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SUMMARY

There is a lack of effective predictive biomarkers to
precisely assign optimal therapy to cancer patients.
While most efforts are directed at inferring drug
response phenotype based on genotype, there is
very focused and useful phenotypic information to
be gained from directly perturbing the patient’s living
cancer cell with the drug(s) in question. To satisfy this
unmet need, we developed the Dynamic BH3 Pro-
filing technique to measure early changes in net
pro-apoptotic signaling at the mitochondrion (‘‘prim-
ing’’) induced by chemotherapeutic agents in cancer
cells, not requiring prolonged ex vivo culture. We find
in cell line and clinical experiments that early drug-
induced death signaling measured by Dynamic BH3
Profiling predicts chemotherapy response across
many cancer types and many agents, including com-
binations of chemotherapies. We propose that
Dynamic BH3 Profiling can be used as a broadly
applicable predictive biomarker to predict cytotoxic
response of cancers to chemotherapeutics in vivo.

INTRODUCTION

A fundamental challenge across medicine is to assign to a pa-

tient the drug or combination of drugs that will be of greatest

benefit. In oncology, this choice has historically been driven by

the anatomic location and histology of the tumor. Later, thera-

peutic decision-making was assisted by immunohistochemistry,

cytogenetics, and flow cytometric analysis of cell surface anti-

gens. In more recent years, there are examples where gene

expression signatures and specific genetic alterations have

been essential to therapeutic decisions (Chapman et al., 2011;

Paez et al., 2004). However, true personalization of therapy re-

mains an elusive goal in most cases. In all too many cases, can-

cer patients show little benefit from therapy. Moreover, it is likely

that many tumors have unrecognized sensitivity to agents for

which there is simply no useful predictive biomarker to inform

therapy decisions (Garraway and Jänne, 2012; Haibe-Kains

et al., 2013). In this era of growing therapeutic options, there is
a comparable growing need for predictive biomarkers (Sawyers,

2008; Yaffe, 2013).

A feature common to nearly all of the biomarkers in use or in

development in oncology is that they are studies performed

on dead cancer cells. They are attempts to predict cancer cell

behavior based on detailed analysis of components of the cell,

such as DNA, RNA, or proteins (Barretina et al., 2012). In some

cases, abnormalities in single genes are studied. There are spec-

tacular examples of success with this approach, such as the use

of EGFR mutations to guide treatment with EGFR inhibitors in

lung cancer (Paez et al., 2004), BRAF mutations to guide treat-

ment with vemurafenib in melanoma (Chapman et al., 2011), or

cKITmutations to guide treatment with imatinib in GIST (Joensuu

et al., 2001). However, most drugs in development or approved

for cancer lack a simple genetic predictor, which impedes their

clinical development (Sikorski and Yao, 2010). One popular

approach to this problem is to identify signatures based on

huge amounts of information based on genomes, transcrip-

tomes, or proteomes (Barretina et al., 2012; Garraway and

Jänne, 2012). These strategies are relatively early in develop-

ment and their power remains to be seen. Despite the abun-

dance of information these strategies provide, they still share a

weakness: they are all studies of dead cancer cells. They lack

a measure of cancer cell function or response to perturbation.

Studies of complex systems in and out of biology are often

greatly augmented by observations of responses to strategic

perturbations. Here, we present results of strategic perturba-

tions of cancer cells with drugs and their mitochondria with pep-

tides in a strategy we call Dynamic BH3 Profiling (DBP).

DBP interrogates the BCL-2 family of proteins that regulates

commitment to themitochondrial pathway of apoptosis, the pro-

gram of cell death that is commonly used by cancer cells in

response to most chemotherapeutic agents. The BCL-2 family

of proteins controls mitochondrial outer membrane permeabili-

zation (MOMP) (Certo et al., 2006; Chipuk et al., 2010). The

effector proteins BAX and BAK, when activated, oligomerize to

form pores in the mitochondrial outer membrane that induce

release of cytochrome c and the loss of mitochondrial trans-

membrane potential, as well as release of SMAC/DIABLO and

other proteins that trigger apoptosome formation, caspase acti-

vation, and finally apoptosis (Kluck et al., 1997; Wei et al., 2001).

These effector proteins can be activated by the BH3-only

proteins BIM and BID (and perhaps PUMA), also known as
Cell 160, 977–989, February 26, 2015 ª2015 Elsevier Inc. 977

mailto:anthony_letai@dfci.harvard.edu
http://dx.doi.org/10.1016/j.cell.2015.01.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2015.01.042&domain=pdf


gefitinib

WZ4002

CI-1040

WZ4002 + CI-1040

ΔΔ  % priming

Δ
%

C
el

lD
ea

th

10 20 30 40
0

20

40

60

80

100

Spearman r 0.82
95% confidence interval 0.46 to 0.95

P value (two-tailed) 0.001

Cell Death 72h
PC9

Bcl-xL

Actin

ctrl gefitinib

PARP

 WZ
4002

PC9GR PC9WZR

Bim

Bcl-2

WZ4002
+CI-1040

A

B D

C

0

10

20

30

40

50

60

Δ
%

 p
ri

m
in

g

0

10
20

30

40

50

60

70

80
90

100

Δ
%

 C
e

ll 
D

e
a

th

PC9 PC9GR PC9WZR

Dynamic BH3 Profiling 16h

Patient’s biopsy

 Exposure to 
treatments 

Kinetic trace analysis

 Single Cell 
Suspension 

0
10
20
30
40
50
60
70
80
90

100
Δ

%
 p

ri
m

in
g
Effective 

treatments
Non- effective 

treatments
1 2
6 3
10 4

5
7
8
9

Peptide
exposure

1 2 3 4 5 6 7 8 9 10
Treatments 

Cell line 
OR 

Permeabilization 
and JC-1 staining

Fl
uo

re
sc

en
ce

 
59

0 
nM

 (R
FU

)

