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Abstract

Purpose: To generate a comprehensive "Secretome" of proteins
potentially found in the blood and derive a virtual Affymetrix
array. To validate the utility of this database for the discovery of
novel serum-based biomarkers using ovarian cancer transcrip-
tomic data.

ExperimentalDesign: The secretomewas constructed by aggre-
gating the data from databases of known secreted proteins,
transmembrane or membrane proteins, signal peptides, G-pro-
tein coupled receptors, or proteins existing in the extracellular
region, and the virtual array was generated by mapping them to
Affymetrix probeset identifiers. Whole-genome microarray data
from ovarian cancer, normal ovarian surface epithelium, and
fallopian tube epithelium were used to identify transcripts upre-
gulated in ovarian cancer.

Results: We established the secretome from eight public data-
bases and a virtual array consisting of 16,521 Affymetrix U133

Plus 2.0 probesets. Using ovarian cancer transcriptomic data, we
identified candidate blood-based biomarkers for ovarian cancer
and performed bioinformatic validation by demonstrating redis-
covery of known biomarkers including CA125 and HE4. Two
novel top biomarkers (FGF18 and GPR172A) were validated in
serum samples from an independent patient cohort.

Conclusions: We present the secretome, comprising the
most comprehensive resource available for protein products
that are potentially found in the blood. The associated virtual
array can be used to translate gene-expression data into cancer
biomarker discovery. A list of blood-based biomarkers for
ovarian cancer detection is reported and includes CA125 and
HE4. FGF18 and GPR172A were identified and validated by
ELISA as being differentially expressed in the serum of ovarian
cancer patients compared with controls. Clin Cancer Res; 21(21);
4960–9. �2015 AACR.

Introduction
Epithelial ovarian cancer affects 23,000 women resulting in

approximately 15,500 deaths in the United Sates per year (1).
Because of the lack of symptoms of early-stage disease, approx-
imately 75% of ovarian cancer patients present with disease
involving the upper abdomen (FIGO stage III/IV) and only
30% of these patients survive 5 years beyond their diagnosis

(2). In contrast, when ovarian cancer is diagnosed in the early
stage, the prognosis is excellent with 5-year survival exceeding
90%. Hence, identification of early detection biomarkers specific
for ovarian cancer could have a significant impact on mortality
from ovarian cancer.

CA125 is themost widely studied serum biomarker for ovarian
cancer. Although screening studies with CA125 tests, interpreted
with a single threshold or serially, followed by ultrasound scans
for women with a positive test have shown excellent specificity,
the utility of CA125 as a biomarker for the early detection of
ovarian cancer remains unproven largely due to its unknown
sensitivity for early-stage disease in asymptomatic subjects.
CA125 is not elevated in almost 50% of clinically detected stage
I ovarian cancers (3) and is not expressed in approximately 20%of
ovarian cancer (3). Specificity in the largest target population,
postmenopausal women, is very high even though CA125 can
also be elevated in common benign conditions, including uterine
fibroids, benign ovarian tumors, pelvic endometriosis, follicular
cysts, and cystadenoma, as these conditions are farmore common
in premenopausal women. And although CA125 is also elevated
in women with other cancers such as pancreatic, and breast and
lung metastatic to the peritoneum, the incidence of these malig-
nancies is similar to ovarian cancer (4). HE4 is another biomarker
that is increased in the serumofwomenwith ovarian cancer (5). It
has less sensitivity than CA125, although its specificity may be
greater as HE4 appears to be less influenced by benign conditions.
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Little information onHE4's performance in prospective screening
trials exists as only a single small screening trial has reported (6).
To date, the evidence points to no single cancer biomarker being
sufficiently sensitive for early-stage disease in asymptomatic
women to meet the stringent criteria necessary as a first line test
for the early detection of ovarian cancer. Additional serum bio-
markers to detect ovarian cancer not expressingCA125or to detect
it earlier than CA125 are needed to identify a screening test that
detects the full spectrum and earliest stages of the disease.

Transcriptomics has been widely used to identify differentially
expressed genes and molecular signatures in many biologic pro-
cesses (7–13). Transcription profiling studies have also been used
to predict patients' survival in ovarian cancer (14). In addition,
gene-expression changes and other genomic alterations can be
correlated on a global level. Hence, transcriptomics canbe extend-
ed to identify different types of biomarkers in many human
cancers. However, sets of differentially expressed genes provide
no intrinsic information about which are most likely to be
reflected in the circulation. The identification of blood-based
biomarkers would be greatly facilitated by a generic platform
that identifies genes encoding proteins potentially found in the
blood.

