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intRoduction

High-grade serous ovarian carcinoma (HGSOC) is a highly 
aggressive gynecologic cancer, causing more than 200,000 
deaths worldwide each year (1). The absence of early-stage 
symptoms often results in diagnosis at advanced stages 
(American Joint Committee on Cancer stages III and IV) 
when the cancer has already spread. The 5-year overall sur-
vival rate for patients with advanced disease is less than 30% 
and has remained unchanged for decades (2). Standard treat-
ment includes surgery to reduce tumor burden, followed by 
chemotherapy, but chemoresistance is common, with more 
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than 80% of stage III or IV patients experiencing relapse after 
initial treatment. This underscores the need for early detec-
tion and interception strategies to identify the disease at its 
earliest stages, reduce recurrence, and improve outcomes (3).  
Women with BRCA gene mutations are at particularly 
high risk for developing HGSOC, leading some women to 
choose preventive surgery, such as bilateral salpingectomy- 
oophorectomy (BSO) to reduce their risk (3).

Over the past 2 decades, studies have shown that HGSOC 
originates at the distal, fimbriated end of the fallopian tube 
(FT; refs. 4–6). Histopathologic evaluation and next-generation 
sequencing have recognized two types of precursor lesions 
for HGSOC: the “p53 signature” and serous tubal intraepi-
thelial carcinomas (STIC). p53 signatures are benign-appearing 
stretches of secretory cells with TP53 mutations; the cells are 
nonproliferative and commonly located at the fimbriated end 
of the FT, regardless of genetic risk. The origin of these p53 
signatures is linked to the ‘incessant ovulation hypothesis,’ 
which proposes that continuous ovulation leads to repeated 
injury to cells near ruptured follicles, including those at the 
fimbriated end of the FT (7). The repeated injury leads to ge-
netic and epigenetic alterations, transforming p53 signatures 
into STICs and eventually into invasive cancer (8). Incidental 
STICs (STIC.I) discovered during risk-reduction surgeries 
have been associated with the subsequent development of 
peritoneal carcinomatosis (9), suggesting that STIC cells may 
shed from the fimbria before invasion occurs [a precursor 
escape model (10)]. However, the progression of these pre-
cursors to invasive cancer is complex, and the steps are not yet 
fully understood.

Genomic studies have demonstrated a clonal relationship 
between p53 signatures, STICs, and concurrent HGSOCs, 
with each sharing identical TP53 mutations (11–13). Nearly 
half of HGSOCs exhibit defects in homologous recombination, 
resulting in genomic instability due to somatic mutations in 

High-grade serous ovarian cancer (HGSOC) originates from fallopian tube (FT) 

precursors. However, the molecular changes that occur as precancerous lesions 

progress to HGSOC are not well understood. To address this, we integrated high-plex imaging and 

spatial transcriptomics to analyze human tissue samples at different stages of HGSOC development, 

including p53 signatures, serous tubal intraepithelial carcinomas (STIC), and invasive HGSOC. Our find-

ings reveal immune modulating mechanisms within precursor epithelium, characterized by chromosomal 

instability, persistent IFN signaling, and dysregulated innate and adaptive immunity. FT precursors 

display elevated expression of MHC class I, including HLA-E, and IFN-stimulated genes, typically linked 

to later-stage tumorigenesis. These molecular alterations coincide with progressive shifts in the 

tumor microenvironment, transitioning from immune surveillance in early STICs to immune suppression 

in advanced STICs and cancer. These insights identify potential biomarkers and therapeutic targets for 

HGSOC interception and clarify the molecular transitions from precancer to cancer.

SIGNIFICANCE: This study maps the immune response in FT precursors of HGSOC, highlighting local-

ized IFN signaling, chromosomal instability, and competing immune surveillance and suppression along 

the progression axis. It provides an explorable public spatial profiling atlas for investigating precancer 

mechanisms, biomarkers, and early detection and interception strategies.

See related commentary by Recouvreux and Orsulic, p. 1093
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Figure 1.  Overview of the patient cohort and experimental design. A, Schematic of the female reproductive tract highlighting the FT, its distal 
fimbriated end, and the ovary. It is now generally accepted that HGSOCs arise from secretory cells located at the distal fimbriated end of the FT.  
B, Summary of clinical annotations for the 43-patient cohort. A total of 44 specimens were analyzed by tissue CyCIF and 35 specimens by spatial tran-
scriptomics (GeoMx; NanoString). The annotations include lesion types (histology), HGSOC stage, BRCA mutation status, ovarian involvement, metastasis, 
neoadjuvant chemotherapy, patient demographics, and whether lesions were lost in subsequent H&E sections (N/Av). Additional details are provided in 
Supplementary Table S1. C, Representative H&E images showing labeled examples from each subgroup: p53.I, STIC.I, and STIC.C. D, A stacked bar plot 
comparing the number of BRCA mutant (Mut) and WT cases between incidental and cancer-associated precancer lesions; **, P < 0.01, Fisher’s exact test.  
E, Experimental design illustrating the integration of multiplex tissue imaging (CyCIF) and spatial transcriptomics (GeoMx), (continued on following page) 
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the BRCA1/2 genes, epigenetic silencing of BRCA1/2 promot-
ers, or mutations in other DNA repair factors (3). HGSOC 
also commonly displays chromosomal instability (CIN),  
including breakage-fusion-bridge cycles that lead to the 
amplification of key oncogenes such as CCNE1 (14). DNA 
methylation analyses further support the FT as the origin of 
HGSOC, as the methylation profile of HGSOC more closely 
resembles that of FT epithelium than ovarian surface epithe-
lium (15, 16). In addition, HGSOC-specific hypermethylation 
is present exclusively in the FT epithelium of women with 
STIC lesions (17). Early events in STICs include similar global 
patterns of copy-number alterations, such as CCNE1 amplifi-
cation and higher ploidy (11–13, 18–21).

Despite progress in understanding these genetic features, 
the role of the immune microenvironment in HGSOC devel-
opment and progression remains underexplored. Among the 
four subtypes of HGSOC, the immunoreactive subtype, char-
acterized by CD8+ cytotoxic T lymphocyte (CTL) infiltration, 
is associated with a better prognosis (22, 23). By contrast, sub-
types such as the C5/PRO subtype often exhibit immune des-
erts or CTL exclusion, which are linked to poorer outcomes 
(24). Single-cell RNA sequencing of advanced HGSOC has 
identified several cancer-related pathways, including JAK– 
signal transducer and activator of transcription (STAT) signal-
ing, the IFN response, inflammatory pathways, and TGF-β 
signaling, all of which correlate with T-cell infiltration levels 
(25). The female reproductive tract (including the FTs) has a 
highly active immune system, rich in NK and T cells, which 
are likely involved in maintaining immune tolerance during 
pregnancy and monitoring microbial infections (26, 27). 
Thus, gaining a better understanding of how the immune 
microenvironment changes during HGSOC progression 
could provide key insights into improving disease diagnosis 
and management.

In this study, we used a multi-omics approach to map the 
tumor-immune ecosystems during the development and pro-
gression of HGSOC. We leveraged several high-plex spatial 
analysis methods, such as cyclic immunofluorescence [CyCIF 
(28)], 3D CyCIF (Yapp and colleagues, bioRxiv 2024), and 
spatial transcriptomics (whole transcriptome analysis, WTA; 
ref. 29) of human archival tissue specimens to map the spatial 
distributions, interactions, and molecular programs of differ-
ent cell types. These data reveal key changes that occur in the 
tumor microenvironment (TME) as precancerous STIC lesions 
progress to invasive HGSOC. We uncover temporal changes 
in molecular pathways, including activation of IFN signaling, 
micronuclei (MN) formation and rupture, and cyclic GMP-
AMP synthase (cGAS)-stimulator of IFN genes (STING) 
signaling. CyCIF imaging reveals dynamic shifts in immune 
cell populations and interactions over the progression axis. 