Time / min

0

10

20

30

40

50

60

70

Non-treated Treatment 1

%
 D

ep
ol

ar
iza

tio
n 

(A
re

a 
Un

de
r t

he
 C

ur
ve

)

Negative ctrl

Non-treated
Positive ctrl

Treatment 1

25,000

20,000

15,000

10,000

5,000

0

Δ

Data
Transformation

Treatment 
comparison  % primingΔ

E

0 50 100
0

50

100

100% - Specificity%

S
en

si
tiv

it
y

%

Area under the ROC curve
Std. Error
95% confidence interval
P value

1.00
0.0

1.00 to 1.00
0.004

PC9 PC9GR PC9WZR

ctrl gefitinib  WZ
4002

WZ4002
+CI-1040

ctrl gefitinib  WZ
4002

WZ4002
+CI-1040

(legend on next page)

978 Cell 160, 977–989, February 26, 2015 ª2015 Elsevier Inc.



activators (Sarosiek et al., 2013). Both effectors and activators

can be inhibited by the anti-apoptotic members of the family,

including BCL-2, BCL-XL, MCL-1 and others (Certo et al.,

2006). There is a fourth group of proteins, called sensitizers

(comprising proteins like BAD, BMF, NOXA, HRK, and others)

that by themselves are not able to induce BAX and BAK oligo-

merization but instead selectively inhibit the anti-apoptoticmem-

bers of the family, thus indirectly promoting MOMP (Letai et al.,

2002). The BH3 domain is a roughly 20-amino acid amphipathic

alpha helix that is necessary for most of the hetero-dimeric

interactions of BCL-2 family proteins that regulate apoptosis.

Synthetic BH3 domain oligopeptides can execute most of the

pro-apoptotic functions of pro-apoptotic BCL-2 family proteins

(Certo et al., 2006).

BH3 peptides are thus a convenient, titratable reagent that can

be exploited to systematically study mitochondrial readiness to

undergo apoptosis. This understanding of the BCL-2 family of

proteins and their interactions allowed the development of the

BH3 profiling technique (Ryan et al., 2010) that identifies cancer

cells’ selective dependence on anti-apoptotic proteins, and also

measures overall apoptotic sensitivity or ‘‘priming for death’’

(Deng et al., 2007a). ‘‘Priming’’ is a measure of how close a cell

is to the threshold of apoptosis. Procedurally, priming corre-

sponds to the sensitivity of mitochondria to BH3 peptides. The

more sensitive mitochondria are to BH3 peptides, the more

primed they are. We have previously found that the state of

‘‘priming’’ prior to therapy was an excellent predictor of chemo-

therapeutic response in vivo (Ni Chonghaile et al., 2011; Vo et al.,

2012). Differences in priming between cancer cells and normal

tissues also provide an explanation for the therapeutic index of

conventional chemotherapeutic drugs that target ubiquitous ele-

ments such as DNA and microtubules.

Themain principle of DBP is to expose cancer cells to short in-

cubations with drugs of interest and measure whether the drug

exposure induces an increase in priming compared to an un-

treated control. In this paper we use DBP to test the hypothesis

that early death signaling predicts cytotoxicity, even when the

cell death does not occur until days after the death signaling is

measured. Our results support the model that initiation of death

signaling is the main regulator of eventual commitment to cell

death. Moreover, we show that we can perform these measure-

ments on primary patient cancer cells in a way that predicts clin-

ical response to therapy.
Figure 1. DBP Predicts Chemotherapy Sensitivity in PC9 Cell Lines

(A) To perform DBP we obtain a single cell suspension from a cell line or a primary

After this incubation, we permeabilize, stain with the fluorescent dye JC-1 and e

polarization andMOMP, the ultimate event that triggers apoptosis. By comparing

for each agent and identify which are most effective to induce apoptosis in that

ex vivo culture.

(B) DBP was performed on three different PC9 cell lines: parental PC9, PC9GR (ge

resistant, T790M mutation present), using a 16 hr incubation of: gefitinib 1 mM, W

expressed as D%priming (increase in priming compared to non-treated cells). Va

performed (n R 3).

(C) Cell death measurements at 72 hr for the same cell lines under the same treatm

on cell death or D% cell death, compared to non-treated cells. Values indicate

(n R 3).

(D) Plot showing correlation between D% priming at 16 hr and D% cell death at

(E) Western blot analysis, showing changes in the BCL-2 family of proteins. See
RESULTS

DBP Predicts Chemotherapy Sensitivity in Non-Small
Cell Lung Cancer Cell Lines
Our strategy rests upon the hypothesis that it is the initiation of

death signaling that distinguishes cells destined to be killed by

an agent from those destined to survive.

We therefore rigorously tested the hypothesis that measure-

ment of early death signaling by DBP (Figure 1A) could predict

a cytotoxic response that did not occur until several days later.

We first used non-small cell lung cancer (NSCLC) cell lines

derived from PC9. This cell line has an exon 19 deletion in the

EGFR gene rendering it sensitive to EGFR-specific tyrosine

kinase inhibitors (TKI) like erlotinib or gefitinib. PC9GR was

obtained by continuously exposing PC9 to increasing concen-

trations of gefitinib (Ercan et al., 2010), selecting for a T790Mmu-

tation in EGFR that renders it non-sensitive to gefitinib but still

sensitive to the mutant selective EGFR TKI WZ4002 (Zhou

et al., 2009). A third cell line, PC9WZR, was similarly selected

for resistance to WZ4002. It possesses an EGFR T790M muta-

tion and a MAPK1 amplification conferring resistance to both

gefitinib and WZ4002. However, PC9WZR is sensitive to the

combination of WZ4002 with the MEK inhibitor CI-1040, by

completely blocking the MAPK pathway (Ercan et al., 2012).

