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SUMMARY
High-grade serous ovarian carcinoma presents significant clinical and therapeutic challenges. Although the
traditional model of carcinogenesis has focused on the ovary as a tumor initiation site, recent studies suggest
that there may be additional sites of origin outside the ovary, namely the secretory cells of the fallopian tube.
Our study demonstrates that high-grade serous tumors can originate in fallopian tubal secretory epithelial
cells and also establishes serous tubal intraepithelial carcinoma as the precursor lesion to high-grade serous
ovarian and peritoneal carcinomas in animalmodels targeting theBrca, Tp53, andPten genes. These findings
offer an avenue to address clinically important questions that are critical for cancer prevention and early
detection in women carrying BRCA1 and BRCA2 mutations.
INTRODUCTION

Epithelial ovarian cancer is the most lethal gynecologic malig-

nancy in the United States with an annual mortality rate of

15,000 (Siegel et al., 2012). High-grade serous ovarian carci-

noma (HGSC), the most common and aggressive subtype, has

the highest mortality rate, with a 5-year survival rate of only

30% (Vaughan et al., 2011). This is due to the fact that the vast

majority of cases are not detected until late-stage, ultimately

thwarting attempts to define the cell-of-origin and pathogenesis

of this disease.

Although research has traditionally focused on the hypothesis

that HGSC arises from the ovarian surface epithelium (OSE) or

ovarian inclusion cysts, recent studies suggest that additional
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STIC lesions, which are defined as in situ cancers with TP53

mutations and increased proliferative capacity, are observed

in at least 60% of women with HGSC of the ovary and/or peri-

toneum (Kindelberger et al., 2007; Przybycin et al., 2010) and

similar in situ lesions are not observed in the OSE (Folkins

et al., 2008). Such early lesions exhibit shortened telomeres,

a notable hallmark of early molecular carcinogenesis (Kuhn

et al., 2011; Chene et al., 2013). Clinical observations support

the hypothesis that STICs can originate from secretory epithe-

lial cells of the fallopian tube and progress to HGSC by rapidly

disseminating to involve ovarian and peritoneal surfaces. This

hypothesis is further supported by the shared morphologic

and immunophenotypic features of STICs and HGSCs. In

addition, injection of transformed primary human FT secretory

epithelial cells (FTSECs) into the peritoneum of nude mice

induces tumors that grossly, histologically, immunopheno-

typically, and genomically resemble human HGSCs (Karst

et al., 2011a; Jazaeri et al., 2011). However, these associations

are largely circumstantial and necessitate experimental proof

in order to confirm the role of FTSECs and STICs in serous

carcinogenesis. The vast implications of unequivocally

establishing a potential cell of origin in HGSC for both cancer

prevention and early tumor detection prompted us to develop

genetically engineered animal models that mimic human HGSC

pathogenesis.

Genetically engineered mouse models for the endometrioid

subtype of ovarian cancer have been successfully exploited

to resolve the site of origin and pathogenesis for this particular

subtype (Dinulescu et al., 2005; Wu et al., 2007, 2013). In

contrast, an effective de novo mouse model for HGSC has

proven elusive, likely because previous models were designed

based on traditional views of ovarian cancer pathogenesis,

namely strictly ovarian origin. Previous work has utilized condi-

tional expression of oncogenes (for instance, Kras) or conditional

deletion of relevant tumor suppressors (such as Brca1/2, Tp53,

Rb, and Pten); although these markers are well defined in the

literature, all have targeted the OSE (Clark-Knowles et al.,

2007, 2009; Flesken-Nikitin et al., 2003; Mullany et al., 2011;

Quinn et al., 2009; Szabova et al., 2012). Subsequently, some

tumors have failed to recapitulate the histology and markers of

the human disease (Clark-Knowles et al., 2007, 2009; Mullany

et al., 2011; Quinn et al., 2009). Another study utilized an acti-

vating Pik3ca mutation coupled with Pten loss to drive ovarian

serous carcinoma from the OSE but this also resulted in granu-

losa cell and luteoma tumors and did not recapitulate early

precursor lesions (Kinross et al., 2012). A recent study targeted

deletion of Pten and Dicer, the ribonuclease essential for the

conversion of pre-miRNAs into mature miRNAs, using the

anti-Mullerian hormone receptor type 2 promoter to drive Cre

expression. Although these animals developed tumors in the

FT, they failed to recapitulate the early events of human disease

pathogenesis, namely FTSEC transformation and STIC lesions

(Kim et al., 2012). Collectively, these studies all suggest that

the origin of HGSC is still unknown and may arise from multiple

sources. However, developing a genetically engineered mouse

model of HGSC, which accurately recapitulates the early alter-

ations and disease progression seen in patients and high-risk

women, is key to improving early cancer diagnosis and is an

important goal of our study. Such a model can confirm the
752 Cancer Cell 24, 751–765, December 9, 2013 ª2013 Elsevier Inc.
transformation continuum from STIC to HGSC and mimic the

molecular alterations underlying this process.

RESULTS

PAX8 Is a Marker of the Fallopian Tube Secretory Cell
but Not of the Ovarian Surface Epithelium
We have specifically targeted the FTSEC by driving expression

of the Cre recombinase from a Pax8 promoter. PAX8 is a

transcription factor that is essential for the development of the

female genital tract, including the FTs but not the ovaries (Mittag

et al., 2007). In the FTE, PAX8 is a marker of the secretory cell

lineage, not the ciliated cell population (Figures 1A and 1B).

Consistent with its role as a lineage marker (Bowen et al.,

2007; Cheung et al., 2011), PAX8 expression is retained in

the FT cells during the process of secretory cell malignant

transformation, both in STIC lesions (Figures 1A and 1B) and in

the vast majority of HGSCs (Figure 1C) (Laury et al., 2010,

2011; Tacha et al., 2011). In mouse FTE, PAX8 shows a similar

pattern of expression in FTSECs and is not present in acetylated

tubulin-positive ciliated cells (Figures 1D–1F). Importantly, PAX8

is absent in mouse and human OSE (Figure 1D) (Bowen et al.,

2007). This distinct PAX8 expression pattern was confirmed

by western blot analysis, which showed strong PAX8 expression

in human FTSEC lines and no expression in human ovarian

surface epithelial (HOSE) cell lines (Figure 1G).