The "Secretome" and associated virtual array established in this
study provides a platform for the identification of blood-based
biomarkers for high-grade, advanced-stage serous ovarian
tumors. The gene reference set and array are whole genome based,
the latter using a commercially available expression platform that
can be applied to any cancer for which there is adequate tran-
scriptome data. As a proof of principle, we used expression
profiling data generated from high-grade, advanced-stage serous
ovarian cancer patient samples, normal ovarian surface epitheli-
um (OSE), and normal fallopian tube epithelium (FTE). To
prioritize candidates, we introduced a pathway-based biomarker
identification approach as relevant secretome proteins might be
interconnected with intracellular signaling pathways. These
blood-based proteins were further filtered based upon their
expression in normal organs and tissues. Our approach identified
both established high-grade serous ovarian cancer biomarkers
(including CA125 and HE4) and novel candidates. Two new

markers (FGF18 and GPR172A) were validated at the mRNA
levels using independent sets of microarrays and on the protein
level in an independent cohort of serum samples.

Materials and Methods
Generation of secretome array

The secretome was generated from eight databases, including
secretedprotein database (SPD),Uniprot secreted proteins, Signal
Peptide Website (An Information Platform for Signal Sequences
and Signal Peptides), Zhang database, GPRCDB (A Molecular-
Specific Information System for G Protein-Coupled Receptors),
andAmiGO(theGeneOntology database; see Table 1 for details).
Within each secretome source database, only human-specific
proteins were searched. To create the virtual array, the gene
identifiers provided by each database were mapped to Affymetrix
human genome U133 Plus 2.0 probeset identifiers. BioMART-
ENSEMBLE GENES 63, Homo sapiens genes GRCh37.p3 (http://
www.biomart.org, June, 2011), and DAVID v6.7 (http://david.
abcc.ncifcrf.gov/conversion.jsp, Sept. 21, 2011) were used to
generate the identifier maps. Identifiers from each database were
checked against each map, and the map containing the highest
fraction of these identifiers was used. The DAVID map combined
conversions for all Affymetrix 30 arrays, so these were further
narrowed down to 133 Plus 2.0 maps only, using the hgu133-
plus2.db Bioconductor package (v. 2.4.5). By this method, all
identifiers weremapped to zero, one, ormore Affymetrix probeset
identifiers in one step. For each unique probeset identifier, a
record was kept of which databases identified it, and of the
original geneor protein identifiersmapped to it. All computations
were performed in the R statistical environment v. 2.12.1 (R
development Core Team, 2010).

Microarray data normalization and class comparison
We used two independently generated gene-expression data-

sets. Dataset A consisted of 10 microdissected ovarian cancer
samples and 10 microdissected normal fallopian tube samples
(15). Dataset B consisted of 53 microdissected ovarian tumor
samples and 10 normal OSE samples. All the samples were
profiled using Affymetrix Human Genome U133 Plus 2.0 arrays.
The CEL files were background-corrected, normalized, and sum-
marized using RMA (Bioconductor package affy) for the two
datasets separately. Summarized expression data were filtered to
contain probesets that are in the secretome. Differential gene-
expression analysis between cancer and normal samples was
carried out using LIMMA (Bioconductor package limma).

Pathway-based approach for biomarker discovery
PathwayStudio (Elsevier) software was used to identify bio-

markers related to biologic pathways. This software uses a protein
interaction database derived from the entire Medline abstract
database. This type of analysis explores the global and systemic
properties of the underlyingmolecular networks of the biomarker
list generated for ovarian cancer and enables interpretation of the
biologic significance of the gene list. This annotation can be used
to prioritize candidate biomarkers for validation. The biomarker
lists were imported to Pathway Studio and initially the algorithm
"Find direct interactions" was used. This algorithm assembled a
network of themolecules directly interacting in the imported gene
list and allowed no additional objects to be added to the network.
Subsequently, all the "direct interactions group" probesets were

Translational Relevance

Large-scale genomicprojects are providing extensive data on
aberrant gene expression in different epithelial cancers. A
major challenge is translating these data into clinically useful
applications. We report a comprehensive "Secretome" and
virtual array to support the identification of candidate
blood-based biomarkers by using differential gene expression.
Although we have demonstrated utility in the context of
ovarian cancer transcriptional array data, this database can
be applied to any cancer for which there are adequate gene-
expression profiles of tumor and its normal counterpart
(including RNAseq profiles) whereas the associated virtual
array especially facilitates array-based experiments. Applica-
tion of the "secretome array" to ovarian cancer transcriptome
databases has rediscovered known biomarkers and identified
novel candidates. This approach can accelerate biomarker
discovery, leveraging genomic data to provide enriched can-
didate lists of potential blood-based proteins.
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extracted and analyzed using the Fisher exact test to identify the
statistically enriched pathway associated biomarkers.