This set of cell lines provided a useful initial model of differential

sensitivity to targeted therapies upon which to test our strategy.

We performed DBP on each of the cell lines using a 16 hr

treatment with gefitinib, WZ4002, CI-1040 or the combination

WZ4002 plus CI-1040. Sixteen hours was chosen after empiri-

cally testing 4, 8, 16, 24, and 48 hr as it was the earliest time point

that reliably provided a significant change in priming in PC9

cells treated with gefitinib. After testing several BH3 peptides,

including BIM, HRK, and PUMA BH3, we found that BIM BH3

concentrations of 0.3 and 1 mM provided the most useful dy-

namic range (Figure 1 and Figure S1). Drug concentrations

were chosen based on our and others’ prior experience and

the dose required for a complete blockade of theMAPK pathway

(Ercan et al., 2012; Ercan et al., 2010). We observed an increase

in priming induced in PC9 by gefitinib, WZ4002 and WZ4002 +

CI-1040, as shown by the increase in BIM BH3-induced

mitochondrial depolarization (D% priming). In PC9GR cells,

WZ4002, but not gefitinib, increased priming. In PC9WZR cells,

only the WZ4002 + CI-1040 increased mitochondrial priming
sample, and we expose the cells to the different drug treatments to be tested.

xpose the cells to different BH3 peptides that will promote mitochondrial de-

the non-treated cells with the treated ones, DBP will determine the D%priming

particular sample. All this analysis is performed in less than 24 hr, minimizing

fitinib resistant, T790Mmutation present), and PC9WZR (gefitinib andWZ4002

Z4002 100 nM, CI-1040 3 mM (MEK inhibitor), and WZ4002+CI-1040. Results

lues indicate mean values ± SEM, at least three independent experiments were

ents by FACS using Annexin V/PI staining. Results are expressed as increase

mean values ± SEM, at least three independent experiments were performed

72 hr. ROC curve analysis at right.

also Figures S1, S2 and S3.
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(Figure 1B). We next measured cell death at 72 hr for the same

cell lines following the same treatments using FACS analysis of

Annexin V and propidium iodide (PI) staining (Figure 1C). When

we compared D% priming and D% cell death, we observed an

excellent correlation between both measurements (Figure 1D.

left). The receiver operating characteristic (ROC) was also excel-

lent, performing perfectly in this small number of tests (Figure 1D,

right). Note that DBP was performed at 16 hr when no significant

cell death was evident, whereas cell death was analyzed more

than 2 days later (Figure S2). Thus, the early priming increase

measured by DBP provided accurate, drug-specific predictions

about cytotoxicity even though the death took place days later.

DBP should only be predictive if the mitochondrial apoptosis

pathway is being engaged. To confirm this engagement, we

analyzed PARP cleavage, as well as levels of BIM, BCL-2,

and BCL-XL proteins following 24 hr of drug treatment. When

cytotoxicity was observed, PARP cleavage was detected. In

addition, cytotoxicity correlated with either increases in BIM, de-

creases in anti-apoptotic proteins, or a combination of both

effects, supporting the simultaneous participation of multiple

BCL-2 family proteins in the determination of cell fate (Deng

et al., 2007b; Faber et al., 2011) (Figure 1E).

In order to determine if this predictive capacity of DBP could

be generalized to other NSCLC models, we treated six different

NSCLC cell lines with gefitinib, WZ4002, AZD6244 (MEK inhi-

bitor), BEZ235 (PI3K/mTOR inhibitor), and the combination

AZD6244 + BEZ235, that was previously described to treat mu-

rine lung cancers harboring the KRas G12D mutation (Engelman

et al., 2008; Faber et al., 2009). We chose drug concentrations

that had previously demonstrated in vitro cytotoxicity. Again,

we compared the priming increase measured by DBP after

16 hr of treatment with cell death observed at 72 hr (Figure S3A).

Some of the cell lines analyzed had a tendency to show less

cytotoxicity than would be expected by DBP for a few drugs. It

is possible that measurement of cell death at longer time points

would reduce such disagreements. Nonetheless, we observed a

significant correlation between D% priming and D% cell death

when all cell lines and treatments were considered (Figure S3B).

To assess if DBP provided a useful binary predictor of cytotox-

icity, we performed ROC curve analysis (Pencina et al., 2008).

Typically, a random classifier would present an AUC of 0.5, while

a perfect classifier would have a AUC of 1. In this case, the area

under the ROC curve is 0.895 (Figure S3C), comparing favorably

with the ROC performance of many clinically used predictors

(Burstein et al., 2011).

Note that this analysis relies not simply on measurements of

the baseline priming but rather on the degree to which drugs in-

crease priming from that baseline.

DBP Predicts Cytotoxicity in Breast Cancer Cells
To test the generalizability of our hypothesis in a different type of

cancer, we performed a similar set of experiments with five

different human breast cancer cell lines treated with gefitinib, la-

patinib (HER2 inhibitor), MK-2206 (AKT inhibitor), AZD6244 (MEK

inhibitor), BEZ235 (PI3K/mTOR inhibitor), dinaciclib (SCH

727965, CDK inhibitor), ABT-888 (PARP inhibitor), and the com-

bination AZD6244 + BEZ235, as previously described (Faber

et al., 2009). Againwe observed a significant correlation between
980 Cell 160, 977–989, February 26, 2015 ª2015 Elsevier Inc.
D% priming after 16 hr of treatment and D% cell death at 96 hr

(Figures 2A and 2B). The area under the ROC curve for this set

of cell lines is 0.93 (Figure 2C), thus objectively DBP is an excel-

lent binary predictor for breast cancer cell lines’ response to

chemotherapy.