Early lesions are defined by active immune surveillance char-
acterized by the presence of type 1 conventional dendritic cells 
(cDC1), NK cells, and tissue-resident memory (TRM) CD8+ T 
cells. However, in advanced precursor lesions, we observe a 
significant decline in these immune cells, along with molecu-
lar evidence of immune dysfunction and immune editing. By 
combining spatial transcriptomics and high-plex tissue imag-
ing, this study highlights the dynamic interplay between im-
mune activation, suppression, and molecular reprogramming 
during HGSOC progression. We have made our data publicly 
available and explorable through cBioPortal, providing a 
widely accessible resource for identifying therapeutic targets 
and informing early detection strategies.

Results

Specimen Cohort

To investigate the molecular and spatial changes occurring 
in the FT during the early development of HGSOC, we ana-
lyzed 44 FT specimens with precursor lesions collected from 
43 individuals obtained from a multicenter collaboration 
(Fig. 1A–C). The 44 specimens were collected from patients 
with various genotypes and disease presentations, which we 
categorized into two main groups based on the presence or 
absence of cancer. Specimens in group 1 (n = 24) contained 
invasive cancer and co-occurring STIC (denoted as STIC.C). 
This included specimens from individuals with and without 
BRCA mutations [wild-type (WT) BRCA 15/24; germline (g) 
BRCA n = 7/9; gBRCA2 n = 6/7; somatic 2/9; Fig. 1B–D)]. Spec-
imens in group 2 (n = 19) lacked invasive cancer but contained 
precursor lesions that were identified during risk-reducing 
BSO or opportunistic salpingectomy. Group 2 included pa-
tients with and without BRCA mutations, and specimens 
contained incidental p53 signatures (denoted as p53.I, n = 10; 
gBRCA1 5/10; gBRCA2 5/10) and STIC.I lesions (n = 9; gBRCA 
5/9; gBRCA2 1/5; WT BRCA 4/9; Fig. 1B–D). STIC.I likely rep-
resents early time points in clonal evolution, whereas STIC.C 
represents later points in the development and progression 
of STIC lesions (12, 30, 31). Of the 44 specimens, all but nine 
had matched FT and/or fimbriae (Fim) within the same tissue 
section (Fig. 1C).

Among the 24 patients with invasive cancer, eight had stage 
I disease (6/8 with gBRCA mutations). Five of these stage I 
patients had tumors restricted to the FT, with no involvement 
of the ovary or spread through the abdomen (peritoneal me-
tastasis; Supplementary Fig. S1A and S1B). The remaining 16 
patients had stage II to III disease (13/16 BRCA WT). Only 
three patients with cancer received neoadjuvant chemotherapy, 
whereas the rest had surgery without prior chemotherapy 

Figure 1. (Continued) from adjacent 5-μm sections, guided by histology. GeoMx ROIs were registered with CyCIF images using X/Y coordinates (see 
Supplementary Fig. S2 and “Methods”). The CyCIF panel included 31 antibodies, some of which (indicated with asterisks) were only used on a subset of the 
specimens (n = 26/44). High-resolution 3D CyCIF was performed for one STIC.C case (patient ID 9, case RD-23-002), shown in F. F, Example of STIC with 
concurrent HGSOC (case RD-23-002, patient ID 9, BRCA2 mutant, stage IC HGSOC). H&E images (top row) show the different histologies present: normal 
FT (FT.C), STIC.C, and invasive cancer. Selected CyCIF markers (bottom row) illustrate mutant p53 expression in epithelial cells (PanCK+) within the lesional 
regions. The adjacent stroma lacks PanCK expression (PanCK−). G, Box plot comparing p53 intensity (in relative fluorescence units) measured by CyCIF in the 
epithelial compartment across various disease stages. The Y-axis is on a log10 scale. Sample sizes were as follows: FT.I (n = 13), Fim.I (n = 15), p53.I (n = 10), 
STIC.I (n = 9), STIC.C (n = 23), and cancer (n = 20). The median is indicated by a horizontal solid line, and whiskers extend to 1.5× the IQR. Outliers are shown  
as individual points. Black asterisks indicate significant differences from FT.I determined by LMMs with patient ID as a random effect (**, P < 0.01;  
****, P < 0.0001) using the lme4 R package (version 4.3.3). PanCK, pan-cytokeratin, DAPI, 4’,6-diamidino-2-phenylindole. (A and E, Created with BioRender.com.)
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Figure 2.  Molecular transitions during HGSOC development using spatial transcriptomics. A, We examined differential gene expression in epithelial 
compartments between p53.I (n = 39 ROIs) and STIC.I (n = 27 ROIs) using a LMM. The model included lesion type as a fixed effect and scan_ID (representing 
patient/slide ID) as a random intercept. Benjamini–Hochberg correction was applied using GeoMx DSP software (NanoString, version 3.1.0.221). The 
model formula was as follows: gene expression ∼ lesion_type + (1|scan_ID). Only a subset of differentially expressed genes is shown. B–D, GSEA was 
performed on differentially expressed genes in the epithelial compartment using GeoMx DSP software. Using MsigDB (continued on following page) 

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
a

n
c
e

rd
is

c
o

v
e

ry
/a

rtic
le

-p
d

f/1
5

/6
/1

1
8

0
/3

6
1

0
0

8
2

/c
d

-2
4

-1
3

6
6

.p
d

f b
y
 U

n
iv

e
rs

ity
 o

f P
e

n
n

s
y
lv

a
n

ia
 L

ib
ra

rie
s
 u

s
e

r o
n

 0
4

 J
u

n
e

 2
0

2
5



RESEARCH ARTICLESpatial Profiling of Immunosuppression in HGSOC Precursors

JUNE 2025 CANCER DISCOVERY | 1185

(treatment-naïve; Fig. 1B). Patients with invasive cancer and 
STIC.C were much older (median age of 65.5 years, range, 
46–85; Supplementary Fig. S1C) than individuals with inci-
dental precursor lesions (p53.I or STIC.I; median age of  
47 years, range, 34–72). The younger age of individuals with 
incidental lesions reflects earlier timing of BSO in women 
with known BRCA mutations. Overall, this cohort represents 
the entire spectrum of HGSOC development, enabling the 
characterization of disease progression (Fig. 1B; Supplemen-
tary Table S1).

Precursor and Cancer Analysis with CyCIF and 
Spatial Transcriptomics

We analyzed tissue sections from all 44 specimens using 
hematoxylin and eosin (H&E) staining and CyCIF (28), which 
was performed using a panel of 31 antibodies and quanti-
fied to reveal protein expression at the single-cell level (Fig. 
1E; refs. 28, 32). Multiple pathologists reviewed the H&E and 
CyCIF images to identify and classify precursor lesions and 
cancer (Fig. 1B and F). Compared with samples with STIC.I 
lesions, STIC.C displayed a greater number of discrete STIC 
lesions (median: 5 STIC.C vs. 2 STIC.I; Supplementary Fig. 
S1D) and larger lesion size, indicated by a higher number of 
epithelial cells per lesion (Supplementary Fig. S1E). As ex-
pected, CyCIF analysis revealed elevated p53 protein levels 
in p53.I, STIC.I, STIC.C, and cancer compared with normal 
epithelium (FT.I; Fig. 1F and G), consistent with the role of 
mutant p53 in HGSOC development (33, 34). In addition, we 
observed a progressive increase in proliferation (Ki67+ cells) 
and DNA damage (γH2Ax+ cells) with disease progression 
(Supplementary Fig. S1F–S1I). Interestingly, STIC.I lesions 
exhibited significant variability in both proliferation and 
DNA damage, suggesting the potential for further subtyping 
of these incidental lesions based on their molecular character-
istics (Supplementary Fig. S1F and S1G).