Cancer selective expression approach to prioritize the
candidate biomarkers

To identify markers that were uniquely expressed in ovarian
tumors as opposed to genes that are ubiquitously expressed in
many normal tissues or organs we used The Gene Expression
Barcode resource (16). This database provides absolute measures
of expression for the most annotated genes in essentially all
normal tissue types and organs. This resource leverages informa-
tion from the GEO and Array Express public repositories to build
statistical models that convert data from a single microarray into
expressed/unexpressed calls for each gene. The output of the
algorithm is expressed as an average of 1's (expressed) or 0's
(unexpressed) across tissues and is in the range of zero to one.

Validation of FGF18 and GPR172A
An independent gene-expression dataset (GEOAccessionnum-

ber: GSE26712) was used for bioinformatic validation. The data-
set GSE26712 consists of 185 primary ovarian tumors and 10
normal OSE samples profiled using Affymetrix human U133A
microarray (17).

Serum collection, FGF18 and GPR172A ELISA
Control (n¼ 20) andovarian cancer patients' serum samples (n

¼ 20, referred as "case" samples hereafter) were obtained from a
previously published study by Early Detection Research Network
(18) and the Department of Pathology, Massachusetts General
Hospital respectively. Serum samples of both cohorts were col-
lected following the same procedure as previously described (18).
The control samples were collected from healthy, postmenopaus-
al Caucasian women without apparent neoplastic disease and
without active non-neoplastic disease (18). The "case" samples
were collected from postmenopausal Caucasian women with
high-grade, advanced-stage, serous ovarian cancer. FGF18 and
GPR172A were quantified at protein level using a sandwich
enzyme immunoassay technique. The ELISA kits were commer-
cially obtained from My Biosource (FGF18 catalog number:
MBS912811 and GPR172A catalog number: MBS702260) and
used as per themanufacturer's instructions. All reagents usedwere
supplied in the Kit. Each ELISA plate was read at 450 nm with the
correction wavelength set at 540 nm.

Results
Generation of secretome array

Genomic technologies provide a unique opportunity to glob-
ally identify potential candidate genes whose proteins could serve
as plasma or serum markers of cancers. Numerous studies and
databases report known and/or predicted secreted proteins, using
complementarymethodologies, which can aid such efforts. How-
ever, each resource is likely to be both incomplete and to contain
incorrect predictions; in addition they are provided in inconsis-
tent formats anduse a variety of protein andgene identifiers. Thus,
we collected and synthesized several databases from published
papers providing lists of secreted proteins, transmembrane or
membrane proteins, signal peptides, G-protein coupled receptor,
or proteins existing in the extracellular region.

Our bioinformatics approach had threemajor phases as shown
in Fig. 1. Phase I consisted of collecting the protein and gene
information from different data sources (Table 1). All the data-
bases and published articles were available in the public domain,
and we searched only for human-specific proteins. Briefly, SPD
has a collection of secreted proteins fromHuman,Mouse, and Rat
proteomes, which also includes sequences from SwissProt,
Trembl, Ensembl, and Refseq. We extracted 5715 UNIPROT ID
entities from this database. Clark and colleagues (19) reported a
database, Secreted Protein Discovery Initiative, for secreted and
transmembrane proteins, which contained 1047 transcripts repre-
senting 1021 genes.

Diehn and colleagues (20) generated a database on mem-
brane-secreted proteins, and expression of membrane-secreted
genes in human malignancies and normal tissues. We used this
data source to extract information for membrane/secreted
proteins associated with human malignancies and normal
tissues (1,552), tumor markers (842) and organ specific injury
molecules (285). "UniProt" was used to extract 2645 Unipro-
tID entities using the search terms "secreted" and organism:
"Homo sapiens."

The website http://www.signalpeptide.de contains proteins
with signal sequences and signal peptides grouped into Mamma-
lia, Drosophila, Viruses, and Bacteria. Using the "advanced
search" section of the website, we extracted all proteins for
the organism "Homo sapiens," which identified 500 UniprotID
entities. We also used signal peptide database (Zhang), which
contains signal sequences for different species such as archae,

Table 1. Databases used for secretome array generation

Database No. of IDs Map used No. of Mapped Source

spd 5,715 david_uniprotID 3,083 http://spd.cbi.pku.edu.cn/
Clark et al. 1,047 mart_genbank 946 http://genome.cshlp.org/content/13/10/2265/suppl/DC1
Diehn et al. 1,552 mart_unigene 1,013 Diehn et al. (ref. 20; Fig. 4)
Diehn et al. 842 mart_uniprotGeneName 678 Diehn et al. (ref. 20; Fig. 5)
Diehn et al. 285 mart_unigene 178 Diehn et al. (ref. 20; Fig. 6)
uniprot_secreted1 2,645 mart_uniprotAccession 2,402 http://www.uniprot.org/uniprot/?querysecretedþAND