Selecting the Optimal Kinase Inhibitor Using Dynamic
BH3 Profiling
In clinical practice, an important application of a potentially

powerful, widely applicable predictive biomarker would be to

choose from among a panel of possible therapies (Sawyers,

2008). This is the central goal of what is currently commonly

termed ‘‘precision medicine.’’ We hypothesized that if we could

compare the death signaling induced by several different agents

in a cancer cell, we could pick the ones that would work best. To

test this principle, we selected ten different cancer cell lines,

chosen simply by variety and availability. For drugs, we chose

nine kinase inhibitors, for their diversity of targets and known

in vivo activity. We chose kinase inhibitors because of their

known use of the mitochondrial apoptotic pathway to kill cancer

cells (Bhatt et al., 2010; Faber et al., 2011). Our question was,

among these diverse cell lines and drugs, could DBP at an early

time point be used to make individualized choices of the drugs

most likely to kill each cancer cell line.

For this purpose we selected drugs targeting either key mem-

brane receptor tyrosine kinases like gefitinib (EGFR inhibitor), im-

atinib (ABL inhibitor), lapatinib (HER2 inhibitor), PD173074 (FGFR

inhibitor), and TAE684 (ALK inhibitor) or important intracellular

serine/threonine kinases including MK-2206 (AKT inhibitor),

PLX4032 (BRAFV600E inhibitor), AZD6244 (MEK inhibitor), and

BEZ235 (PI3K/mTOR inhibitor). All of the compounds tested pre-

viously demonstrated cytotoxicty in cancer cell lines and/or mu-

rine cancer models, including hematological malignancies (Bhatt

et al., 2010) and solid tumors (Maertens et al., 2013). We tested

the panel of kinase inhibitors on several human hematological

cancer cell lines: K562 (chronic myelogenous leukemia or

CML), DHL6 (diffuse large B-cell lymphoma), LP1 (multiple

myeloma), DHL4 (diffuse large B-cell lymphoma) and AML3

(acute myelogenous leukemia). First, we performed DBP after

16 hr exposure to the different treatments (Figure 3A). We

compared the DBP results to cell death achieved at 72 hr, ex-

pressed as D% cell death (Figure 3A). Each cell line demon-

strated a distinct pattern of drug induced priming increase, a

distinct fingerprint of pathway addiction just as there was a

distinct pattern of cytotoxic response to the drug panel. Most

importantly for our question, however, there was an excellent

correlation of DBP with cytotoxicity days later (Figure 3B). For

this set of hematological cell lines, predictive power of DBP

was demonstrated by an AUC of the ROC curve of 0.83 (Fig-

ure 3C). Note that DBP identified the agent causing greatest

cytotoxicity in four out of five cell lines. In the one exception,

LP-1, there was little cytotoxicity induced by any of the drugs.

We next examined the predictive capacity of DBP with several

diverse human solid tumor cell lines: MCF7 (breast cancer), PC9

(non-small cell lung cancer), SK-MEL-5 (melanoma), HCT116

(colon carcinoma) and MDA-MB-231 (breast cancer). We

exposed the cells to the different treatments for 16 hr and per-

formed DBP (Figure 4A), comparing it with the cell death
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Figure 2. DBP Predicts Chemotherapy Sensitivity in Breast Cancer Cell Lines

(A) DBP was performed in five breast cancer cell lines: BT20, HCC1954, SKBR3, T47D, and HCC2218 showing different pattern of response to the treatments

tested (16 hr incubation): (1) gefitinib 1 mM, (2) lapatinib 1 mM, (3) MK-2206 1 mM, (4) AZD6244 1 mM, (5) BEZ235 1 mM, (6) dinaciclib 10 nM (SCH 727965), (7) ABT-

888 5 mM and the combination (8) AZD6244 + BEZ235. Results expressed as D% priming (increase in priming compared to non-treated cells). Values indicate

mean values ± SEM, at least three independent experiments were performed (n R 3). Cell death measurements at 96 hr for the same cell lines under the same

treatments by FACS using Annexin V/PI staining. Results are expressed as increase on cell death or D% cell death, compared to non-treated cells. Values

indicate mean values ± SEM, at least three independent experiments were performed (n R 3).

(B) Plot showing the significant correlation between D% priming at 16 hr and D% cell death at 96 hr.

(C) ROC curve analysis.
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Figure 3. Identifying the Optimal Treatment in Hematological Malignancies Using DBP

We selected several drugs targeting either key membrane receptors: (1) gefitinib 1 mM, (2) imatinib 1 mM, (3) lapatinib 1 mM, (4) PD173074 1 mM and (5) TAE684

1 mM; or important intracellular kinases: (6) MK-2206 1 mM, (7) PLX4032 10 mM, (8) AZD6244 1 mM and (9) BEZ235 1 mM, and we tested them with several human

hematological cancer cell lines: K562, DHL6, LP1, DHL4, and AML3.

(A) DBP (16 hr incubation) results expressed asD%priming and cell deathmeasurements at 72 hr using Annexin V/PI staining expressed asD%cell death. Values

indicate mean values ± SEM, at least three independent experiments were performed (n R 3).

(B) Plot showing the significant correlation between D% priming at 16 hr and D% cell death at 72 hr.

(C) ROC curve analysis shows AUC = 0.83.
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Figure 4. Identifying the Optimal Treatment in Solid Tumors Using DBP

We tested the same panel of kinase inhibitors on several human solid tumor cell lines: MCF7, PC9, SK-MEL-5, HCT116 and MDA-MB-231.

(A) DBP (16 hr incubation) results expressed asD%priming and cell death measurements at 72 or 96 hr (as indicated) using Annexin V/PI staining expressed as D

% cell death. Values indicate mean values ± SEM, at least three independent experiments were performed (n R 3).