Spatial transcriptomic analysis (GeoMx) was performed on 
an adjacent tissue section to measure gene expression across 
the entire transcriptome, within specified tissue regions (Fig. 1E; 
Supplementary Fig. S2A). The H&E and CyCIF images were 

used to select regions of interest (ROI) for GeoMx analysis, 
which included normal epithelium (FT and/or Fim), precursor 
epithelium, regions of the tumor, and stroma adjacent to 
most of the ROI (Supplementary Fig. S2A and S2B; see “Meth-
ods”; ROI annotation in Supplementary Table S2). Of the 44 
specimens, 35 had sufficient material for GeoMx analysis (see 
“Methods”). Principal component analysis of this spatial tran-
scriptomic data revealed that epithelial and stroma ROIs segre-
gated along the first principal component (PC1), whereas the 
second principal component (PC2) distinguished between in-
cidental precursors and cancer ROIs, reflecting their biological 
differences (Supplementary Figs. S2C, S3A, and S3B).

Molecular Transitions during HGSOC Development

HGSOC development is a multi-stage process driven by 
genetic and molecular alterations influenced by selective 
pressures (3, 31). To understand the transitions between the 
stages of HGSOC development, we analyzed the differential 
gene expression patterns within the epithelium across vari-
ous stages of the disease using spatial transcriptomics data 
(Fig. 2A–J). Gene set enrichment analysis (GSEA; refs. 35, 
36) revealed prominent activation of the IFN pathway (both 
IFNα and IFNγ) and cell-cycle regulator pathways in the 
epithelium during early HGSOC development. This activation 
was evident comparing normal epithelium of incidental FT 
(FT.I) and incidental Fim (Fim.I) to p53.I (Supplementary Fig. 
S4A) and p53.I to STIC.I (Fig. 2A and B).

As the disease progressed, STIC.C lesions (regardless of 
BRCA status) displayed further enrichment of the IFN re-
sponse as well as genes associated with TGF-β signaling, 
epithelial-to-mesenchymal transition (EMT), hypoxia, and 
TNF-α signaling via the NFκB pathway (Fig. 2C; Supple-
mentary Fig. S4B). These pathways were further upregu-
lated in established cancer (Fig. 2D), promoting invasion, 
motility, stress adaptation, and inflammation. Interpreting 
the presence of EMT in precursor and cancer lesions can be 
challenging particularly considering that fibroblasts con-
stitute a major component of most cancers, and these cells 
also express mesenchymal and EMT-related markers (37, 38). 

Figure 2. (Continued) Cancer Hallmark gene sets, we identified pathways associated with disease progression in three comparisons: (B) p53.I  
(n = 39 ROIs) vs. STIC.I (n = 27 ROIs), showing enrichment of IFN and proliferative pathways; (C) STIC.I (n = 27 ROIs) vs. STIC.C (n = 96 ROIs), highlighting 
EMT, TGF-β, and hypoxia pathways; and (D) STIC.C (n = 96 ROIs) vs. invasive carcinoma (n = 105 ROIs), associated with angiogenesis and Hedgehog signaling. 
Pathway are ranked by adjusted P values <0.05. E–J, Because LMMs and GSEA are limited to pairwise comparisons, we applied Bayesian regression 
modeling to analyze the full progression from normal FT to cancer. Bayesian models are advantageous because they account for repeated sampling from 
the same patient. E, A synthetic example illustrates how repeated samples from a single patient (patient 1) can skew the mean effect if patient vari-
ability is not considered. LMMs address this by incorporating patient-level random effects. F, We further advanced the approach with Bayesian ordinal 
regression to model gene expression across multiple disease stages, using MCL1 as an example. In contrast to LMMs in GeoMx DSP software – which only 
support pairwise comparisons with a single random effect – Bayesian ordinal regression can handle multiple disease stages simultaneously. We used the 
“brms” R package and imposed a monotonic constraint (mo) to represent orderly lesion progression (44). GeoMx expression counts were Q3-normalized 
for sequencing depth (see “Methods”) and then log-transformed to stabilize variance. To standardize across genes (thus accounting for gene expression 
variability), we z-transformed these values to a mean of zero and variance of one. For each gene, we fitted the model: gene_expression ∼ mo(stage) +  
[1 + mo(stage)|patient_id]. Here, the monotonic constraint ensures ordered progression (44), and patient-specific effects are modeled through random in-
tercepts and stage coefficients. For gene set analyses, additional random effects were included: gene_expression ∼ mo(stage) + [1 + mo(stage)|patient_id 
* gene] (see “Methods” for further details). G–J, To investigate IFN pathway changes from normal FT to STIC (incidental or cancer-associated) and then to 
carcinoma, we used the Bayesian ordinal regression model to identify IFN hallmark genes. This approach compares relative gene expression changes in 
both the epithelial and stromal compartments across disease stages relative to their matched FT. The heatmaps illustrate normalized gene expression 
in the epithelium for IFNα and IFNγ responses: (G) IFNα and (H) IFNγ in the incidental group vs. matched FT.I; (I) IFNα and (J) IFNγ in the cancer group 
vs. matched FT.C. The early upregulation of key IFNα– and IFNγ–induced genes such as STAT1, ISG15, IFITM1, IRF7, IRF9, and HLA-A at the p53.I stage, 
relative to matched FT.I, indicated early IFN pathway activation in HGSOC progression. In the heatmaps, columns represent individual genes and rows rep-
resent lesion types. Values show the median of the posterior distribution from the Bayesian analysis. Significance was determined based on the highest 
density interval relative to the region of practical equivalence (0.05 times the SD). Comparisons with >95% of the highest density interval outside the 
region of practical equivalence were significant (*), and >99% were very significant (**; ref. 111).
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Figure 3.  Multiplexed tissue imaging revealed spatially coordinated IFN in HGSOC progression. A, CyCIF images highlight markers indicating down-
stream IFN pathway activation, including of MHC class I (HLA-A and HLA-E) and phosphorylated STAT3 (p-STAT3), in both p53.I and STIC.I lesions. The 
representative STIC.I images are shown with the matched FT.I region from the same patient [case CD302.04(939), patient ID 40, BRCA WT], whereas the 
p53.I image is from a different patient [case C21-22 patient ID 28, BRCA1 mutant (Mut)]. Yellow arrows in the p53.I image (continued on following page) 
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However, deconvolution analysis revealed that both precancer 
(precursor) and cancer ROIs are enriched for cancer-related 
EMT genes, supporting the presence of EMT during precursor 
development and progression (Supplementary Fig. S5A–
S5C). The TGF-β pathway is known to induce EMT and 
interact with the PI3K/mTOR or KRAS pathways (39), 
both of which were activated before or during the STIC.C 
stage (Fig. 2B and C), potentially promoting growth even at 
early stages. Compared with precursor lesions, established 
cancer displayed enrichment for genes associated with 
Hedgehog signaling and angiogenesis pathways (Fig. 2D).  
Analysis of the stromal compartment surrounding HGSOC 
precursors and cancer revealed a similar trend. In early 
stages, the stroma displayed enrichment for IFN response and 
IL6–JAK–STAT3 signaling pathways (Supplementary Fig. 
S6A–S6D), suggesting these pathways play a role during 
early stages of disease, likely through immune modulation 
and paracrine signaling.