PAX8 Can Drive Cre Recombinase in the Fallopian
Tube Secretory Cell
In order to express Cre recombinase from the mouse FTSEC,

we crossed mice expressing the reverse tetracycline-controlled

transactivator (rtTA) under the control of the Pax8 promoter

(Pax8-rtTA) with mice expressing Cre recombinase in a tetracy-

cline-dependent manner (TetO-Cre) (Perl et al., 2002; Traykova-

Brauch et al., 2008). The combination of both transgenes, which

we termed Pax8-Cre, was used as a tissue-specific driver for all

genetic alterations described hereafter (Figure S1A available

online). In order to determine the tissue specificity of the recom-

bination event, Pax8-Cre mice were crossed with Gt(ROSA)

26Sortm1sor mice expressing the loxP-Stop-loxP LacZ transgene

(Figure S1A) (Soriano, 1999). Following administration of

doxycycline (Dox, 0.2 mg/ml in drinking water ad libitum) for

14 days to activate Cre-mediated recombination, organs were

harvested and subjected to b-galactosidase staining. Gross

anatomic inspection showed that the FT exhibited a very

strong LacZ staining pattern; some staining was observed in

the uterus and, importantly, the ovary was completely negative

for LacZ (Figures 1H and 1I). Histologically, as expected from

the mosaic pattern of Pax8-positive secretory and Pax8-nega-

tive ciliated cells, the FTE exhibited a mosaic pattern of LacZ

staining (Figure 1J). Most importantly, microscopic evaluation

of the OSE did not exhibit any LacZ staining (Figures S1B and

S1C) thereby confirming that HGSC in this model cannot arise

from the OSE. As expected, the FTE of Pax8-rtTA;LSL-LacZ

mice, without TetO-Cre (negative control) showed no LacZ

staining (Figures S1D and S1E). In addition, endometrial

and renal tubular epithelium expressed LacZ (Figures S1F and

S1G; Traykova-Brauch et al., 2008), whereas the liver showed

focal LacZ staining in scattered hepatocytes (Traykova-Brauch



Figure 1. Expression of PAX8, a Specific Müllerian Lineage Marker, during FT Malignant Transformation

(A and B) Immunohistochemistry (IHC) for PAX8 in the human FTE is shown for the benign epithelium (top) and STIC (bottom). The square area in (A) is shown at a

higher magnification in (B). PAX8 positive FTSEC and PAX8-negative ciliated cells (CIL) are demarcated by red arrows.

(C) IHC for PAX8 in human HGSC.

(D) PAX8 expression in mouse OSE, CIL cells, and FTSECs.

(E) IHC for acetylated tubulin in mouse CIL cells and FTSEC.

(F) PAX8 expression in murine nonciliated FTSECs.

(G) PAX8 and calretinin expression in immortalized FTSEC lines (FT190 and FT194) and in HOSE cell lines (HIO-80 and IOSE11E6E7) as depicted by western

blot analysis. Calretinin is used as a marker for HOSE and b-actin serves as a loading control.

(H) Gross anatomy of murine female genital tracts collected from Pax8-rtTA;TetO-Cre;LSL-LacZ mice treated (+Dox) or untreated (�Dox) with Dox and stained

with a b-galactosidase stain.

(I) Higher magnification of the FT treated or untreated with Dox.

(J) Non-neoplastic mouse FTE stained with PAX8 or LacZ as indicated.

Scale bars represent 500 mm (A), 50 mm (B–F), 100 mm (J, top subpanels), and 33.3 mm (J, bottom subpanels). See also Figure S1.
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Figure 2. The Role of Brca, Tp53, and Pten Genetic Alterations in the Development of STIC, HGSC, and Tumor Metastases in Pax8-CreMice

(A) Schematic representation of conditional Brca1, Brca2, Tp53, Pten alleles, and Pax8-rtTA;TetO-Cre recombination.

(B) Summary of the phenotypic characteristics of the five Pax8-Cre cohorts: Brca1�/�;Tp53mut;Pten�/�, Brca1+/�;Tp53mut;Pten�/�, Brca2�/�;Tp53mut;Pten�/�,
Brca2+/�;Tp53mut;Pten�/�, and Tp53�/�;Pten�/� mice. The asterisk (*) denotes that two of the four Brca1�/�;Tp53mut;Pten�/� mice had to be sacrificed earlier

at 5 weeks due to unrelated skin lesions in accordance to veterinarian recommendations, and as a result did not have time to develop metastatic disease. The

Brca1�/�;Tp53mut;Pten�/� cohort includes two Brca1�/�;Tp53�/�;Pten�/� and two Brca1�/�;Tp53R270H/�;Pten�/� mice. The Brca1+/�;Tp53mut;Pten�/� cohort

includes eight Brca1+/�;Tp53�/�;Pten�/� and four Brca1+/�;Tp53R270H/�;Pten�/� animals. The Brca2�/�;Tp53mut;Pten�/� cohort includes six Brca2�/�;Tp53�/�;
Pten�/� and sixBrca2�/�;Tp53R270H/�;Pten�/�mice. TheBrca2+/�;Tp53mut;Pten�/� cohort includes twoBrca2+/�;Tp53�/�;Pten�/� and oneBrca2+/�;Tp53R270H/�;
Pten�/� animals.

(C) Kaplan-Meier analysis of overall survival of all mouse cohorts. p < 0.01 comparing with andwithout deletion of any alleles ofBrca1 orBrca2. Statistical analysis

was calculated using a log-rank analysis.

(legend continued on next page)

Cancer Cell

Ovarian Cancer Arising from the Fallopian Tube

754 Cancer Cell 24, 751–765, December 9, 2013 ª2013 Elsevier Inc.



Cancer Cell

Ovarian Cancer Arising from the Fallopian Tube
et al., 2008). As previously shown, the thyroid, another PAX8-

expressing organ, does not express rtTA in this Pax8-rtTA

mouse strain (Traykova-Brauch et al., 2008) and was negative

for LacZ expression (Figures S1H and S1I). No other organs

displayed LacZ staining.