(B) Plot showing the significant correlation between D% priming at 16 hr and D% cell death at 72/96 hr.

(C) The ROC curve analysis has an AUC = 0.96, indicating that DBP is an excellent binary predictor for chemotherapy response in solid tumor cell lines. See also

Figure S4.
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Figure 5. DBP Is a Good Binary Predictor for Cell Lines

(A) Compilation of Figures 1, 2, 3, 4 and S3 results, showing a significant

correlation between D% priming and D% cell death for all cell lines analyzed.

(B) The total area under the ROC curve is 0.89, indicating that is a good binary

predictor for chemotherapy response in all the cell lines and treatments tested.
observed at 72–96 hr (Figure 4A). In some cases, a 96 hr time

point was required due to slow kinetics of cytotoxicity. Similarly,

as observed for hematological malignancies, the different cell

lines responded differently to the drugs tested, but a significant

correlation between DBP and cytotoxicity was detected (Fig-

ure 4B). SK-MEL-5 was the only one sensitive to PLX4032, as ex-

pected for a BRAFV600E expressing melanoma cell line, but was

also sensitive to MEK (AZD6244) and PI3K/mTOR (BEZ235) inhi-

bition, correlating with the cell death detected three days later, at

96 hr. On the other hand, PC9, as shown previously (Figures 1 B

and 1C), responded to gefitinib (Ercan et al., 2010; Faber et al.,

2011) but also to lapatinib and TAE684; correlating with cell

death at 72 hr. For this set of solid tumor cell lines the AUC of

the ROC curve was 0.96 (Figure 4C). In three out of five cell lines,

DBP clearly predicted the most cytotoxic drug. In the other two

MCF7 and HCT116, there was nearly equal maximum response

of the same two drugs in both DBP and cytotoxicity.

Throughout this paper, we use loss of fluorescence from an in-

dicator compound, JC-1, that is sensitive to the electropotential

gradient across the inner mitochondrial membrane. We have

previously shown that this JC-1 signal provides a good surrogate

for permeabilization of the outer mitochondrial membrane (Ryan

et al., 2010). To verify that this surrogacy is maintained in DBP,
984 Cell 160, 977–989, February 26, 2015 ª2015 Elsevier Inc.
we compared measuring MOMP by JC-1 or by efflux of cyto-

chrome c as read on a flow cytometer (Ryan and Letai, 2013)

(Figure S4). Our results show good agreement between the

two techniques, supporting the use of JC-1 fluorescence as a

surrogate for MOMP in the context of DBP.

To test the generalizability of the principle that early drug-

induced priming changes predict eventual cytotoxicity across

a wide variety of both solid and liquid cancers and a wide variety

of agents, we combined the data of Figures 1, 2, 3, 4 and Fig-

ure S3. We observed that there is a significant correlation be-

tweenD%priming andD%cell death (Figure 5A). Note that liquid

tumors in general have a greater cytotoxic response per change

in priming, perhaps explained by the higher baseline mitochon-

drial apoptotic priming we observe in hematologic cancer cell

lines compared to solid tumor cell lines. In addition, the ROC

analysis suggests that DBP could be a good binary predictor

for cytotoxicity across a wide range of pathway inhibitors and

cancer, with an AUC for the ROC curve of 0.89 (Figure 5B). These

results suggest the most significant hurdle that must be cleared

for a drug to cause cytotoxicity is simply the initiation of death

signaling. Regardless of the pathway inhibited and regardless

of the cell of origin of the cancer, early drug-induced death

signaling predicts later cytotoxicity.

Choosing the Best Treatment among Several Options
A predictive biomarker can be used to identify the best therapy

among many treatment options for a single patient. To test the

ability of DBP to identify the most effective therapy among a

myriad of treatment options we turned to an allograft melanoma

model. Mouse melanomas harboring compound mutations in

Braf andNf1 readily grow as allografts and are resistant to selec-

tive BRAF inhibitors but sensitive to (combined) MEK/mTORC1

inhibition (Maertens et al., 2013). To ask whether DBP could

discriminate among the in vivo efficacy of several therapies on

the same tumor model, we exposed Braf/Nf1 mutant melanoma

cells to different targeted agents for 16 hr: PLX4720 (a PLX4032

analog that inhibits mutant BRAFV600E), PD0325901 (referred to

as PD-901, aMEK inhibitor), GDC-0941 (a PI3K inhibitor), and ra-

pamycin (an mTOR inhibitor), as single agents or in combina-

tion. Of all the treatments tested, PD-901 in combination with

rapamycin induced the greatest increase in priming (Figure 6A).

These findings correlate well with the preclinical data previously

generated using this tumor model (Figure 4C Maertens et al.,

2013). More specifically, of all (combination) therapies tested

in vivo, the PD-901/rapamycin combination caused the greatest

tumor shrinkage, as summarized in Figure 6B. Across all of the

treatments, we observed a significant correlation between DBP

results and the in vivo data obtained in the Braf/Nf1 mutant allo-

grafts (Figure 6C). These results suggest that DBP can be used

as a predictive biomarker to select among treatment options to

identify treatments that will provide best in vivo benefit.

Identifying the Best-Responding Patients to a Single
Therapy in a Patient Cohort
Predictive biomarkers can also be used to stratify likelihood of

response to a single therapy among many patients. This can

be described as a companion diagnostic use. Having thoroughly

supported the hypothesis that early death signaling detected by
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Figure 6. DBP Can Identify the Best In Vivo Treatment among

Several Options

Braf/Nf1 mutant melanoma cells were treated ex vivo with PLX4720 1 mM,

PD0325901 (referred to as PD-901) 0.25 mM, GDC-0941 1 mM, rapamycin

0.1 mM, PD-901 + rapamycin, and PLX4720 + rapamycin.