RNA Analysis Shows Early Persistent IFNα/γ 
Activation, IFN-Related DNA Damage Resistance 
Signature Emergence, and IFNε Signaling 
Downregulation in Later Stages

As GSEA indicated early activation of the IFN response in 
HGSOC progression (starting at the p53.I stage), we performed 
a more detailed analysis of this pathway. We examined specific 
gene sets related to IFNα, IFNγ (35), IFN-related DNA 
damage resistance signature (IRDS; refs. 40, 41), and IFNɛ 
(Supplementary Table S3; Supplementary Fig. S6E–S6H; 
refs. 42, 43). Because of the complex molecular relationships 
between disease stages, data variability, and patient-to-patient 
variation, we used a Bayesian ordinal regression model (44) 
to analyze gene expression changes across disease stages 
(Fig. 2E and F).

The model confirmed a significant upregulation of key 
IFNα/γ pathway genes in p53 signatures (p53.I), STIC le-
sions (STIC.I and STIC.C), and established cancer compared 
with matched normal epithelium (Fig. 2G–J). This activation 
included significant upregulation of STAT1 (an upstream 
activator of IFN signaling) and IFN-induced and regulatory 
factors (IFITM1, IRF9, and IRF7), with IFITM1 induced even 
in the Fim.I stage (Fig. 2G and H). IFN-stimulated genes 

(such as ISG15) were also elevated, along with genes involved 
in antigen processing and presentation (TAP1 and HLA-A; 
Fig. 2G and H). Prior studies have shown that elevated type-I 
IFN activation results in the upregulation of classical MHC 
genes, including HLA-A, HLA-B, and HLA-C. The nonclassical 
MHC class gene HLA-E, often coexpressed with HLA-A upon 
IFNγ activation (45–50), plays additional immune regulatory 
roles. Upregulation of key IFNα/γ pathway genes persisted 
in STIC.C and cancer cells (Fig. 2I and J). Furthermore, both 
classical (HLA-A/B/C) and nonclassical (HLA-E) MHC class I 
antigen presentation molecules were upregulated in the epi-
thelial compartment of p53.I and STIC.I lesions (Supplemen-
tary Fig. S6I). Collectively, these findings highlight a robust 
and sustained induction of IFNα/γ pathway genes that per-
sists throughout HGSOC development, underscoring a po-
tential role in disease progression.

Recent studies have shown that the female reproductive 
tract epithelium, including the FT epithelium, constitutively 
expresses IFNε, a type-I IFN, for immune defense (42, 43, 51, 
52). Our data revealed a significant decrease in IFNE (i.e., 
IFNε transcript expression), IFNA2, and IFNA4 expression, in 
STIC.C and cancer epithelium compared with matched nor-
mal epithelium (Supplementary Fig. S6E and S6F). However, 
downregulation of IFNε signaling was not observed in inci-
dental precursors, suggesting it occurs later in HGSOC pro-
gression, after the initial IFNα and IFNγ response.

Chronic activation of the IFN pathway, known as IRDS, 
has been linked to chemotherapy and radiotherapy resis-
tance in various cancers (40, 41, 53). Upregulated IRDS 
genes included STAT1, MX1, and the antiapoptotic BCL-2 
family member MCL1 in STIC.C and cancer, with a trend 
toward increased expression in STIC.I (Supplementary Fig. 
S6G and S6H). Persistent IFN activation might contribute 
to the emergence of IRDS, particularly during the later 
stages of STIC clonal expansion. Overall, the data suggests 
dynamic shifts in IFN signaling throughout HGSOC pro-
gression. Early activation of IFN during the p53 signature 
stage persists and intensifies as the disease progresses, co-
inciding with the downregulation of IFNε signaling and 
the emergence of IRDS. These findings indicate a potential 
link between sustained IFNα/γ activation, clonal selection, 
and the gradual accumulation of tumor-promoting and 
immune-suppressive pathways.

Figure 3. (Continued) indicate the epithelial cell layer exhibiting a “p53 signature.” B, CyCIF images show that phosphorylated TBK1 (p-TBK1) appears 
as cytosolic, punctate signals in the same regions in which HLA-A, HLA-E, and p-STAT3 are expressed. The FT.I, p53.I, and STIC.I areas are identical to 
those in A, with ROIs for p53.I and STIC.I indicated by yellow boxes in A. The coexpression of these markers suggests that p-TBK1 signaling may be an 
upstream event driving IFN pathway activation. C, A box plot illustrates the increasing percentage of epithelial cells expressing IFN activation–associated  
markers (p-TBK1+/p-STAT1+/HLA-E+/p-STAT3+) as disease progresses. The sample sizes per lesion type are as follows: FT.I (n = 13), Fim.I (n = 15), 
p53.I (n = 10), STIC.I (n = 9), STIC.C (n = 23), and cancer (n = 20). The median is represented by a solid line, with whiskers extending to 1.5 times the IQR. 
Statistically significant differences compared with FT.I are indicated by asterisks; **, P < 0.001; ****, P < 0.0001. Binomial generalized LMM with patient 
ID as random effect were used. The model formula was cbind(n_success, n_failure) ∼ stage + (1 + stage|patient_id) using the lme4 R package (version 4.3.3). 
Summary statistics are in Supplementary Tables S5 and S6. D, H&E image of a whole-slide specimen (case RD-23-002, patient ID 9, BRCA2 mutant, stage 
IC HGSOC) indicating the ROIs used in E. This specimen, also shown in Fig. 1F, contains all histologic elements described and was used in high-resolution 
3D CyCIF performed on a thicker section from the same block. Figure 1F (H&E) and Figs. 3D and 4B (3D CyCIF H&E) show the same H&E-stained section 
to provide orientation in different imaging contexts. E, A 3D CyCIF reconstruction of a STIC with concurrent HGSOC (patient ID 9, ROIs from D). MX1, an 
IFN-induced gene, shows punctate expression and is coexpressed with PanCK and HLA-A, indicating IFN activation in both tumor and STIC.C epithelial 
cells. F, A plot showing the OR for coexpression of various protein pairs (p-STAT1+ HLA-E+ or p-STAT1+ p-TBK1+ or p-STAT1+ p-STAT3+ or p-TBK1+ HLA-E+) 
across different disease stages. OR > 1 indicates increased likelihood of coexpression, whereas an OR < 1 indicates decreased likelihood. The Y-axis is on 
a log10 scale. Single cells were classified as positive or negative for each marker, and contingency tables were constructed to compute ORs using generalized 
LMMs. All lesion types demonstrated significant marker coexpression (P < 0.001). Fisher exact tests yielded comparable ORs. See Supplementary Tables 
S5 and S6 for summary statistics. PanCK, pan-cytokeratin.
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Figure 4.  Tissue imaging reveals micronuclear rupture and cGAS recruitment in HGSOC progression. A, Top, An H&E image of a representative STIC.I 
case [CD302.03(706), patient ID 38, BRCA1 mutant (Mut)], with ROIs indicated. Within the STIC region outlined by a purple box, CyCIF imaging shows 
TP53-positive epithelial cells containing BAF staining. Bottom, Colocalization of BAF signal with DNA (DAPI) marks a ruptured micronucleus (MN; white 
arrowheads). A higher magnification view (outlined by a green box) confirms the colocalization of cGAS at BAF-positive MN, (continued on following page) 
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Multiplexed Imaging Reveals Spatially 
Coordinated IFN Signaling in HGSOC Progression