þorganism%3A%22Homoþsapiensþ%5B9606%5D%22&sortscore
Signal 500 david_uniprotID 447 http://www.signalpeptide.de/index.php
Zhang 3,243 mart_uniprotID 2,976 http://proline.bic.nus.edu.sg/spdb/download.html
gpcr.org_structure 212 mart_pdb 155 http://www.gpcr.org/7tm/?wicket:bookmarkablePage¼:nl.ru.cmbi.mcsis.

web.pages.proteinstructure.ProteinStructureOverviewPage
gpcr.org_family 1,333 mart_uniprotID 649 http://www.gpcr.org/7tm/proteinfamily/
AmiGO GO:0016020 10,868 mart_uniprotAccession 7,419 http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/gene-associations/

gene_association.goa_human.gz?rev¼HEAD
AmiGO GO:0005576 2,425 mart_uniprotAccession 1,900 http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/gene-associations/

gene_association.goa_human.gz?rev¼HEAD
Total 3,0667 21,846
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prokaryotes, and eukaryotes. The search criteria used were
Sequence type as "Signal peptide (DNA)" and narrowed down
to the organism "Homo sapiens," which resulted in the identifica-
tion of 3243 uniprotID entities.

G-protein–coupled receptors (GPCR) constitute a large and
diverse family of proteins whose primary function is to transduce
extracellular stimuli into intracellular. GPRCDB is a comprehen-
sive database that stores large amounts of heterogeneous data on
GPCRs. We downloaded all annotated protein structures and
Class A Rhodopsin-like families from the GPCRDB, respectively,
providing 212 PDB and 1333 UniprotID entities. The gene
ontology (Homo sapiens Revision 1.9) provided 10,868 Uniprot
Accession IDs associated with theGO terms formembrane and its
related terms, and 2425 Uniprot Accession IDs associated with
Extracellular Region and its related terms (see Supplementary
Methods for details). This phase integrated data from diverse
sources to create a comprehensive set of identifiers corresponding
to potentially secreted human proteins, supported by varying
numbers of sources.

Mapping of the secretome onto Affymetrix array
In phase II, we mapped the identifiers provided by the

secretome generation database sources to Affymetrix probeset
IDs. We checked each set of original identifiers against two
competing resources for identifier mapping: BioMART-ENSEM-
BLE GENES 63 and DAVID v6.7, and used whichever allowed
mapping to a greater number of the identifiers (Table 1). In
phase III, we assembled the probesets and removed all redun-

dant ones to generate the unique secretome virtual array. This
identified 16,521 unique Affymetrix U133 plus 2 probesets. For
each probeset identifier, a record was kept of which databases
identified it, and which original gene or protein identifiers were
mapped to it, providing provenance and a means to assess
confidence in each probeset by the number of databases iden-
tifying it. Supplementary Table S1 provides detailed informa-
tion on our secretome array. Out of 16,521 probesets in the
Secretome Array, only 6 probesets were identified by all eight
databases, 43 by 7 of 8 and increasing numbers for each smaller
number of source databases. The 6 probesets with the highest
score of eight corresponding to the genes SFRP2, SEMA3F, and
PGF. SFRP2 gene encodes a member of the SFRP family that
contains a cysteine-rich domain homologous to the putative
Wnt-binding site of Frizzled proteins. SFRPs act as soluble
modulators of Wnt signaling and it is a secreted protein
(21). SEMA3F (semaphorins) are a family of proteins that are
involved in signaling (22). PGF (placental growth factor) gene
encodes a growth factor found in placenta, which is homolo-
gous to vascular endothelial growth factor and it is a secreted
protein (23). All these genes are known secreted proteins.

