sorted according to cell-cycle-based fluorophore expression, and the relative amount of miR-622 or target mRNA for G1 or S phase was quantified by real-time qPCR. (D) RPE1 Fucci cells were transfected with control ANT or miR-622 ANT and sorted for the cell cycle. Expression of target mRNA was assessed by real-time qPCR in G1 and S phases. Mean ± SD of three independent experiments is shown, and statistical significance is indicated by *p < 0.05.

(E–G) Impact of miR-622 inhibition on recruitment of DSB proteins. RPE1 Fucci cells were transfected with control ANT or miR-622 ANT and irradiated with 5 Gy IR (for γH2AX and Mre11, 3 hr after IR) or 10 Gy (for RPA2, 4 hr after IR). Cells were stained for Mre11 (red), RPA2 (red), or γH2AX (red) (G) and 4′,6-diamidino-2-phenylindole (blue). The images were captured by fluorescence microscopy, and Mre11, RPA2, or γH2AX focus-positive cells (with >20 foci or >50 foci) at S phase (green) were quantified by comparing 100 cells.
Strikingly, the clinical relevance of this resistance mechanism was evident in two different ovarian cancer datasets whereby overexpression of miR-622 was associated with an inferior outcome after platinum chemotherapy in BRCA1-inactivated tumors. Of note, the expression of miR-622 was also inversely correlated with protein and mRNA expression levels of Ku80, thereby clinically validating our experimental observations that the association of miR-622 with worse outcome may indeed be related to its targeting of the Ku complex. In conclusion, our work suggests a role for miR-622 in regulating the balance between HR and NHEJ in the cell cycle and highlights the potential role of this miRNA as a biomarker of responsiveness to platinum and PARPis in BRCA1-inactivated EOCs. Furthermore, miR-622 may be a promising target for augmenting PARPi and platinum response in BRCA1-inactivated EOCs.

EXPERIMENTAL PROCEDURES

Viability Assay
Viability assays were done as previously described (Choi et al., 2014).

Ovarian Cancer Datasets and Statistical Analysis
The association between miR-622 expression levels and outcome (OS and DFS) was assessed in two clinically annotated ovarian cancer datasets with miRNA expression data. First, we accessed expression data from the ovarian TCGA dataset, which included 38 tumors with BRCA1-mutations (out of 316 EOCs that underwent whole-exome sequencing) and 51 tumors (out of 489 tumors with DNA promoter methylation data) with BRCA1 epigenetic silencing via promoter hypermethylation. Promoter hypermethylation was assessed using the same criteria described in the ovarian TCGA dataset publication. The second dataset included expression data from 60 patients with newly diagnosed FIGO stage III or IV tumors, all with serous histology (Shih et al., 2011). The t test and Fisher's exact test were used to analyze the clinical and experimental data. The correlation between miR-622 and Ku80 expression levels was assessed using the Pearson’s correlation coefficient. Significance was defined as a p < 0.05; all reported p values are two sided. OS and DFS curves were generated using the Kaplan-Meier method, and statistical significance was assessed using the log-rank test.

Non-homologous End-Joining Reporter Assay
NHEJ reporter assays were done as the HR assays previously described. (Choi et al., 2014) by using U2OS cells carrying a single copy of the recombination substrate with two tandem l-SceI sites.

Chromosome Breakage Analysis
Brca1-/- MEF cells were transfected with indicated miRNA mimics for 24 hr followed by treatment with or without the indicated concentrations of PARPi (olaparib) for 24, 48, or 72 hr. Cells were exposed to 100 ng/ml Colcemid for 2 hr followed by treatment with a hypotonic solution (0.075 M KCl) for 20 min and fixed in 3:1 methanol/acetonic solution. Slides were stained with Wright’s stain, and ≥50 metaphase spreads were scored for aberrations.

Immunofluorescence
Immunofluorescence in UWB1.289 and RPE1 Fucci cells was done as previously described (Lee et al., 2010) using RAD51 (Santa Cruz Biotechnology #sc-8349), γ-H2AX (Cell Signaling #9718S), RPA2 (Abcam #ab2175), and Mre11 (Novus Biologicals #NB100-142).