CyCIF is a multiplexed imaging technique that quantifies 
protein marker expression at a single-cell level (54). We used 
CyCIF to visualize IFN pathway activity within HGSOC pre-
cursors. This analysis revealed a stepwise increase in the num-
ber of epithelial cells expressing IFN pathway markers (e.g., 
p-TBK1, p-STATs, and HLA-A/E) across disease stages (p53.I: 
median 22%, STIC.I: 33%, STIC.C: 43%, and cancer: 26%) 
regardless of BRCA mutation status (Fig. 3A–C; Supplemen-
tary Figs. S7A–S7C, S8A, S8B, and S9A–S9F). Ciliated cells 
in the normal FT showed high levels of STING protein but 
no evidence of IFN pathway activation (Supplementary Fig. 
S9G–S9J), consistent with a prior report (55). High-resolution 
3D CyCIF imaging of STIC.C and invasive cancer confirmed 
co-expression of the IFN-inducible protein, MX1, which 
formed multiple discrete puncta, and the antigen-presenting 
protein HLA-A within epithelial cells (pan-cytokeratin+; 
Fig. 3D and E), reconfirming IFN induction in MHC class I–
expressing epithelial cells.

Despite the observed increase in IFN marker expression 
with disease progression, there was significant inter- and 
intra-sample heterogeneity of IFN pathway markers across 
all stages (Supplementary Figs. S2A, S8A, S8B, and S10–S12). 
For instance, within the same STIC.I lesion, we observed 
both HLA-E–positive and HLA-E–negative cells (Supple-
mentary Fig. S2A). In cancer, we also noted variability in 
the intensity of IFN pathway marker expression, such as 
the presence of both HLA-E low- and high-intensity tumor 
regions within the same patient (Supplementary Fig. S11). 
We leveraged this heterogeneity to explore the potential for 
localized and coordinated IFN signaling in HGSOC precur-
sors. Visual inspection of CyCIF images suggested coexpres-
sion of IFN markers within individual cells (Fig. 3A, B, and E;  
Supplementary Figs. S7A–S7C and S10). This observation 
was further supported by pairwise correlation analysis, 
which demonstrated strong positive correlation between var-
ious pairs of IFN markers (e.g., pSTAT1+ HLA-E+; p-STAT1+ 
p-TBK1+; pSTAT1+ p-STAT3+; and p-TBK1+ HLA-E+) across 
all disease stages (OR 1.5–50, Fig. 3F). Whereas the percent-
age of cells expressing IFN markers (e.g., HLA-E) was rela-
tively low at early stages (p53.I median: 4%), it increased in 
STIC.I (16%), STIC.C (26%), and invasive cancer (18%; Sup-
plementary Fig. S9C). The high probability of IFN marker 
coexpression suggests coordinated and localized activation 
of the IFN pathway throughout HGSOC development. The 
progressive increase in IFN-positive cells within precursor 
lesions further implies clonal expansion driven by positive 
selection during disease progression.

Interplay between HLA-E expression, the IFN 
Pathway, and Immune Evasion Mechanisms

Loss of classical MHC class I is a well-established mechanism 
of immune evasion in cancers, including advanced HGSOC 
(56, 57). However, tumors may become vulnerable to NK cell–
mediated killing when nonclassical MHC class I HLA-E is lost 
(46, 58, 59). Conversely, overexpression of HLA-E in various 
cancers, including cervical and ovarian cancer, allows tumor 
cells to evade NK cell surveillance (46, 48, 60–62), likely con-
tributing to the development of more aggressive tumor (49, 
60–62). To investigate the relationship between HLA-E expres-
sion and transcriptional programs, we categorized the GeoMx 
ROIs based on HLA-E protein expression (imaged by CyCIF in 
serial tissue sections) into HLA-E–positive or HLA-E–negative 
groups (Supplementary Fig. S2A; Supplementary Table S2).  
As expected, analysis of differentially expressed genes showed 
a significant upregulation of the HLA-E gene itself in ROIs 
positive for HLA-E protein (e.g., from STIC.I, Supplemen-
tary Fig. S13A). Interestingly, in early STIC lesions (STIC.I), 
HLA-E positive regions showed enriched expression of genes 
related to cell morphology and migration (ARAP2), antigen 
presentation (HLA-A, HLA-B, HLA-DRA, HLA-DQB1, HLA-F, 
TAP, and TAPBP), coagulation (F5), and complement path-
ways (CFB, CFH, CFI, C1S, C2, and C4B), suggesting a coor-
dinated inflammatory and tissue remodeling response. Cell 
growth and maturation pathways were also induced, includ-
ing the MYC oncogene, as were downstream IFN genes (MX1, 
IRF1, DDX60, OAS3, IFI44, PSMB8, and XAF1). Further analysis 
using Bayesian modeling with HLA-E status as a covariate 
showed a strong association of HLA-E–positive epithelial 
ROIs with IFN responses (type I and II; IFNα/γ) and IRDS, 
as early as the p53.I stage (Supplementary Figs. S13B, S13C, 
S13D, and S14A–S14G). Differential gene expression and 
GSEA analysis further supported this association across 
disease stages (Supplementary Figs. S13C, S13D, S15A, S15B, 
S16A, and S16B). These findings suggest a complex interplay 
between HLA-E expression, IFN signaling, and various immune 
evasion mechanisms, potentially supporting early tumor 
development and progression.

In contrast to IFN pathway activation, genes associated with 
other well-established tumor-promoting pathways, such as 
TGF-β, EMT, and those characteristic of the aggressive C5/PRO  
subtype of HGSOC (Supplementary Table S3; refs. 22, 23),  
emerged primarily at the STIC.C and cancer stages (Supple-
mentary Fig. S16C and S16D). Notably, these pathways were 
not restricted to HLA-E–positive epithelial areas. Further 
analysis of individual EMT-related genes (e.g., CLDN6, CDH3, 
COL4A1, MMP14, and MMP2) confirmed that increased ex-
pression at later stages was not limited to HLA-E–positive cells 

Figure 4. (Continued) suggesting that cGAS binds to DNA from the ruptured MN. B, Top, H&E images of a representative STIC with concurrent HGSOC 
(case RD-23-002, patient ID 9, BRCA2 mutant, stage IC HGSOC), previously shown in Figs. 1F and 3D, highlighting ROIs representing different histologies. 
A cyan box on the STIC.C H&E and a green box on the invasive tumor H&E indicate ROIs for panels below. Bottom, CyCIF images from the STIC.C region 
(left column) reveal BAF-positive MN (red arrowheads). Corresponding CyCIF images from the invasive cancer region (right columns) demonstrate an 
increased number of in BAF+ cGAS+ or BAF+ γ-H2Ax+ MN (yellow arrowheads), indicating more frequent MN rupture events in invasive disease. C and D, 
The same specimen from B was imaged using 3D confocal multiplexed imaging to confirm both intact and ruptured MN. C, A 3D reconstruction and surface 
rendering of a 20-μm-thick section confirms colocalization of BAF+ and cGAS+ in MN, as well as BAF+ and γ-H2Ax+ in MN in STIC.C (red arrowheads, 
yellow box). D, In the invasive cancer region, 3D multiplexed imaging revealed BAF+ γ-H2Ax+ MN rupture events (yellow arrowheads, cyan box). The 
colocalization of cGAS with BAF-positive MN suggests that cGAS recognizes DNA from ruptured MN.
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Figure 5.  Immune composition analysis suggests active immune surveillance by activated antigen presenting cells at early HGSOC progression.  
A and B, Top, Line plots show changes in the proportions of major immune cell types across disease stages, based on single-cell CyCIF data. A, Epithelium 
and (B) adjacent stroma. The Y-axis shows Odds Ratios (ORs) relative to FT.I on a log scale, calculated using binomial GLMMs, with patient ID and observation- 
level random effects. P values are adjusted using the Benjamini–Hochberg procedure. Bottom, Stacked bar plots represent the average proportion  
of major immune cell types disease stages in the epithelium (A) and adjacent stroma (B). Asterisks on bars indicate (continued on following page) 
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(Supplementary Fig. S17). This suggests that additional tumor- 
promoting mechanisms, independent of the IFN pathway, 
likely play important roles in shaping HGSOC development.