Murine cohorts were generated harboring Pax8-Cre driven

inactivation of different combinations of the Brca (Brca1 or

Brca2), Tp53 (loss of function and/or dominant negative inacti-

vating R270H mutation), and Pten genes, which are commonly

altered in ovarian cancer patients (Figures 2A–2D) (Cancer

Genome Atlas Research Network, 2011). Heterozygous and

homozygous Brca1 (and Brca2) mutants (mut), unless otherwise

indicated, will collectively be designated Brca1mut (Brca2mut) as

they yielded similar tumor phenotypes. Similarly, Tp53�/� gave

similar results as Tp53R270H/� and therefore are collectively

designated Tp53mut. The Kaplan-Meier curves of the five Pax8-

rtTA;TetO-Cre murine cohorts, Brca1�/�;Tp53mut;Pten�/�,
Brca1+/�;Tp53mut;Pten�/�, Brca2�/�;Tp53mut;Pten�/�, Brca2+/�;
Tp53mut;Pten�/�, and Tp53�/�;Pten�/� mice are shown for com-

parison in Figure 2C. Interestingly, we noticed a statistically

significant increase in disease latency in the Tp53�/�; Pten�/�

cohort in comparison to either Brca1mut;Tp53mut;Pten�/� or

Brca2mut;Tp53mut;Pten�/� mice (p < 0.01, Figure 2C). Further-

more, the survival of Brca2�/� mice was significantly lower

when compared to Brca2+/� mice (p < 0.05, Figure 2C). Other-

wise, the heterozygous and homozygous Brca1 and Brca2

animals yielded similar phenotypic results. Evidence of Brca2,

Tp53, and Pten recombination in our animal models is shown

in Figure 2D whereas the efficiency of recombination events at

the three genetic loci is displayed in Figure 2E. Tumors that

show incomplete recombination likely reflect the presence of

stromal and/or ciliated epithelial cells that are not targeted.

In patients, BRCA1 and BRCA2 are known to be associated

with hereditary breast and ovarian cancer. In the recently pub-

lished Cancer Genome Atlas Research Network (TCGA) data,

BRCA1 and BRCA2 show germline mutations in 9% and 8%

of HGSC cases, respectively, and somatic mutations in an

additional 3% of cases (Cancer Genome Atlas Research

Network, 2011). In addition, BRCA1 and BRCA2 germline muta-

tion frequency is as high as 17% of cases in a large series

of Australian HGSC patients (Alsop et al., 2012). In addition,

TP53 is mutated in the vast majority (96%) of human HGSC

cases. Furthermore, according to the TCGA data, although

homozygous loss of PTEN is seen in only 7% of ovarian

cancer cases, the PI3K/PTEN pathway is aberrant in 74.4%

of HGSC cases (Figure S2). More specifically, TCGA analysis

shows combined alterations, including mutations, single and/or

double copy deletions of BRCA1, TP53, and PTEN to be preva-

lent in 31% of cases, with homozygous loss of PTEN being

present in 8% of cases harboring BRCA1;TP53 alterations

(Table S1). A similar TCGA analysis forBRCA2 reveals coexisting
(D) PCR reaction illustrating Cre-mediated recombination ofBrca2,Pten, and Tp53

unrecombined DNA; Fl, unrecombined floxed alleles; Del, deleted alleles; Muta

bands.

(E) Efficiency of Cre-mediated recombination for Brca2, Pten, and Tp53 alleles, r

and Brca2�/�;Tp53�/�;Pten�/� (T2) mice as assayed by PCR. Lanes 2 and 5 (N) i

unrecombined DNA in tumor cells, and lanes 4 (T1) and 7 (T2) show the level of rec

See also Figure S2 and Tables S1 and S2.

Ca
alterations, including mutations, single and/or double copy

deletions of BRCA2, TP53, and PTEN in 25% of cases, with

homozygous PTEN loss being present in 7% of BRCA2;TP53

altered cases (Table S2). Therefore, alterations in BRCA1/2,

TP53, and PTEN genes serve as a relevant model for human

FT transformation and development of HGSC in patients.

Pax8-Driven Deletions of Brca, Tp53, and Pten Lead
to Development of HGSCs Arising from FTSECs
Cre-mediated recombination in both Brca1mut;Tp53mut;Pten�/�

and Brca2mut;Tp53mut;Pten�/� mice led to development of

HGSCs following Dox administration. In contrast to a normal

murine FT (Figure 3A), Dox-activated FTs underwent transfor-

mation marked by secretory cell proliferation, loss of polarity,

cellular atypia, and serous histology, all consistent with STIC

(Figures 3B–3D; data not shown). In all invasive carcinomas

that metastasized to the ovary and peritoneum, the histology

was characteristic of HGSC (Figures 3E–3H; data not shown).

HGSC tumors metastasized to the ovary in 7 of 16 Brca1mut;

Tp53mut;Pten�/� and 12 of 15 Brca2mut;Tp53mut;Pten�/� mice

(Figure 3F; data not shown). In 5 of 16 Brca1mut;Tp53mut;Pten�/�

and 3 of 15 Brca2mut;Tp53 mut;Pten�/� mice, the tumor meta-

stasized to the liver (Figure 3G; data not shown) and in 9 of

16 Brca1mut;Tp53mut;Pten�/� and 10 of 15 Brca2mut;Tp53mut;

Pten�/� mice, the tumor metastasized to the peritoneal cavity

(Figures 3E and 3H; data not shown). Although the omentum

was typically involved, peritoneal involvement was generally

widespread, and we did not discern between the different

organs involved or the omentum. These findings are consistent

with the pattern of HGSC spread in humans. Frequent ovarian

metastases are of special interest because HGSC is commonly

diagnosed in the ovary. Immunohistochemical analysis of

murine preinvasive and invasive lesions demonstrated a high

degree of concordance between human and mouse tumor

markers (Figure 3I). Thus, PAX8 serves as the hallmark for human

HGSC diagnosis. In line with our Pax8-driven model, murine

preinvasive lesions and invasive tumors were PAX8 positive,

similar to human counterparts (Figure 3I). As expected, all murine

tumors with dominant negative Tp53 R270H mutations showed

accumulation of nuclear TP53 immunoreactivity (Figure 3I);

in addition, an increased Ki-67 proliferative index was seen

in STICs andmetastatic lesions (Figure 3I). Thus, the immunohis-

tochemical profiles of murine tumors mimic those of human

STICs and HGSC tumors and confirm our targeting strategy.