(A) DBP (16 hr incubation) results expressed as D% priming. Values indicate

mean values ± SEM, at least three independent experiments were performed

(n R 3).

(B) In vivo response for this Braf/Nf1 mutant allograft melanoma model

(adapted from Figure 4C Maertens et al., 2013) expressed as change in tumor

volume (log2) after 7 days of treatment.

(C) Correlation between D% priming and change in tumor volume.
DBP predicts cytotoxicity in vitro, it was important to test

whether our tool can likewise discriminate between clinical sen-

sitivity and resistance to anti-cancer therapies using primary pa-

tient samples. We chose treatment of chronic myelogenous

leukemia (CML) with imatinib as a first test of this principle.

CML cells possess a t(9;22) translocation creating a BCR-ABL

fusion protein that results in constitutively active ABL kinase ac-

tivity. CML is typically sensitive to inhibitors of ABL kinase

including imatinib (Sawyers, 1999).

To demonstrate the correlation between imatinib’s inhibition of

ABL and an increase in apoptotic priming, we treated two human

CML cell lines with different concentrations of imatinib. After

16 hr of treatment, we observed that the dephosphorylation of

ABL, and its downstream target CRKL correlated with an in-

crease in priming. Note that frank cell death began days later,

at 72 hr (Figure S5).

We treated bone marrow cells obtained from 24 CML patients

for 16 hr with imatinib, performed DBP, and recorded the change

in priming induced. Initial resistance to imatinib is very rare in

CML, so we compared samples of patients who were newly

started on imatinib, all of whom entered at least a complete he-

matologic remission (‘‘sensitive’’, Figure 7A), with samples from

patients obtained when they were known to be refractory to im-

atinib (‘‘resistant’’, Figure 7A). Samples from patients that were

sensitive to imatinib showed a significantly higher D% priming

compared to those that did not respond (Figure 7A). We next

tested the ability of DBP to segregate clinical sensitivity and resis-

tance in a binary fashion with ROC analysis (Figure 7B). The area

under theROCcurvewas 0.89, p = 0.016, supporting the ability of

DBP to discriminate clinical sensitivity and resistance. There was

variability in the quality of the tracings obtained, likely due to vari-

ability in the viability of the thawed patient samples. When we

applied criteria only to accept tracings for which there was at

least a difference of 100 relative fluorescent units between our

positive control (FCCP) and negative control, we observed similar

results, with an AUC of 0.88. This came at the cost of excluding

seven samples from analysis based on the criteria (Figure S6).

Basically, every newly diagnosed patient with CMLwill be started

on imatinib or another tyrosine kinase inhibitor, and nearly all will

have at least a complete hematologic remission. Thus, there is lit-

tle need for a new predictive biomarker to guide administration of

tyrosine kinase inhibitors in CML.Nonetheless, this study demon-

strates the principal that DBP can distinguish clinical sensitivity

and resistance to a targeted agent.

DBP Predicts Carboplatin Response in Ovarian
Cancer Patients
Although our testing was focused on using DBP with targeted

agents, pro-death signaling resulting from treatment with clas-

sical cytotoxic chemotherapies should be predictive of cellular

response since these drugs also largely kill via the mitochondrial

apoptotic pathway. We obtained 16 primary ovarian adenocarci-

nomas from surgical resection. We treated a single cell suspen-

sion of these tumors with carboplatin, the standard front-line

therapy, ex vivo for 16 hr and performed DBP. We detected a

robust D% priming (>20%) in six of the patient specimens.

All analyzed patients were then treated with carboplatin in

combination with taxol in the clinic. We then collected and
Cell 160, 977–989, February 26, 2015 ª2015 Elsevier Inc. 985
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Figure 7. DBP Can Stratify In Vivo Drug Response to Imatinib in a

Cohort of CML Patients and to Carboplatin in Ovarian Adenocarci-

noma Patients

(A) 24 frozen Ficoll purified bone marrow primary CML samples were treated

for 16 hr with imatinib 1 and 5 mM, and DBP was then performed. Results are

expressed as D%priming. Values indicate mean ± SEM. Unpaired t-test, two-

tailed, * p < 0.05.

(B) A ROC curve analysis for this set of samples. The AUC is 0.89.

(C) 16 ovarian adenocarcinoma patient samples were analyzed by DBP with

carboplatin. We treated the samples for 16 hr with carboplatin 100 mg/ml, and

DBP was then performed. Shown is a Kaplan -Meier plot of the patients’

progression-free survival in response to carboplatin and taxol. A significant

difference was observed between those patients whose samples showed a D

% priming >20% from those that were <20%, as assessed by Mantel-Cox

statistical analysis.

See also Figures S5 and S6, and Table S1.
analyzed the clinical data on the patients to assess progression

free survival using an abnormal and rising CA-125 as an index for

progression. Patients with ovarian adenocarcinomas that ex-

hibited a robust D% priming (>20%) experienced a significantly
986 Cell 160, 977–989, February 26, 2015 ª2015 Elsevier Inc.
longer progression free survival to those patients who did not

(Figure 7C).

DISCUSSION

Here, we tested and supported the hypothesis that the initiation

of death signaling is sufficient to determine eventual commit-

ment to cell death. By detecting early death signaling, DBP

can predict in vitro and in vivo cytotoxic response in varied can-

cers to varied classes of chemotherapeutic agents, agents

which have in common only their ability to kill cancer cells via

the mitochondrial pathway of apoptosis. While this provides

basic mechanistic information about the events between drug

treatment and commitment to cell death, we anticipate that its

greatest utility might be in prediction of cancer patients’

response to therapy in the clinic. Over the past decade, an

ever-growing number of therapies have been approved for use

in medical oncology. But every tumor is distinct, with its own

particular signaling network and pathway addiction yielding a

distinct pattern of sensitivity to cancer therapeutics. The task

of precision cancer medicine is to match a tumor to those agents

that will most effectively eliminate it (Garraway and Jänne, 2012;

Sawyers, 2008; Yaffe, 2013).