Micronuclear Rupture and cGAS Recruitment in 
HGSOC Progression

The presence of an IFN response and p-TBK1+ epithelial 
cells in early HGSOC precursors suggests activation of the 
cGAS-STING signaling pathway (63–65). This pathway 
responds to cytosolic DNA from various sources, including 
DNA damage, CIN, or LINE-1 open reading frame 1 protein 
expression (64, 66–69). CIN, a hallmark of advanced HGSOC 
(3, 70), can lead to the formation and rupture of MN con-
taining missegregated chromosomes (65, 71, 72), which is 
linked to the presence of TP53 mutations (73). We used CyCIF 
to identify p53+ precursor lesions and assessed the presence 
and integrity of MN using barrier-to-autointegration-factor 
(BAF; BANF1), a sensitive marker for cytosolic DNA (Coy and 
colleagues, bioRxiv 2023; https://www.biorxiv.org/content/ 
10.1101/2023.11.07.566063v1). Strikingly, BAF+ MN ruptures 
were observed as early as STIC.I lesions, with increasing fre-
quency in invasive cancer. Visual inspection revealed that a 
subset of ruptured MN contained cGAS, and some also con-
tained the DNA damage marker γ-H2Ax (Fig. 4A and B; Sup-
plementary Fig. S18A). High-resolution 3D CyCIF confirmed 
the colocalization of BAF, cGAS, and γ-H2Ax, with the high-
est frequency observed in invasive HGSOC (Fig. 4C and D; 
Supplementary Video; Supplementary Fig. S18B and S18C). 
These findings suggest that CIN-induced MN ruptures occur 
unexpectedly early in HGSOC and are associated with IFN 
signaling, possibly via cGAS-STING activation.

Spatial Organization of Immune Cells in HGSOC 
Development

Activation of the cIFN response plays a critical role in shap-
ing the spatial organization and function of the immune 
system within the TME (64, 74). To investigate how the spa-
tial organization of immune cells changes during HGSOC 
development, we first used CyCIF data to quantify major 
immune cell types in precursor lesions and invasive cancer 
(Fig. 5A–C). These cell types included (i) antigen-presenting 
cells (APC), such as cDC1 and macrophage-derived APCs,  

(ii) CD68+ macrophages (M1-like), (iii) CD163+ macrophages 
(M2-like), (iv) CD20+ B cells, (v) CD4+ T cells, and (vi) CD8+ T 
lymphocytes (Fig. 5A–E). A minor population of NK cells was 
also detected (Supplementary Fig. S19A–S19G).

We then applied latent Dirichlet allocation (LDA), a sta-
tistical method for topic modeling, to analyze the spatial 
patterns of the immune microenvironment. LDA has been 
successfully used to reveal recurrent cellular neighborhoods 
in both precancer and cancer tissues (54, 75, 76). Based on 
cell type and activation markers, 4.22 × 107 single cells from 
44 specimens were classified into 21 distinct groups, reveal-
ing recurrent local cellular neighborhoods (“topics”). These 
topics represent niches of specialized cell types or interacting 
cell types that may play a role in disease progression or re-
sponse to therapy. Several notable recurrent neighborhoods 
were identified, including topic 8, which predominantly com-
prised CD163+ (M2-like) macrophages, topic 10, dominated 
by CD11c+ APCs, and topic 21, characterized by HLA-DR+ 
(activated) APC cells (Fig. 5F). Each of these neighborhoods 
was significantly enriched in invasive cancer compared with 
STIC lesions (Fig. 5G). Topic 14 displayed high levels of 
CD4+ T cells, whereas topic 15 contained both CD8+ T 
lymphocytes (including CD103+ TRM cells) and FOXP3 T 
regulatory (Treg) cells. These T cell–rich neighborhoods 
were also more prevalent in invasive cancer compared with 
STIC lesions (Fig. 5F and G). These findings suggest that 
HGSOC progression involves dynamic reorganization of 
immune cell spatial distribution, potentially influencing cell 
type interactions, immune signaling, and the overall antitu-
mor immune response.

cDC1 and NK Cells Decrease Whereas Macrophages 
Increase in Later Stages of HGSOC Development

We next used the CyCIF and GeoMx datasets to better 
understand how the organization of specific immune cell 
subtypes changes during different stages of HGSOC pro-
gression. We first focused on two cell types that are critical 
organizers of the initial immune response to tumors: cDC1 
(CD11c+, CD103+, and CD68−; refs. 58, 77, 78) and NK cells 
(NKG2D+ CD3−). Intratumoral NK cells produce chemokines 
that recruit cDC1 into the TME, whereas cDC1 cells transport 
tumor antigens to lymph nodes to promote CTL responses. 