Furthermore, in addition to being positive for PAX8 and Ki-67,

murine STIC lesions showed immunoreactivity for Stathmin-1

(STMN1) (Figures 4A–4D) in contrast to normal FTE (located

adjacent to the STIC, left side of the image, in Figures 4C and

4D). STMN1 is a marker for early human serous carcinoma

that is significantly increased upon progression to STIC and

invasive carcinoma in patients (Karst et al., 2011b). As expected,
alleles. T, DNA isolated from aBrca2�/�;Tp53R270H/�;Pten�/�HGSC tumor; N,

nt, Tp53R207H allele. The asterisk (*) denotes recombined (deleted or mutant)

espectively, in HGSC tumors isolated from Brca2�/�;Tp53R270H/�;Pten�/� (T1)

ndicate control unrecombined DNA, lanes 3 (T1) and 6 (T2) indicate the level of

ombined DNA in tumors. The asterisk (*) denotes recombined (deleted) bands.

ncer Cell 24, 751–765, December 9, 2013 ª2013 Elsevier Inc. 755



Figure 3. Characterization of the Morphology and Dissemination Patterns of Murine STICs and HGSCs in Brca2 Murine Cohorts

(A) Cross-section of normal FT from a control wild-type mouse.

(B and C) Examples of Brca2�/�;Tp53R270H/�;Pten�/� STICs.

(D) Gross anatomy of a Brca2+/�;Tp53R270H/�;Pten�/� HGSC originating in the fallopian tube (FT) and metastasizing to the ovary (circled, OvT). Uterus (Ut) is

shown as a reference.

(E) Representative pictures of disseminated intraperitoneal Brca2+/�;Tp53R270H/�;Pten�/� tumors.

(F) Representative pictures of metastases fromBrca2+/�;Tp53R270H/�;Pten�/�HGSCs to the ovarian cortex in close proximity to the ovarian stalk. Tumor border is

marked by arrowheads.

(G) Examples of metastases from Brca2+/�;Tp53R270H/�;Pten�/� tumors to the liver.

(H) Gross anatomy of a Brca2+/�;Tp53R270H/�;Pten�/� HGSC tumor originating in the fallopian tube (FT) and metastasizing to the peritoneal cavity (circled, T).

(I) Comparative study of representative examples of murine Brca2+/�;Tp53R270H/�;Pten�/� tumor lesions and human STICs and HGSCs. Tissue sections

were stained with H&E or stained for TP53, PAX8, or Ki-67, as indicated.

Scale bars represent 200 mm (A, B, and F), 50 mm (C and I as shown in mouse STIC IHC, mouse HGSC, and human STIC subpanels), and 100 mm (E, G, and I

as shown in mouse STIC H&E and human HGSC subpanels).
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tumors were positive for epithelial markers, including Pan-

Keratin and CK8 (Figure 5A). In addition, PAX8-immunoreactive

tumors and metastases were also positive for either PAX2

(Figure 5B) or WT-1 (Figure 5C), two markers that are expressed

by human HGSCs. As noted earlier, the endometrium expresses

Pax8 and this expression was confirmed with LacZ staining

(Figures S1F and S1G). Because PTEN is the most common
756 Cancer Cell 24, 751–765, December 9, 2013 ª2013 Elsevier Inc.
genetic alteration observed in endometrial neoplasms (Mutter

et al., 2000), we closely examined the endometrium in all

cohorts of mice. All mice had various degrees of endometrial

changes, which recapitulated human endometrial hyperplasia,

dysplasia, or carcinoma (Figure S3A). Interestingly, intrauterine

endometrial lesions were negative for PAX2 and WT1 markers

(Figures S3B and S3C), whereas the STICs and metastatic



Figure 4. STMN1 Expression in Murine STIC Lesions

(A and B) Representative low (A) and high (B) magnification images of immunohistochemical analysis for PAX8, Ki-67, and STMN1 markers in murine

Brca2�/�;Tp53�/�;Pten�/� STIC lesions.

(C and D) Representative low (C) and high (D) magnification images of immunohistochemical analysis for PAX8, Ki-67, and STMN1 in early murine

Brca2�/�;Tp53�/�;Pten�/� tumor STIC lesion in the distal FT. Normal distal tube (fimbria) can be seen on the left side of the image.

Scale bars represent 100 mm (A and C) and 50 mm (B and D).
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HGSC tumors (described above) retained PAX2 expression

(Figure S3B) or WT1 expression (Figure S3C), strongly suggest-

ing that the metastatic lesions arose from the FT and not the

endometrium.

In order to study the contribution of Brca and Pten genetic

alterations to the pathogenesis of HGSC tumors, we generated

control cohorts of Tp53�/�;Pten�/� mice without Brca altera-

tions and Brca2�/�;Tp53mut mice without Pten alterations,

respectively. Interestingly, the Tp53�/�;Pten�/� mice did not

progress past the preinvasive stage of the disease. Four of six

Tp53�/�;Pten�/� mice had tubal transformation and developed

STICs at the time of sacrifice (19–38 weeks), but none showed
Ca
invasive tumors, suggesting thatBrca1 orBrca2 gene alterations

are necessary for the progression of ovarian and peritoneal

HGSCs (Figures 2B and 2C). Although the Tp53�/�;Pten�/�

cohort did not develop invasive HGSC, four of six mice had to

be sacrificed according to veterinary recommendation because

of palpable uterine tumors or a visible reduction in body condi-

tion, scruffy appearance, and hair loss (at 24 and 38 weeks,

respectively), which required euthanasia. Histopathological

analysis of the Tp53�/�;Pten�/� mice with uterine tumors

showed locally enlarged endometrial tumors but no metastases

were detected. The remaining Tp53�/�;Pten�/� mice had to be

euthanized due to unrelated conditions (i.e., one of six mice
ncer Cell 24, 751–765, December 9, 2013 ª2013 Elsevier Inc. 757



Figure 5. Immunohistochemical Analysis for Epithelial and HGSC Markers in Murine Serous Tumors
(A) Staining of STICs and invasive tumors for Pan-Keratin in Brca1+/�;Tp53�/�;Pten�/� tumors.