Identification of potential secreted biomarkers for ovarian
cancer using the secretome

We applied the secretome virtual array to gene-expression
databases of ovarian cancer and normal controls to identify genes
that are differentially expressed. Figure 2 demonstrates the sche-
matic overview of our approach to identify detection biomarkers

Secreted protein database Clark (Genome Res. 2003; 13:2265–70)

Diehn et al. PLoS Genet
2006; 2:e11

Signal peptide website

GPRCDB AmiGO

Zhang database

Uniprot secreted proteins

Establish list of proteins/genes coding for
proteins that may be found in the serum

Mapping to
BioMART-ENSEMBLE GENES 63 and DAVID v6.7

Remove redundant probe sets

16,521 unique probe sets

Overlay probe sets to Affymetrix U133 plus 2
to create a secretome array

Phase I

Phase II

Phase III

Figure 1.
Schematic overview of generation of Secretome
Array.
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candidates for ovarian cancer. On the basis of the recent evidence
on alternative sites of the origin for ovarian cancer, we generated
two different gene lists for biomarkers based on the comparison
between high-grade serous ovarian cancer gene-expression data
with, both normal fallopian tube and normal OSE (24, 25). All
expression data were generated from microdissected tissue sam-
ples. A two-group comparison was conducted using LIMMA to
generate a list of differentially expressed probesets between tumor
and normal tissue. This list was filtered through the secretome
array (16,521 probesets), which yielded 1033 probesets (fold
change �1.5, T >3.0) that were upregulated in the ovarian cancer
in compared with normal FTE (List A in Fig. 2; List 1 in Supple-
mentary Table S4). Independent analysis using a cohort of ovarian
cancer expression data compared with normal OSE identified
1,167 upregulated probesets in cancer (List B in Fig. 2; List 2 in
Supplementary Table S4).

Bioinformatic validation of the secretome array
To validate the secretome array, we searched our differen-

tially expressed gene list for previously characterized ovarian
cancer biomarkers. Review of the literature revealed six bio-
markers that have been described as potential blood-based
biomarkers for ovarian cancer. These include CA125 (3), HE4
(26), prostasin (27), osteopontin (28), VEGF (29), and IGFBP2
(30). All of these proteins were found to be statistically signif-
icantly overexpressed in cancer compared with normal epithe-
lium in our list (Table 2).

Filtering of gene lists based upon pathway association
To filter our gene list further, we used pathway identification.

Our goal for this analysis was to use the secretome data to gain
functional insights pertaining to the roles of these proteins in
biologic processes anduse that information to better prioritize the

Dataset A: Cancer vs. normal fallopian tube Dataset B: Cancer vs. normal ov surface Epi

Data normalization

Secretome array (16,521 Probesets)

Fold change >1.5 and T stat >3.0

A :1,033 probesets B :1,167 probesets

Probesets associated with pathways

A :356 probesets
A : 661 probesets

A : 57 pathways

A : 180 probesets B : 232 probesets

B : 47 pathways

B :442 probesets
B : 691 probesets

Common

Common

151 probesets
41 Probesets

Fisher exact test (P < 0.05)

Number of probe sets (P < 0.05)

Probesets not associated with pathways

122 gene list34 gene list

17 gene list 72 gene list

Remove multiple probesets for single gene

Normalization for normal tissue expression

Figure 2.
Schematic overview of ovarian cancer biomarker discovery.

Table 2. Validation of secretome array by previously identified potential serum-based biomarkers

Gene name Probe set
Fold change
cancer vs. FTE T Stat

Fold change
cancer vs. OSE T stat

Cancer antigen 125 (CA-125) 220196_at 2.09 2.36 2.8 3.15
Human epididymis protein 4 (HE4) 203892_at 10.5 11.27 1.4 1.38
Prostasin 202525_at 2.78 4.78 2.65 5.0
Osteopontin 1568574_x_at 1.56 5.5 1.98 3.2
Vascular endothelial growth factor (VEGF) 212171_x_at 1.55 5.3 2.45 4.6
Insulin-like growth factor–binding protein-2 202718_at 1.67 1.62 5.1 3.8
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lists. The biomarker gene list A (1033 probesets, fold change
�1.5, T >3.0) was imported to PathwayStudio software. The
algorithm identified 356 probesets, which network for the
molecules that are directly interacting. Subsequently, a Fisher
exact test was used to identify pathways that are statistically
enriched in the 356 probesets identifying 57 pathways (P <
0.05) involving 180 unique probesets. The pathways identified
include Focal Adhesion Regulation, VEGFR ! NFATC signal-
ing, GFR ! NCOR2 signaling, FGFR ! RUNX2 signaling,
among others; a detailed list is provided in Supplementary
Table S2. Similar analysis was carried out on gene list 2 (1167
probesets, fold change�1.5, T > 3.0) for identifying biomarkers
associated with pathways. The algorithm identified 422 pro-
besets, which identify molecules that are directly interacting.
The Fisher exact test using 422 probesets identified 47 pathways
(P < 0.05) involving 232 unique probesets. The pathways
identified include Frizzled R ! CTNNB signaling, Activin
R ! SMAD2/3 signaling, VasopressinR2 ! CREB/ELK-SRF/
AP-1/EGR signaling, EDG3/5 ! AP-1/ELK-SRF signaling, and
Notch ! TCF3 signaling. A detailed list is provided in Sup-
plementary Table S3. We hypothesized that genes found in
both lists would reflect more profound biology and that a
common list would give us more robust biomarkers for vali-
dation. This analysis identified 41 probesets (List 3) common
in Lists 1 and 2 (Supplementary Table S4).