RNA Isolation and Real-Time qPCR
Total RNA was prepared and expression was analyzed by real-time qPCR as described previously (Moskwa et al., 2011).

Gene-specific primers used for real-time qPCR are as follows:

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>53BP1-F-1</td>
<td>5'-CTCAGTTATGGCAATTTCCACGCT-3'</td>
</tr>
<tr>
<td>53BP1-F-2</td>
<td>5'-AGGATGAGAGCACCATGAC-3'</td>
</tr>
<tr>
<td>ACTGCAAC</td>
<td>5'-TATCGCTTGGG</td>
</tr>
<tr>
<td>KU70-F-1</td>
<td>5'-GGAGTATGCTCCCAAAAGCTATG-3'</td>
</tr>
<tr>
<td>KU70-F-2</td>
<td>5'-AAATTCAAGGTAGATCTCCAG-3'</td>
</tr>
<tr>
<td>CAGGAC</td>
<td>5'-TGAATGGCTGCTG</td>
</tr>
<tr>
<td>KU80-F-1</td>
<td>5'-GAATTTCAAAAGCAAGAGGTTCT-3'</td>
</tr>
<tr>
<td>KU80-F-2</td>
<td>5'-TGGGAGCAGTTTGGATGAG-3'</td>
</tr>
<tr>
<td>KU80-MRE1+2-F, R-1</td>
<td>5'-ATGGTGGGAAACCATGAC-3'</td>
</tr>
<tr>
<td>MRE1</td>
<td>5'-TTCGAAAGCAATGAATAAAAGACTGGGAA</td>
</tr>
<tr>
<td>MRE2</td>
<td>5'-GGCGCCCGACTCTTTCGTTTCTTCTTCTTCTTCTT</td>
</tr>
<tr>
<td>KU70-MRE1+2-F, R-2</td>
<td>5'-GGCGCCCGACTCTTTCGTTTCTTCTTCTTCTTCTTCTT</td>
</tr>
<tr>
<td>Mutant KU80-MRE1+2-F, R-2</td>
<td>5'-GGCGCCCGACTCTTTCGTTTCTTCTTCTTCTTCTTCTT</td>
</tr>
</tbody>
</table>

ImmunobLOTS
ImmunobLOTS were done as previously described (Lee et al., 2010; Moskwa et al., 2011) by using U2OS cells carrying a single copy of the recombination substrate with two tandem l-SceI sites.

Immunoprecipitation of miRNA Targets
Immunoprecipitation of miRNA target with biotinylated miR-622 was done with UWB1.289 cells as previously described (Choi et al., 2014).
Fucci cells were sorted using BD FACSAria based on fluorophore expression according to the cell cycle (RFP, G1 phase; GFP, S/G2/M phase).

miRNA Target Prediction
We used a candidate-based prediction approach by using PITA (http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html) to analyze the Human DNA Repair Gene list (http://sciencepark.mdanderson.org/labs/wood/dna_repair_genes.html#Human%20DNA%20Repair%20Genes), which resulted in a list of DNA damage response genes predicted as targets of miRNAs of our interest. Predicted targets are listed in Figure S2 and further validated as explained in this article.

SUPPLEMENTAL INFORMATION
Supplemental Information includes five figures and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.12.046.

ACKNOWLEDGMENTS
D.C. is supported by grants R01 AI101897-01 (NIAID) and R01CA142698-07 (NCI), a Basic Scholar Grant (American Cancer Society), a Leukemia and Lymphoma Society Scholar Grant, the Claudia Adams Bar Program for Innovative Cancer Research, a Breast SPORE Pilot Award, the Robert and Deborah First Fund, and the Mary Kay Foundation. P.A.K. is supported by the Susan Smith Center for Women’s Cancers and a Department of Defense Ovarian Cancer Academy Award (W81XWH-10-1-0585). The Brca1Δ/Δ MEFs were a gift from Andre Nussenzweig, and NHEJ reporter construct was a gift from Jeremy Stark.

Received: September 28, 2015
Revised: November 19, 2015
Accepted: December 4, 2015
Published: January 7, 2016

REFERENCES