(B) Examples of PAX8 and PAX2 staining in Brca1+/�;Tp53�/�;Pten�/� tumor lesions metastatic to the ovary.

(C) Representative examples of PAX8 and WT1 staining in Brca2�/�;Tp53R270H/�;Pten�/� tumor lesions metastatic to the ovary.

Scale bars represent 500 mm (A), 100 mm (B), and 50 mm (C). See also Figure S3.
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developed malocclusion and one of six developed a large skin

abrasion). Furthermore, in Brca2�/�;Tp53mut mice, in which

Pten is wild-type, the disease latency was much longer (30–

43 weeks) and tumorigenesis was inefficient (only 3 of 11 mice

developed peritoneal metastases), suggesting that additional

genes are needed to cooperate with Brca and Tp53 deletion or

mutation to induce tumor initiation and progression. Interest-

ingly, STICs were difficult to detect in the Brca2�/�;Tp53mut

mice because invasive disease was widely present at the time

that the animals were sacrificed, a not uncommon phenomenon

in human HGSC. This, in part, can explain why STIC lesions

are not identified in 100% of HGSCs. More importantly, these

results suggest that loss of Pten or activation of the PTEN/

PI3K pathway is necessary for efficient tumor development

and STIC formation in the murine oviduct. Similarly, a recent

patient study indicated that PTEN expression was markedly

reduced or absent in one-third of human STICs (Roh et al., 2010).

Salpingectomies, Oophorectomies, and Hysterectomies
in Pax8-Driven BRCA Models Support a Tubal Origin
for HGSC
In order to further rule out the endometrial origin of HGSC

metastases in our mice, we performed hysterectomies

and salpingectomies in Brca1mut;Tp53mut;Pten�/� and Brca2mut;

Tp53mut;Pten�/� murine cohorts. Uterus removal by hysterec-

tomy resulted in STICs and tubal transformation in all mice,

ovarian HGSC invasion in three of six mice and peritoneal

HGSC metastases in five of six animals at 9–12 weeks post-

Cre induction (Figures 6A–6F; Figure S4A). Immunohistochem-

ical and pathological analysis of STICs and ovarian/peritoneal

tumor metastases in the hysterectomy cohort was consistent

with HGSC profiles (Figure 6F). Invasive tumors were positive

for human epithelial and HGSC markers, such as CK8, PAX8,

WT1, and TP53 (Figure 6F). In contrast, FT removal by salpingec-

tomy resulted in absence of HGSC in all mice and nometastases

(Figures S4A–S4C). Interestingly, removal of the ovary resulted

in generation of STICs and tubal transformation in all mice but

reduced peritoneal metastasis, suggesting that the ovary in-

duces a permissive environment for advanced disease, possibly

through the role of ovarian hormones or through a mechanism

that promotes metastatic spread (Figures S4A–S4D). It is

possible that the ovaries are preferential sites of early metastatic

disease and facilitate growth or they produce hormones that

encourage peritoneal spread. However, because we sacrificed

the oophorectomized cohort within a similar timeline as our

intact ovary animals, we cannot rule out that the development

ofmetastatic disease in thesemicemay necessitate longer times

than the timeline we studied.

PAX8-Driven Tumors Show Human HGSC Biomarkers
and Genomically Correlate with Human TCGA Data
Serum was collected and tested for the presence of CA-125, the

best characterized serum biomarker for human HGSC (Bast,

2003). All mice showed significantly higher CA-125 levels than

control mice (Figure 7A). To prove that the elevated CA-125

biomarker detected in the bloodstream is originating from

HGSCs, CA-125 was further assessed in tumor samples using

western blot analysis. As expected, tumor samples showed

increased levels of CA-125 in comparison to control murine
Ca
FTs (Figure 7B). In addition, western analysis of tumor samples

showed increased gH2A.X expression in murine HGSCs in

comparison to normal FT, supporting our previous report that

the transformation process of FTSEC to HGSC is characterized

by the acquisition of abundant DNA damage (Figure 7B) (Leva-

non et al., 2008).