This algorithm allowed us to generate a gene list, associated
with direct interacting networks and biologic pathways. Alter-
natively, there may be molecules that are not found within
pathways (due to the lack of intervening genes on the primary
lists), which still have the potential to serve as ovarian cancer
biomarkers. These molecules will be filtered out in the above
analysis. Hence, we generated a second gene list using probesets
not associated with pathways. There were 691 and 661 probe-
sets filtered out from Lists 1 and 2, respectively. We searched for
common probesets present in these filtered out probesets and
identified 151 unique probeset biomarker list (List 4; Supple-
mentary Table S5).

A cancer-selective expression approach to prioritize candidate
biomarkers

To identify biomarkers most likely to be uniquely elevated in
the blood of ovarian cancer patients, we filtered our lists
according to gene expression in normal tissues or organs and
prioritized those with low expression in normal organs and
tissues. The Gene Expression Barcode Resource Database pro-
vides absolute measures of expression for all the probesets in a
variety of tissues and organs. We extracted the expression data
for each gene in our gene lists from The Gene Expression
Barcode Resource Database against 38 normal tissues and
organs, including the major organs such as liver, kidney, ovary,
spleen, thyroid, and lungs. We averaged the expression levels
for all normal tissues to a single reference value (average gene-
expression bar code) for each probeset, expressed these in the
range 0 to 1. A number close to 1 indicates that the probeset is
almost certainly expressed in the tissue and a number of 0 or
close to 0 indicates that the probeset is probably not expressed
in that tissue. Figure 3 displays the expression pattern of
probesets for Lists 3 and 4 on all major normal tissues and
organs evaluated. In the 41 gene lists, two probesets (BAK1 and
TSPAN17) had a gene-expression bar code of zero signifying
there was no detectable expression in any of the normal tissues

Figure 3.
Heatmap demonstrating expression level of each probesets in the list 3 (A)
and list 4 (B) in various normal organs and tissues: Blue represents that the
probeset has low or no expression and red represents that the probeset is
almost certainly expressed in that tissue type.
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evaluated. Twenty-four probesets have a gene-expression bar
code <0.10 which includes four probesets corresponding to the
FGF18 gene. In the 151 gene list, 27 probesets such as
GPR172A, C8orf30A, HAPLN3, CABLES2, LRFN4, MTFP1,
C8orf55, ATAD3A, TSPAN17, CLPB, ZDHHC12, LEMD2,
TMEM65, ZNF777, SHARPIN, KAZALD1, FKBPL, ZMYND19,
C8orf30A, ADCK5, C7orf13, KCNMB3, GET4, C21orf45,
TM9SF4, SLC35B2, andHS6ST1 had a bar code of zero, whereas
104 probesets had a bar code <0.10.

We hypothesized that a blood-based biomarker should be
expressed at relatively low levels in normal tissues to improve
the background to tumor ratio. Hence, we ranked the bio-
marker lists based on their low-expression gene-expression bar
code in normal tissues and organs. We found that FGF18
had four probesets with high expression in cancer and low
expression in normal tissues and organs (low average gene-
expression bar code) from List 3. GPR172A is the gene that had
two probesets with high expression in cancer and low expres-
sion in normal tissues. We selected both these molecules for
validation.