An analogous problemwas faced in the previous century in the

world of clinical microbiology. As the number of antibiotics prolif-

erated, it becamemore challenging to identify the best drug for a

particular isolate of bacteria. The very practical solution that

emerged was to simply grow a lawn of bacteria and expose

the isolate to all available antibiotics in the form of drug-soaked

disks. Antibiotics were then chosen from those that caused the

greatest elimination of bacteria. This practice is still the standard

and has not been displaced by any modern technology, in-

cluding genomics, proteomics or systems biology. While this

method reveals little about signaling pathways and genetics of

bacteria, it is supremely useful because it functionally summa-

rizes the contribution of many genes and pathways to the pheno-

type that is most pertinent, the response of the viable bacterium

to antibiotics. A version of this assay has been the mainstay of

clinical microbiology for many decades.

Analogous ex vivo approaches have been attempted in

oncology but with little success. A typical strategy was to expose

a patient’s tumor to drugs and place it into ex vivo culture for 3–

14 days followed by evaluation of cell death, proliferation, or col-

ony formation (Burstein et al., 2011). The biggest difficulty was

the requirement for ex vivo culture of cancer cells. Many cancer

cells simply rapidly die in ex vivo culture. Those that survive can

undergo arrest or other phenotypic changes that accompany the

transfer from a comfortable in vivo niche to an ex vivo plastic dish

in 21% oxygen. In addition, if the culture is prolonged, there can

be selection for non-tumor cells or clones that are poorly repre-

sentative of the patient’s tumor. The result, in any case, was a se-

ries of studies that did not provide sufficient predictive power to

be clinically useful. Exciting new ex vivo cell culture strategies

usingmoremodern techniques require weeks tomonths (Crystal

et al., 2014). Their utility in guiding patient care will doubtless be

tested in the coming years. Patient-derived xenograft (PDX)

mouse models are being tested as a newer venue for functional

assessment of tumor cell response to therapy (Hidalgo et al.,



2014). However, the time (months) and expense that are required

to establish PDXmodels may limit their utility in clinical medicine.

Here, we have taken a different approach. Appreciating the

tremendous advantages of perturbing the actual patient tumor

cell with the actual therapy of interest, we instead have prioritized

making observations early enough that long term ex vivo culture

is not needed. While we have found that death signaling can be

detected as early as 4 hr after treatment, depending on the drug,

we have found that a 16 hr incubation is sufficient for most

agents to produce measurable death signaling in responding

cells.

We demonstrated that DBP can be exploited to select among

many therapies the one that is best for a single tumor (Figure 6).

We also demonstrated that DBP can select among many pa-

tients those that are most likely to respond to a single therapy

(Figure 7). These are the two major functions of a clinically useful

predictive biomarker, and it is notable that DBP can perform

them both. Of equal importance, the clinical and in vivo experi-

ments of Figure 7 demonstrate that useful predictive obser-

vations of both liquid (CML) and solid (ovarian) primary human

tumors is consistent with a simple 16 hr monolayer culture.

We anticipate that DBP may be used to make personalized

choices of therapy for patients. One could use DBP to choose

agents among a panel of candidate drugs for one individual pa-

tient. Alternatively, one could use DBP to stratify a panel of pa-

tients to identify those most likely to respond to an individual

drug. In the case of drugs that have activity only in a subset of

a particular disease, we believe DBP can more efficiently stratify

patient selection for clinical trials or clinical use by prospectively

identifying those whose tumors are most likely to respond. In

addition, while our focus here was on cancer cells, it is important

to realize that this approach is also applicable to the study of

non-malignant cells. As such, it can be used as a probe of sen-

sitivities of cells in normal biology to a variety of insults, or as a

toxicology tool to predict the toxicity of novel agents to normal

tissues.

While we have focused mainly on single agent therapies in our

proofs of principle studies, a strength of this approach is that it

should work for both single agent and combination therapies.

In fact, we explicitly demonstrated this in Figures 1, 2, and S3.

Given the nearly universal emergence of resistance to single

agent targeted therapies, even when there is an excellent initial

response, strategies for the rational choice of personalized com-

bination therapies is of great importance. We can envision two

ways DBP could be used to fashion such strategies. One is to

simply expose tumor cells to the combinations as we did in Fig-

ures 1, 2, and S3. Another is to test a panel of single agents via

DBP and combine two or more with good single agent activity.

A tremendous amount of information has been collected on

cancer cells in the past few years, and the amount is likely to

continue to grow exponentially. Much of this information is

now genetic, with whole cancer genomes being sequenced (Bar-

retina et al., 2012). In addition, there are technologies that garner

an abundance of gene expression information and those that

capture protein expression (Kornblau et al., 2009). It remains to

be seen howwidely these technologies will be useful in better as-

signing therapy to patients. However, despite the huge amounts

of information acquired, one common limitation of these studies
is that they all represent static observations of dead cells. That

means that a tremendous amount of the functional complexity

of the cell has been lost to study. With DBP, we anticipate that

a small number of strategic perturbations (drug and peptide ex-

posures) on viable cells will yield vastly fewer bits of information,

but that a great proportion of the bits will be clinically actionable.

EXPERIMENTAL PROCEDURES

Cell Lines and Treatments

RPMI 1640media supplemented with 10%heat inactivated fetal bovine serum

(GIBCO) 10 mM L-Glutamine and 100 U/ml penicillin and 100 mg/ml strepto-

mycin was used for the culture of the cell lines used. The cells were cultured

at 37�C in a humidified atmosphere of 5% CO2.