We further performed a genomic copy number analysis of

HGSC tumors isolated from Brca2�/�;Tp53mut;Pten�/� mice

using array comparative genomic hybridization (aCGH) studies

(Figure 7C). The analyzed tumors showed the presence of a

large number of genomic copy number alterations, including

recurrent alterations (Figure 7C), similar to the abundance of

copy number alterations recently reported in human HGSCs

(Cancer Genome Atlas Research Network, 2011). In order to

compare the regions of copy number alterations in the mouse

HGSC model with those seen in patients, we performed

orthology mapping and correlated the syntenic regions with

recurrent alterations reported by TCGA, using the cbio portal

(http://www.cbioportal.org) (Cerami et al., 2012; Cancer

Genome Atlas Research Network, 2011). Interestingly, array

CGH analysis revealed several genomic alterations in the

mouse models that correlated with significant copy number

alterations in the human TCGA data set (Table 1; Tables S3–

S5). This overlap was found to be statistically significant (p <

0.001) by random permutation analysis (Figure S5). This analysis

also identified multiple syntenic regions that overlapped with the

top 20 significant recurrent alterations from the TCGA data set

(Table 1; Table S6). C-MYC and KRAS, among the top recurrent

amplifications in the TCGA data set, were also amplified in our

murine models with Kras showing recurrent amplifications in

two of the three mouse models. We also found many alterations

in genes that mapped to pathways reported by TCGA, namely

DNA damage (ATM, RAD17), DNA repair and HR-mediated

repair (ATM, TEX15, PALB2, FANCC, TERT), FOXM1 cell cycle

pathway (FOXM1, SKP2), NOTCH pathway (KRT1, PPARG,

NUMB, SEL1), RAS/MAPK signaling (KRAS, MAPK15), RB

pathway (E2F7), and PI3K/MYC (PIK3R1, FOXO3, RICTOR,

c-MYC) signaling, respectively (Table 1; Figure S6; Tables S3–

S6) (Cancer Genome Atlas Research Network, 2011). Other

significant recurrently TCGA altered genes that were also de-

tected in the mouse tumors included tumor suppressor genes

(APC2, WWOX, ANKRD11, INPP4B), as well as A2M, POLK,

and CDK7 (Table 1; Tables S5 and S6). Interestingly, large

regions of aneuploidy were seen to harbor genes that are

syntenic to cancer-related genes in patients, such as APC2,

CDH1, PIK3R1, MAPK15, and INPP4B. Importantly, INPP4B is

emerging as a credible tumor suppressor gene in both ovarian

and breast cancers. Loss of heterozygosity at 4q31.21, the

chromosomal region containing the INPP4B gene occurs in up

to 60% of BRCA1 mutant and triple-negative/basal-like breast

carcinomas and 39.8% of ovarian cancer cases (Gewinner

et al., 2009; Bertucci and Mitchell, 2013). Furthermore, reduced

INPP4B protein expression correlates with decreased overall

patient survival for both breast and ovarian cancers (Gewinner

et al., 2009; Bertucci and Mitchell, 2013). In summary, genomic

analysis revealed that the alterations seen in the murine models

are similar to those observed in human tumors, indicating that

these models successfully recapitulate the genomic alteration

profile of human HGSCs.
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Figure 6. Hysterectomy, Salpingectomy, and Oophorectomy Experiments to Assess the Origins of HGSCs

(A–E) Representative gross anatomy of tumor lesions found inmice undergoing hysterectomy. (A) Impact of hysterectomy on the development of bilateral ovarian

HGSC tumors (OvT) originating in the fallopian tube (FT STIC) in a Brca2�/�;Tp53R270H/�;Pten�/� mouse. Black stars denote the removal of the uterus and the

presence of the remaining fat deposits. FT STICs denote grossly normal appearing but histologically transformed fallopian tubes containing preinvasive lesions.

(B–D) Hysterectomy in a second Brca +/�;Tp53�/�;Pten�/� mouse and the resultant HGSCmetastasis to the ovary (encircled OvT) and peritoneum (encircled T).

(D) The image depicts a higher magnification of the peritoneal HGSC metastasis (T).

(E) Abdominal HGSC metastases (T) in a third Brca2�/�;Tp53R270H/�;Pten�/� mouse following hysterectomy.

(F) Histopathological and immunohistochemical (CK8, PAX8, WT1, and TP53) analysis of ovarian (top subpanels) and peritoneal (bottom subpanels) HGSC

metastases in murine models that underwent hysterectomy. Scale bars represent 100 mm.

See also Figure S4.
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DISCUSSION

Resolving the site of origin for high-grade serous ovarian carci-

nomas is integral to devising optimal strategies for risk reduction

in high-risk women (Collins et al., 2011). Similarly, determining

precisely where these tumors initiate will influence strategies

for early detection. This includes the development of screening

tests using novel serum tumor markers and improved methods

of diagnostic imaging that focus on the distal FTE, in addition

to the ovary. However, achieving these goals requires a model
760 Cancer Cell 24, 751–765, December 9, 2013 ª2013 Elsevier Inc.
that accurately mimics the human disease. Although several

animal models of ovarian cancer have recently been reported,

none target the clinically relevant FTSEC. One recent study

suggests that stem cells in the ovarian hilum and at the

junction between OSE, mesothelium, and FT epithelium may

be more susceptible to transformation; however, to date, there

is no clinical evidence of transformation and human precursor

lesions occurring in this area (Flesken-Nikitin et al., 2013).

In this study, we successfully generated a de novo mouse

model of HGSC that targets commonly altered HGSC genes



Figure 7. Serologic and Genomic Analyses of Tumors from Genetically Engineered Models

(A) Serum CA-125 levels in tumor-bearing mice (cases) compared to control animals. P value was calculated using a two-tailed student’s t test. Error bars

represent SD.

(B) Western blot analysis for CA-125 and gH2A.X levels in four tumor samples isolated from Brca1+/�;Tp53�/�;Pten�/� (#6362 and #5424) and

Brca2�/�;Tp53R270H/�;Pten�/� mice (#6096 and #5117) and compared to normal Dox-untreated FT (N).

(C) Schematic representation of the genomic alterations found in murine HGSCs. Copy number losses and gains are shown in blue and red, respectively. The

boxed upper panel depicts the frequency of the alterations including all murine tumors tested, while the boxed lower panel represents the alterations found

in individual tumors. Key orthologous genes, which show high frequency alterations in the TCGA data set, are also indicated, with losses in blue and gains in red.

The number within parenthesis indicates the percentage of samples bearing the given alteration in TCGA (single copy alterations). The asterisk indicates genes

that are recurrently altered in mouse models.

See also Figure S5 and Tables S3–S6.
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specifically to secretory epithelial cells within the fallopian tube.

Interestingly, when using the Pax8 promoter to drive Cre-medi-

ated recombination of Brca1 or Brca2, Tp53, and Pten in

FTSECs, we observe the development of precursor STIC lesions,

HGSC, and the progression to advanced stage disease,

including ovarian and peritoneal metastases. By targeting genes

that are commonly altered in human HGSC (Cancer Genome

Atlas Research Network, 2011), we have generated a murine

model system that is highly clinically relevant.