Independent validation of candidate biomarkers for ovarian
cancer

To validate our top biomarker candidates (FGF18 and
GPR172A), we looked at the mRNA expression level of these
molecules in ovarian cancer specimens using a publically avail-
able independent gene-expression database (GSE26712). Both
molecules were found to be overexpressed in serous ovarian
tumor samples (n ¼ 185) in comparison with their expression
in normal OSE (n ¼ 10) in a statistically significant manner (P <
0.001; Fig. 4A and B). Because these candidate biomarkers were
identified using the secretome array, we expected to find them in
the blood.We tested serum samples fromwomenwith advanced-
stage ovarian cancer by ELISA for blood levels of FGF18 and
GPR172A and compared that with normal age–matched controls.
In the ovarian cancer group, levels of both molecules were found
to be significantly increased in comparison with the control
group. Serum FGF18 level increased 1.9-fold in the ovarian cancer
group in comparisonwith the control group (P < 0.0001, Fig. 4C).
There was a 2.9-fold increase inGPR172A serum level observed in
the ovarian cancer group in comparison with the control group
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Figure 4.
Validation of the candidate
biomarkers in the secretome array. A
and B, mRNA expression levels of
FGF18 (A) and GPR172A (B) in the
validating dataset GSE26712. Graph
shows microarray gene-expression
intensity of FGF18 and GPR172 in
ovarian cancer and normal controls. C
and E, ELISA assays for FGF18 and
GPR172A. The graph shows the ELISA
assay performed for FGF18 (C) and
GPR172A (D) proteins on serum
samples of ovarian cancer patients
and normal controls. The data are
shown asmean� SEM. The sensitivity
and specificity of FGF18 and GPR172A
as indicator of sample original (normal
or ovarian cancer) were calculated by
a receiver operating characteristic
(ROC) curve (E).
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(P ¼ 0.0020, Fig. 4D). In addition, FGF18, GRP172A and the
accumulation of both markers present decent sensitivity and
specificity to indicate the origin of serum specimens (normal or
ovarian cancer) in the cohort used for ELISA (Fig. 4E). These
results demonstrate the potential value of the secretome array in
translating genomic data into the discovery of blood-based bio-
markers. Furthermore, FGF18 and GPR172A appear to be novel
biomarkers for ovarian cancer and warrant further evaluation.

Discussion
The secretome is a subset of the proteome consisting of proteins

secreted by living cells through signal peptide, exosome or pro-
teins shed from the surface of living cells. Theseproteins constitute
an important class of molecules, encoded by approximately 10%
of the human genome (31). Proteins of the secretome have been
demonstrated to play important roles in tumorigenesis, and are
therefore of increasing interest as a means to identify and char-
acterize potential diagnostic andprognostic biomarkers, aswell as
therapeutic targets. Blood-based biomarkers are particularly use-
ful as they are easy to obtain and quantify. Thus, finding novel
methods to more efficiently identify potential blood-based mar-
kers is a critical need. High-throughput technologies based on
genomic and transcriptomic data represent a huge yet still under-
explored resource for biomarker discovery in cancer. A platform/
algorithm that can use genomic data to more effectively identify
blood-based candidate biomarkers would be of great value to the
biomarker development community and facilitate clinical trans-
lation of large-scale molecular profiling experiments.

By constructing a secretome through gene ontology, we aimed
to provide a powerful tool for body-fluid (e.g., serum and asci-
tes)–basedbiomarker discovery in cancer. The secretomedatabase
described in this article was generated by systematic review of all
relevant publically available databases and publications (Table
1). One of the challenges was to select the appropriate databases
and ensure that all genes that encode proteins ultimately found in
the blood were included. We opted to be inclusive even at the
expense of having genes that encode proteins rarely found in the
blood, anticipating that subsequent filtering and prioritization
could be performed after the differential expressed genes were
determined. To this end, we used several gene ontology groups
interrogating all possible mechanisms for extracellular protein
release. It is important to note that our secretome array conse-
quently includes several membrane, cytoplasmic, mitochondrial,
and even nuclear proteins that do not have distinct extracellular
release mechanisms according to prediction algorithms. These
proteins have been de facto detected through LC/MS-based prote-
omic studies and included into databases such as the Human
Plasma PeptideAtlas (32). This effort has, therefore, ensured the
inclusion of potential biomarkers with atypical mechanisms of
secretion. The final "Secretome Virtual Array" assembled by
integrating this information provided a list of 16,521 Affymetrix
probesets representing transcriptomics data for secreted proteins.

One potential limit of LC/MS-based proteimic biomarker
identification is the low sensitivity to detect proteins with low-
expression levels. Conversely, the recently developed mass spec-
trometry for reliable quantification of analytes of low abundance
such as parallel reaction monitoring (PRM) or selected reaction
monitoring (SRM)–based mass spectrometry requires a prede-
fined set of peptides/proteins before investigation. Similar situ-
ation lies in affinity reagent–based proteomic methodologies,

which grant high sensitivity and accuracy to screen significant
amount of specimens, but only for limited number of targets. Our
database provides an opportunity to investigators to reduce the
shotgun proteomics related complexity in biomarker discovery by
focusing on proteins prescreened through large-scale genomic
studies. Different screening criteria can be used alone or integrat-
ed, including differential gene-expression and gene ontology
analysis used in this study. This could include prognostic/survival
impact and DNA copy number to select candidate proteins with
biologic significance, and thus high potential for further evalua-
tion using body fluid samples. Of importance, the universal
application of the secretome should be noted as it can be used
with array-based data (as seen in this study), but also RNAseq and
even whole-genome sequencing. By minimizing the number of
putativemarkers to amoremanageable scale, low-throughput yet
highly sensitive approaches such as multiplex ELISA, antibody
array, reverse-phase protein array (RPPA) or targeted mass spec-
trometry–based assays can be applied to larger numbers of
biologic samples as robust tools to identify novel biomarkers,
which have low abundance and are less likely to be detected by
LC/MS-based approaches. To facilitate this process, we have
established a public website where appropriate tools are available
to allow the use of the secretome by clinical researchers without a
bioinformatics background.