Figure 5. (Continued) significant differences vs. FT.I; asterisks between bars (dashed lines) indicate significant inter-stage differences. *, P < 0.05; **, 
P < 0.01. Average proportions were rounded up to the next whole number when applicable and shown for each cell type across lesion types. Sample sizes: 
FT.I (n = 13), Fim.I (n = 15), p53.I (n = 10), STIC.I (n = 9), STIC.C (n = 23), and cancer (n = 20). C, Schematic illustrating subsets of CD11c+ cells identified by 
CyCIF, including cDC1, and other APCs. Activated APCs are characterized by HLA-DR+ expression (MHC class II), marking an initial step of APC activation. 
D, CyCIF image from a representative p53.I case [also shown in Fig. 3A; case C21-22 patient ID 28, BRCA1 mutant (Mut)] highlights an epithelial region 
with “p53 signature” (green box). This region contains activated APCs, including cDC1 (yellow arrows) and other DCs (white arrows), identified by CD40+ 
CD11c+ staining. E, CyCIF image from a STIC.I case [CD302.03(706), patient ID 38, BRCA1 mutant (Mut)]. The yellow box marks an area of activated APCs, 
including cDC1 (yellow arrow) and other DCs (white arrows) in the stroma adjacent to the STIC.I epithelium. Pan-cytokeratin (PanCK) and TP53 staining 
highlight the epithelial cells. F, LDA neighborhood analysis applied to multiplex tissue imaging. Frequencies from all incidental and cancer samples 
were pooled to train the LDA model. Each “topic” represents a cellular neighborhood defined by distinct immune cell types and states. Font size reflects 
prevalence in LDA components. Detailed topic descriptions are in Supplementary Table S5. G, Box plots depicting the percentage of cells in each LDA topic 
across STIC.I, STIC.C, and cancer stages. The number of specimens for each lesion is as follows: STIC.I (n = 9), STIC.C (n = 23), and cancer (n = 20). Significant 
differences are indicated by asterisks; **, P < 0.01; ****, P < 0.0001 using generalized LMMs with patient ID as a random effect. H, Stacked bar plot of the 
average proportion of HLA-DR+ APC subsets within the total CD11c+ population in the epithelium across lesion types. I, Similar plot for the adjacent stroma.  
H and I, Proportions are rounded to the nearest whole number where applicable. Number of specimens per group as follows: FT.I (n = 13), Fim.I (n = 15), p53.I 
(n = 10), STIC.I (n = 9), STIC.C (n = 23), and cancer (n = 20). Asterisks indicate significant differences from FT.I or between groups. *, P < 0.05; ****, P < 0.0001, 
using binomial generalized LMMs with patient ID as a random effect. J, Box plots illustrating normalized interaction strength (on a log10 scale) between cell 
types in STIC.I and STIC.C: (i) cDC1 and CD4+ PD1+ T cells, (ii) HLA-DR+ CD68+ APCs with CD4+ CD8+ PD-1+ T cells, and (iii) HLA-DR+ APCs with CD8+ PD-1+ 
T cells. Scores >1 indicate stronger interactions in STIC.C vs. STIC.I. Significance is indicated by asterisks; *, P < 0.05, Wilcoxon rank-sum test.
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Figure 6.  Immune editing and T-cell dysfunction at early stage of HGSOC development. A and B, Stacked bar plots summarize CD8+ T-cell subtypes 
identified by CyCIF across disease stages in the epithelium (A) and in the adjacent stroma (B). Subtypes include TRM cells (CD8+ CD103+ CD45RO+) and 
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determined by binomial generalized LMMs with patient ID and observational level random effect. C and D, Stacked bar (continued on following page) 
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cDC1 cells have superior antigen processing and presenta-
tion capacities, making them highly effective in activating 
and recruiting CD8+ CTLs (77, 79–82). Using CyCIF imaging, 
we observed that, although the total population of CD11c+ 
APCs (which includes cDC1 cells) increased with disease pro-
gression (Fig. 5A and B), the number of HLA-DR+ cDC1 cells 
(indicating antigen-presenting function) rose significantly 
in the early stages, particularly in the epithelium (Fig. 5C 
and H). These cells were 10-fold more abundant in p53.I 
epithelium and 15-fold higher in STIC.I epithelium compared 
to normal epithelium but remained relatively stable with dis-
ease progression. In the stroma, cDC1 populations expressing 
HLA-DR increased 12-fold in STIC.I compared with normal 
tissues but decreased substantially in more advanced lesions 
(12-fold decrease in STIC.C and 3-fold in established can-
cers compared with STIC.I; Fig. 5I). This suggests that the 
antigen-presenting function provided by cDC1 decreases as 
precursor lesions progress. Similarly, NK cells, which were 
present at low levels in normal tissue and p53.I precursors 
(median 0.1%), became nearly undetectable in later stages of 
the disease (STIC.I, STIC.C, and cancer; median: 0.02%; Sup-
plementary Fig. S19A and S19B), indicating a further decline 
in antitumor immunity.

To validate these findings, we performed Bayesian mod-
eling of the spatial transcriptomic data to analyze gene sets 
specific to cDC1 and NK cells (Supplementary Table S3; refs. 
58, 77, 78). This analysis confirmed the CyCIF findings, show-
ing that cDC1 and NK cells are present in early precursors 
but decrease with disease progression, particularly in STIC.C 
and tumor stages. Later-stage lesions showed reduced gene 
expression related to cDC1 function and NK–cDC1 axis 
activity. These genes included CLEC9A, BATF3, CLNK, XCL1, 
XCR1, IL15, and IL12. In addition, genes associated with NK 
cell receptors, such as KLRK1, NCR1, and CD226 (which en-
code NKG2D and activation receptors NKp46 and DNAM1, 
respectively), also declined. There was also a decrease in genes 
related to NK inhibitory receptors, including KLRD1 (CD94), 
KLRC2 (NKG2A/C), and KLRG1, as well as KIRs (Supplemen-
tary Fig. S20A and S20B). These demonstrate progressive 
dysfunction of NK and T cells in STIC.C and tumor epithe-
lium, supported by decreased expression of genes related to 

cytotoxic activity, such as PRF1, NKG7, GZMB, GZMK, GZMH, 
and GZMA (Supplementary Fig. S20C–S20F). Considered 
together, these findings suggest a suppression of NK cell and 
cDC1 activity during HGSOC development.

Whereas NK cells and cDC1 decline during HGSOC devel-
opment, tissue imaging revealed a stepwise increase in mac-
rophage populations with disease progression, as suggested 
by LDA analysis topic 8 (Fig. 5F and G). Both CD68+ M1-like 
macrophages and CD163+ M2-like macrophages became 
more abundant, reaching their highest levels in invasive can-
cer (Fig. 5A and B; Supplementary Fig. S21A and S21B). Inter-
estingly, more than 50% of CD68+ cells coexpressed CD11c, 
suggesting they function as APCs [i.e., macrophage-derived 
APCs (79); Supplementary Fig. S21C and S21D]. These mac-
rophage-derived APCs frequently coexpressed HLA-DR (83) 
and/or CD40, which are markers of antigen presentation and 
T-cell costimulation (Fig. 5D, E, H, and I; Supplementary Fig. 
S21E–S21H). For comparison, less than 1% of epithelial cells 
in precursor lesions or tumor expressed HLA-DR (Supple-
mentary Fig. S22A–S22I). Spatial transcriptomic data pro-
vided further support for an increase in APCs with disease 
progression. Whereas multiple cell types can produce various 
chemokines and cytokines (e.g., CXCL9, CCL3, and TNF), the 
data showed an increasing trend of gene expression associated 
with both M1 and M2 macrophages (84) in the cancer group, 
including stabilin-1 (STAB1), AXL, IL10, and CD163 (Supple-
mentary Fig. S23A–S23H). Moreover, there was an increase 
in the expression of MHC class II (HLA-DRA, HLA-DMA, and 
HLA-DRB1) in the stroma of precursors and invasive cancer 
(Supplementary Fig. S23I and S23J). Taken together, these 
findings suggest an increase in macrophage-derived APCs that 
express HLA-DR, especially in cancer, indicating that these cells 
may play a role in presenting tumor antigens to CD4+ T cells.

Shifting Functional Landscape of CD4+ T Cells in 
HGSOC Development

The observed changes in APC composition during HGSOC 
progression—a decrease in cDC1 and an increase in macro-
phage-derived APCs—led us to further characterize CD4+ 
T cells, which are critical partners for APCs in orchestrating 