To date, although it is still unclear if we can define a single cell

of origin for HGSCs, our models serve as a proof-of-concept that

high-grade serous ‘‘ovarian’’ tumors can arise from FTSECs and

progress to metastatic disease via preinvasive lesions, namely
Ca
STICs. Interestingly, despite the fact that the mice displayed

STIC lesions, the FT appeared normal on gross inspection in

the majority of cases, whereas the ovary often showed visible

signs of disease. This observation is made repeatedly in the

examination of human specimens and may shed light on the

propensity to term this disease ‘‘ovarian’’ cancer. Importantly,

the ability of our murine tumors to accurately recapitulate the his-

tologic, immunophenotypic, and genomic alterations observed

in human HGSC, provides a compelling argument for serous

carcinogenesis originating in the FTSEC. Specifically, the tumors

expressed key tumor and serum proteins, including CK-8,

STMN1, PAX2, P53, Ki-67, WT1, and CA-125, all of which are

used clinically in the assessment of ovarian tumors. In addition,
ncer Cell 24, 751–765, December 9, 2013 ª2013 Elsevier Inc. 761



Table 1. Common Key Recurrent Genetic Alterations between Human and Murine HGSCs

TCGA

Cytoband

TCGA CNA

(Wide Peak Start–End) Mouse CNAa Amp/Del Gene Pathway

Top 20

Significant TCGA

Recurrent CNAsb

2q37.3 234758443–242951149 chr12:36,720,980-37,802,564c del yes

4q23 89731957–117654338 chr3:127,451,904-141,625,646c del yes

5q11.2 56048896–58137258 chr13:110,109,027-113,105,798c del yes

5q13.1 66419415–74667916 chr13:95,262,550-104,324,218c del RAD17 DNA damage yes

5q13.1 66419415–74667916 chr13:95,262,550-104,324,218c del PIK3R1 PI3K/MYC yes

5p13.2 21598644–45107526 chr15:3,114,799-181,356,650 amp RICTOR PI3K/MYC

5p13.2 21598644–45107526 chr15:3,114,799-181,356,650 amp SKP2 cell-cycle/FOXM1

6q21 92485304–127156139 chr10:29,810,651-58,578,139c del FOXO3 PI3K/MYC

8q24.3 144180457–146072839 chr15:75,090,979-78,428,406c amp MAPK15 RAS/MAPK yes

8q24.21 128754508–129388953 chr15:48,210,186-64,122,067 amp MYCd PI3K/MYC yes

11p15.5 1–4068254 chr7:108,811,066-150,762,912c del yes

11q25 102218055–134452384 chr9:48,031,081-55,892,857c del ATM DNA damage

12p12.1 25059809–25394729 chr6:140,384,028-149,484,294c amp KRASd RAS/MAPK yes

12q24.33 74257132–132349534 chr10:82,071,334-111,202,977c del E2F7 RB

14q23.3 52629784–73351045 chr12:72,206,878-72,256,634c del NUMB NOTCH

16q23.1 77190685–77350206 chr8:117,016,075-118,224,787 del WWOX tumor suppressor

16q24.3 87965263–88055649 chr8:125,510,236-125,750,050 del ANKRD11 tumor suppressor

19p13.3 1–306931 chr10:77,929,170-80,249,143c del yes

19p13.3 1264798–4426322 chr10:77,929,170-80,249,143c del APC2 tumor suppressor yes

20q13.33 61411961–62435964 chr2:180,838,357-181,356,650c amp yes

Recurrent changes occurring in two mouse models were found in cytobands 12p12.1, 19.13.3, and 2q37.3; recurrent alterations occurring in three

mouse models were found in cytobands 5q11.2 and 5q13.1. See also Figure S6.
aRepresentative mouse CNA genomic coordinates are shown.
bYes indicates that the CNA is included in the top 20 significant alterations in TCGA.
cDenotes merged peak reported in TCGA.
dGene is one of the top 20 significant genes in the TCGA data set.
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our genomic analysis revealed that the alterations seen in murine

tumors are indeed similar to those observed in corresponding

HGSC patients (Cancer Genome Atlas Research Network,

2011), such as amplifications of the c-Myc locus, and copy

number alterations in DNA damage, HR-mediated repair, Notch,

PI3K/KRAS, and cell-cycle-related genes, indicating that these

models faithfully recapitulate human HGSC pathogenesis.

TP53 mutations are one of the hallmarks of HGSC (Cancer

Genome Atlas Research Network, 2011; Ahmed et al., 2010)

and widely disseminated disease is likely to harbor dominant

negative and/or loss of function mutations at the TP53 locus

(Sood et al., 1999). However, although TP53 mutations appear

to be obligatory in HGSC, to date, little is known about the ability

of TP53 to drive ovarian cancer. In our models, there was no

obvious phenotypic difference between tumors with complete

deletion of Tp53 and tumors expressing a Tp53R270H dominant

negative mutation. Interestingly, Tp53 mutations coupled with

loss of Pten did not drive progression of the disease beyond

the initial preinvasive stage in our mice, even well beyond the

timeline when we saw widespread peritoneal disease with

the additional targeting of Brca1 or Brca2. This observation

supports clinical data that TP53 mutations alone rarely drive

ovarian tumor formation (Nichols et al., 2001) but suggests that

PTEN loss, a frequent occurrence in human STICs (Roh et al.,

2010), can cooperate with mutant TP53 in early serous tumori-
762 Cancer Cell 24, 751–765, December 9, 2013 ª2013 Elsevier Inc.
genesis. Future studies will focus on understanding the clinical

implications of Tp53 loss versus expression of various different

Tp53 mutants in the development of HGSC. Collectively, the

murine and human data indicate that alterations in PTEN or

the PTEN/PI3K pathway are important in the development of

STIC lesions and FTSECmalignant transformation. Furthermore,

our data suggest that the BRCA status may play a much more

significant role in the development of metastatic HGSC despite

it being altered much less frequently than TP53 in human

HGSC cases (Alsop et al., 2012; Cancer Genome Atlas Research

Network, 2011). Previous studies have shown that cells with loss

of expression in BRCA1 or BRCA2 genes have defective HR-

mediated repair pathways and are likely candidates for PARP

inhibitors (Farmer et al., 2005; Fong et al., 2009; Veeck et al.,

2010). It has recently been suggested that other genetic

alterations, including EMSY mutations, deletion or mutation

of PTEN and INPP4B genes, ATM or ATR mutations, and

Fanconi anemia gene mutations, may render cells sensitive

to PARP inhibition; however, this has not been tested in an

experimental in vivo model. Our models, which have shown

many of these genetic alterations, allow for an elegant system

in which to test the efficacy of PARP inhibitors. Furthermore,

these models will allow us to investigate in a preclinical setting

whether tumors with BRCA2 mutations have a more efficacious

response to PARP inhibitors compared to BRCA1 tumors.
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Most importantly, early detection of HGSC is difficult but