As proof of principle, a comprehensive list of genes with altered
expression in ovarian cancer was applied to the "secretome array."
This list was generated through comparing the transcriptome of
laser-capture microdissected (LCM) ovarian tumors and two
possible origins of ovarian epithelial cancer, OSE, and FTE (33)
from healthy donors. Considering the heterogeneity of normal
and neoplastic tissues of ovary and fallopian tubes, the utilization
of microdissected specimen minimized the interference from
nonepithelial cells and improved the accuracy of differential
expression analysis. The validation of the secretome array was
2-fold: (i) multiple previously reported ovarian cancer biomar-
kers, including the highly credentialed markers CA125 and HE4,
are found on the list, and (ii) demonstration of increased expres-
sion of two new markers (FGF18 and GPR172A) in the blood of
ovarian cancer patients compared with normal women. These
latter two markers were chosen based upon a strongly positive
discovery signal and the availability of commercial grade ELISA
assays. This two-tier validation provides a compelling evidence
that the secretome array can assist in the identification of circu-
lating biomarkers from genomically derived candidate lists.

It is well accepted that the neoplastic secretome actively
controls various stages of carcinogenesis such as tumor initia-
tion, differentiation, invasion, metastasis, and angiogenesis.
The activation of specific oncogenic pathways driven by secreted
proteins makes them potential therapeutic targets against
tumor progression. Considering this, we introduced a "Path-
way-Based" approach to investigate our secretome gene list. We
identified 180 and 232 biomarker probesets reflecting estab-
lished that were upregulated in ovarian cancer compared with
normal OSE and normal fallopian tube epithelial cells, respec-
tively. FGF18, one of the circulating biomarkers identified in
this study, has recently been demonstrated to have prognostic
significance in ovarian cancer. Functional studies of FGF18 have
further revealed its role in ovarian tumorigenesis as well as its
oncogenic influence on ovarian tumor vasculature and tumor-
associated macrophages (34). Several therapeutic approaches
against FGF signaling have been developed, including receptor
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tyrosine kinase inhibitors, receptor-neutralizing antibodies,
and pan-FGF ligand traps (35), making FGF18 inhibition a
potential therapeutic option for patients with high circulating
FGF18 level.

We acknowledge that the transcriptome-based discovery of
secreted biomarkers may not be comprehensive. First, the success
of this approach requires correlation between levels of transcript
and of the corresponding protein something that has been dem-
onstrated to hold for only a subset of genes. Thus, it is likely that
the secretome will include false positives (transcript increased but
not protein) and miss other circulating proteins (transcript
unchanged but protein increased). Second, the secretome and
associated array cannot predict the change of extracellular bio-
marker levels due to posttranslational cleavage or altered cellular
transportation activity (release rate). Third, our approach did not
evaluate the contribution of tumor stroma to the ovarian tumor
secretome. This problem can be solved bymapping our secretome
database to a differentially expressed gene list generated by
comparing microdissected ovarian tumor stroma and normal
ovarian stroma. Finally, it is worth to note that our small-scale
ELISA validation study has validated the elevated expression of
FGF18 and GPR174A in sera from high-grade serous ovarian
cancer patients, but is not sufficient to prove them as markers to
predict ovarian cancer. For diagnostic ovarian cancer biomarker
discovery and validation, it will be essential to usemore stringent,
larger-scale studies using serum specimens from benign gyneco-
logic disease as controls. Nevertheless, the construction of the
"secretome virtual array" provides valuable resources for screen-
ing any particular gene list for proteins that are more likely to be
found in the circulation. Limited number of candidate biomarkers
identified through the secretome array would be suitable for
measurement in plasma/serum from cases and controls using
sensitive, accurate, and highly specified technologies such as

ELISA, RPPA, and PRM- or SRM-based targeted mass spectrom-
etry. The power of secretome array is further amplified by its
general applicability (to any gene-expression database of any
derivation), ease of application, and ability to provide multiple
levels of filtering. This approach provides a means to translate the
large publically available genomic databases into subsets of
candidate markers likely to be found in the circulation, acceler-
ating the vital work of identifying clinically relevant blood-based
biomarkers.
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