Isolation and Treatment of Primary CML Cells

Thirty primary CML samples from bone marrow biopsies viably frozen in 90%

FBS/10%DMSO were obtained from the Pasquarello Tissue Bank at Dana-

Farber Cancer Institute and from Dr. Philip C. Amrein at the Massachusetts

General Hospital. Cells were thawed and resuspended in complete RPMI me-

dia and washed with fresh media, counted by trypan blue exclusion and plated

in a 12-well plate, 1 million cells/well, and treated with imatinib 1 and 5 mM.

DBP failed on five samples due to failure of mitochondria to maintain trans-

membrane polarization and 1 sample analysis was discarded for not having

complete clinical information. After a 16 hr incubation at 37�C in a humidified

atmosphere of 5%CO2, Dynamic BH3 Profile analysis was performed. Clinical

response data were compiled by clinicians; patients are considered re-

sponders when complete hematologic response was observed.

Ovarian Primary Tumors

Fresh primary tumors obtained from routine resections after patients signed an

informed consent approved by the Institutional Review Board (DFCI#02-051),

were used for preparation of viable single-cell suspensions. Tumors were first

mechanically dissociated and digested for 1 hr at 37�C in 1 mg/ml collage-

nase/dispase (Roche Diagnostics). Cells were then filtered through a cell

strainer and cell viability was assessed by trypan blue exclusion. Cells were

then frozen in freezing buffer (fetal bovine serum with 10% DMSO). For DBP,

cells were thawed and resuspended in complete RPMI media with 100 U/ml

of DNase I and incubated 15 min at room temperature. Then the cells were

washed with fresh media, counted by trypan blue exclusion, and plated in a

12-well plate, 0.2–0.5 M cells/well and treated with carboplatin 100 mg/ml.

After a 16 hr incubation at 37�C in a humidified atmosphere of 5% CO2.

Dynamic BH3 Profile analysis was performed blinded to clinical outcome. Clin-

ical response data were compiled by clinicians 6–24 months after sample

acquisition.

Dynamic BH3 Profiling

23 104 cells/well were normally used, but 43 104 cells/well were used for pri-

mary CML and AML. 15 ml of BIM BH3 peptide (final concentration of 0.03, 0.1,

0.3, 1, and 3 mM) in T-EB (300 mM Trehalose, 10 mM HEPES-KOH [pH 7.7],

80 mM KCl, 1 mM EGTA, 1 mM EDTA, 0.1% BSA, 5 mM succinate) were

deposited per well in a black 384-well plate (BD Falcon no. 353285). Single-

cell suspensions were washed in T-EB before being resuspended at 43 their

final density. One volume of the 43 cell suspension was added to one volume

of a 43 dye solution containing 4 mM JC-1, 40 mg/ml oligomycin, 0.02% digi-

tonin, 20mM2-mercaptoethanol in T-EB. This 23 cell/dye solution stood at RT

for 10min to allow permeabilization and dye equilibration. A total of 15 ml of the

23 cell/dye mix was then added to each treatment well of the plate, shaken for

15 s inside the reader, and the fluorescence at 590 nm monitored every 5 min

at RT. Percentage loss ofJm for the peptides is calculated by normalization to

the solvent only control DMSO (0% depolarization) and the positive control

FCCP (100% depolarization). Individual DBP analysis were performed using

triplicates for DMSO, FCCP, and the different BIM BH3 concentrations used,

and the expressed values stand for the average of three different readings.

In cases were SD was >10%, the outlying reading was discarded. % priming

stands for themaximum%depolarization obtained from the different BIMBH3
Cell 160, 977–989, February 26, 2015 ª2015 Elsevier Inc. 987



concentrations tested; typically 0.03, 0.1, 0.3, 1, and 3 mM. D% priming

stands for the difference between treated cells minus non-treated cells

(% primingtreated - % primingnon-treated). See also Figure S1.

Cell Viability Assays

Cells were stained with fluorescent conjugates of Annexin-V (BioVision) and/or

propidium iodide (PI) and analyzed on a FACSCantomachine (BD). Viable cells

are annexin-V negative and PI negative, and cell death is expressed as 100% -

viable cells. D% cell death stands for the difference between treated cells

minus non-treated cells (% cell deathtreated � % cell deathnon-treated).

Immunoblotting

Total cell lysates were prepared in 1% Chaps buffer (5 mM MgCl2, 137 mM

NaCl, 1 mM EDTA, 1 mM EGTA, 1%Chaps, 20 mM Tris-HCl [pH 6.5], and pro-

tease inhibitors [Complete, Roche]). Cells were washed twice, resuspended

with 50–100 ml of CHAPS lysis buffer, and kept on ice for 30 min. Then, the

cellular suspension was centrifuged at 16,100 g for 5 min, and the supernatant

used to perform the immunoblotting analysis.

Twenty micrograms of protein were loaded on NuPAGE 10% Bis-Tris

polyacrylamide gels (Invitrogen). The following antibodies were used to detect

proteins on the membrane (dilution 1:1,000): Actin (Chemicon, MAB1501),

PARP-1 (cell signaling, #9542), BCL-2 (Epitomics, #1017-1), BIM (Cell

Signaling, #2933), and BCL-xL (Cell signaling, #2762).

Statistical Analysis

Statistical significance of the results was analyzed using Student’s t-tail test

using GraphPad Prism 5.0 software. *p < 0.05 and **p < 0.01 were considered

significant. SEM stands for Standard Error of the Mean. For ROC curve anal-

ysis cell lines were considered responsive to treatment when D% cell death

>10%; CML clinical samples when the patient achieved a complete hemato-

logic response after treatment; for ovarian adenocarcinoma biopsies, clinical

response data were compiled by clinicians 6–24 months after sample

acquisition.
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