the concept is highly attractive because it can conceivably be

achieved at less cost and burden to the patient. If a significant

proportion of ‘‘ovarian’’ serous cancers actually emerge from

the distal fallopian tube, a significant shift in both conceptual

thinking and preventive strategy will be required. It will be impor-

tant to determine if patients at high-risk for HGSC should only

have the affected distal portion of the fallopian tube removed,

rather than both tubes and ovaries. Can these young BRCA

women be offered risk-reduction surgery without undergoing

surgical menopause and loss of their fertility? Similarly, deter-

mining precisely where these tumors initiate will influence

strategies for early detection. This includes the development

of screening tests using novel serum tumor markers and

improved methods of diagnostic imaging that focus on the distal

FTE in addition to the ovary. In conclusion, the first goal of

our research has been to produce a valid model of serous

high-grade tumors. The second is to identify discrete character-

istics of early serous carcinogenesis in the tube that can be

exploited for early detection and to examine the causes of the

earliest events preceding malignancy, which will create a great

opportunity for cancer prevention in high-risk women. It is

clear that events leading to the development of STICs play a

significant role in the development of serous tumors. Resolving

their pathogenesis will enable more efficient methods for early

detection, tumor imaging, cancer prevention, and identification

of populations at risk.

EXPERIMENTAL PROCEDURES

Development of Genetically Engineered Mouse Models

All animal studies and procedures were approved by the Dana Farber Cancer

Institute and Harvard Medical School Animal Care and Use Committees.

PAX8-rtTA, TetO-Cre, and Gt (ROSA) 26Sor strains (C57Bl background)

were acquired from the Jackson Laboratory (Perl et al., 2002; Soriano, 1999;

Traykova-Brauch et al., 2008). Brca1flox/flox and Brca2flox/flox mice were

generated by insertion of LoxP sites into introns surrounding exon 11 in the

Brca1 and Brca2 loci respectively, on a stock background (Jonkers et al.,

2001; Xu et al., 1999). For the Tp53flox/flox mice LoxP sites were inserted in

introns 1 and 10 of the endogenous Tp53 locus. Tp53-LSL-R270H

(Tp53R270H) mice contain a dominant negative point mutant allele of Tp53

that can be activated by Cre-mediated recombination (Olive et al., 2004).

Tp53flox/flox and the Tp53R270H mice were a gift from Dr. Tyler Jacks (MIT).

Ptenflox/flox mice were generated by inserting LoxP sites into the Pten locus

flanking exon 5 (Lesche et al., 2002). Genotyping procedures are described

in the Supplemental Experimental Procedures. In order to drive Cre-mediated

recombination in murine FTSECs, we treated experimental and control mice

for 14 days with Dox (Sigma) using a concentration of 0.2 mg/ml in their

drinking water. Animals were routinely monitored for signs of distress, poor

body condition, and tumor burden and were euthanized according to

veterinary recommendations. For survival curve experiments, the mice were

monitored until their death or upon veterinary recommendations.

Quantification of Serum CA-125 Levels

CA-125 levels inmurine sera, whichwere collected via cardiac puncture during

necropsy, were quantified using a USCN ELISA kit (Life Science) according to

manufacturer’s instructions. One hundred microliters of serum was used per

sample for ELISA testing.

Array Comparative Genomic Hybridization

Mouse genomic DNA was isolated using Gentra Puregene Cell Kit (QIAGEN)

according to the manufacturer’s instructions. Array comparative genomic

hybridization (aCGH) was performed using whole genome Agilent SurePrint
Ca
G3 mouse CGH 1M catalog array (Agilent Technologies). Genomic DNA

from three normal mouse FTs was pooled and used as a reference. One

microgram of total genomic DNA from the reference and test samples (derived

from murine HGSC tumors) was used to perform array CGH according to

the manufacturer’s protocol. Briefly, reference and test DNA were first frag-

mented using a heat block at 95�C for 5 min and then labeled with Cyanine

3/Cyanine 5 fluorescence-labeled nucleotides respectively, according to the

BioPrime Array CGH Genomic Labeling protocol (Invitrogen). Labeled DNA

was purified using Amicon Ultra-0.5 30 k purification columns (Millipore).

Test and reference DNA were then combined and hybridized to the Agilent

1 M mouse catalog array for 40 hr at 65�C. The array slides were further

washed and scanned. Probe signal intensities were obtained using the feature

extraction software analysis provided by Agilent. Copy number alterations

were identified using Nexus software analysis (BioDiscovery). The FASST2

segmentation algorithm was applied by setting the following parameters: a

minimum number of five probes per segment were used to detect a copy

number aberration with a significance threshold of 5 3 10�6; we further used

log ratio cut offs of ±0.3 to detect one copy gain/loss and ±0.7 to detect

high gain/homozygous loss.

Comparison with the Human TCGA Data Set

Mouse and human orthology information was obtained from the Mouse

Genome Informatics database (http://www.informatics.jax.org/mgihome/

other/citation.shtml) (Eppig et al., 2012) using the mm9 mouse genome

reference assembly. The resulting regions were then compared to the

alterations identified in the TCGA data set (Cancer Genome Atlas

Research Network, 2011). The syntax ‘‘<gene name>:CNA >=GAIN’’ and

‘‘<gene name>:CNA % HETLOSS’’ were used to query single copy gains

and losses from the TCGA cbio portal, respectively (Cerami et al., 2012).
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