Figure 6. (Continued) plots showing the proportion of CD8+ T-cell states within total CD8 T cells in the epithelium (C) and the adjacent stroma (D). 
T-cell states are defined as activated (Ki67/PD-1+ and LAG3−) and exhausted (PD-1+LAG3+ or LAG3+). Same specimen counts as above. Significance 
levels from FT.I are marked by black asterisks stages; *, P < 0.05; ***, P < 0.001; ****, P < 0.0001, using binomial generalized LMMs. Colored dashed 
lines indicate significant intergroup comparisons. E, CyCIF images from a representative FT.I case matched to STIC.I [case CD302.04(939), patient 
ID 40, BRCA WT; also shown in Fig. 3A]. A TRM cell (CD8+ CD103+ CD45RO+) is indicated by a yellow arrow. F, CyCIF image from a representative p53.I 
case [case C21-22 patient ID 28, BRCA1 mutant (Mut); also shown in Fig. 3A]. The red box marks a “p53 signature” – TRM (yellow arrows) and CD8+ 
CD103– CTL (orange arrow) are seen at higher magnification. Different markers from the same specimen are shown in multiple figures, enabling direct 
comparisons. G and H, CyCIF images from another p53.I case (C21-80, patient ID 35, BRCA2 Mut), displaying TRM (white arrows) coexpressing PD-1 
(yellow arrows). I and J, CyCIF images from a representative STIC.I case, also shown in Fig. 5E [CD302.03(706), patient ID 38, BRCA1 Mut], showing 
CTL (magenta arrows) and TRM (yellow arrows) within the stroma. K, CyCIF image of the same ROI as in J, illustrating T-cell exhaustion in STIC.I. PD-1 
(orange arrows) and LAG3 (punctate expression) colocalize on CTL (white arrows) and TRM (gray arrows). The inset provides a magnified view of the 
gray ROI for LAG3+ T cells. L, CyCIF image of the same STIC.I ROI indicated as in I and J showing a proliferative CD8+ T cell (CD8+ Ki67+ GZMB−; orange 
arrow). M and N, CyCIF images from another STIC.I case [CD302.04(939), patient ID 40, BRCA WT, also shown in Fig. 3A], highlighting TP53-positive 
epithelium (M) and TRM cells in the STIC.I epithelium (N; yellow arrows). O, CyCIF images of same ROI as in N, showing exhausted intra-epithelial TRM in 
STIC.I, coexpressing PD-1 and LAG3 (yellow arrows). P and Q, Heatmaps showing normalized gene expression related to various T-cell states (naïve, 
dysfunctional, and memory) in the stroma from the cancer group (P) and stroma from incidental group. (Q) Genes include HAVCR2 (encoding TIM3), 
CTLA4, PDCD1 (PD-1), ITGAE (CD103), TCF7 (TCF1), and CD274 (PD-L1). Rows represent lesion stages, and columns represent genes. Asterisks indi-
cate significant changes from baseline stages (p53.C in P and FT.I in Q) based on an ordinal Bayesian modeling. Significance is defined by the proportion 
of the posterior highest density interval outside the region of practical equivalence (*>95%, **>99%). These findings underscore the early emergence 
of T-cell dysfunction and immune editing in HGSOC precursors such as STIC.I.
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Figure 7.  Evolution of the precancer ecosystem during HGSOC progression. A, A lollipop plot illustrates the relative differences in major immune cell 
types and states between STIC.I and STIC.C in both epithelial and stromal regions. The fold difference is computed as the ratio of the average proportion 
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indicate a higher prevalence in STIC.I. B, Schematic representation of HGSOC progression, emphasizing the temporal development of hallmark cancer 
features and the dynamic interplay and interactions between immune cells and precancer/cancer cells. Cancer often starts with oncogenic changes  
(mutations, aneuploidy, and other cancer hallmarks) under selective pressure. These cells may remain latent for decades. Only a subset of these “pheno-
typically normal” but mutated clones undergo clonal expansion and acquire additional mutations, ultimately developing (continued on following page) 
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adaptive immune responses. CyCIF analysis revealed a pro-
gressive increase in CD4+ T-cell infiltration throughout the 
disease course (Fig. 5A and B; Supplementary Fig. S24A and 
S24B). However, both activation and dysfunction markers 
were observed in these CD4+ T cells. More than 35% of CD4+ T 
cells expressed either HLA-DR or PD-1, suggesting potential 
antigen presentation and activation, starting from the STIC.I 
stage (Supplementary Fig. S24A and S24B). At the same time, 
the presence of numerous Tregs (CD4+ FOXP3+ Tregs: ∼14%) and 
CD4+ LAG3+ (∼14%) indicated the development of an immuno-
suppressive microenvironment and potential dysfunction of 
antigen presentation (Supplementary Fig. S24A and S24B).

CD4+ T-cell activation relies on antigen presentation 
by MHC class II molecules, primarily expressed by APCs. 
Whereas direct interactions between CD4+ T cells, HLA-DR- 
expressing APCs, and CD8+ T cells were observed, there was 
evidence of a dampening effect—some APCs coexpressed 
HLA-DR/CD40 along with TIM3, an inhibitory receptor 
that modulates the function of both lymphoid cells and 
APCs, suggesting a reduced capacity for antigen presenta-
tion (Supplementary Fig. S25A–S25C; refs. 85–88). Quanti-
tative analysis comparing the cell–cell interactions in STIC.I 
and STIC.C lesions showed decreased proximity (normalized 
interaction score) between activated CD4+ T cells, CD8+ 
T cells, and cDC1/macrophage-derived APCs expressing 
HLA-DR in STIC.C lesions (Fig. 5J). Thus, whereas CD4+ T 
cells infiltrate HGSOC precursor lesions, their capacity for 
activation may be counterbalanced by the emergence of 
suppressive mechanisms, potentially contributing to disease 
progression.

CD8+ T Cell Dynamics and Dysfunction in Early 
HGSOC Development

We also observed changes in the numbers, activation states, 
and localization of CD8+ T cells within the tissues during 
HGSOC development. Compared with normal tissue, CD8+ 
T cells increased significantly in the epithelium of STIC.I 
lesions (2-fold) and even more dramatically in the stroma 
(10-fold; Fig. 5A and B). However, this increase was followed 
by a gradual decline in later disease stages (STIC.C and 
cancer), with a sharper decrease in CD8+ T-cell number in the 
epithelium as compared with the stroma (2-fold vs. 1.5-fold).

Many different CD8+ T-cell subsets were present, includ-
ing TRM cells (CD8+ CD103+ CD45RO+), a specialized subset 
of CD8+ T cells adapted for localized immune surveillance 
within specific tissues (89, 90), and conventional cytotoxic 
CD8+ CTLs (CD8+ CD103− CD45RO−). We used markers such 
as Ki67, PD-1, GZMB, TIM3, and LAG3 to assess their func-
tional states (Fig. 6A–D). TRM cells increased 1.5-fold in p53.I 

epithelium compared with normal epithelium but gradually 
decreased with disease progression (Fig. 6A, E, and F). CTL 
numbers started to rise in p53.I, with the most striking in-
crease observed in STIC.I epithelium and stroma, followed by 
a gradual decrease in STIC.C (4-fold) and cancer (2-fold), par-
ticularly in the epithelium (Fig. 6A and B).

Although the total number of CD8+ T cells decreased in 
later stages of HGSOC progression, the remaining CD8+ T 
cells were more likely to be either activated (PD1+ or Ki67+) 
or exhausted (LAG3+ or PD1+LAG3+), indicating a balance 
between active surveillance and T-cell dysfunction (Fig. 6C, 
D, and G–O; Supplementary Figs. S26A–S26N and S27A–
S27D). Whereas 11% of CD8+ T cells in p53.I showed signs of 
activation, this fraction rose significantly in STIC.I, STIC.C, 
and cancer (25%–43%). Similarly, exhaustion markers in-
creased in the epithelial compartments (Fig. 6C), with the 
proportion of exhausted CD8+ T cells rising 3- to 7-fold (∼2% 
were LAG3+ TRM CD8+ T cells in STIC.I, STIC.C, and can-
cer; 1% were LAG3+ CTL CD8+ T cells in STIC.C and cancer; 
Supplementary Fig. S26A). In the stroma of STIC.I, STIC.C, 
and cancer, ∼1-2% of CD8+ T cells were LAG3+ TRM and ∼2% 
were LAG3+ CTL (Fig.6D; Supplementary Fig. S26B). The 
increased expression of RNA for CTLA4 and HAVCR2 (TIM3; 
Fig. 6P and Q) and GZMB protein and RNA (Supplementary 
Figs. S27E, S27F, S20E, and S20F) provided further evidence 
of activation and exhaustion in both the epithelium and 
stroma of HGSOC lesions (Supplementary Fig. S28). One 
contributing factor to this exhaustion may be chronic IFN 
signaling in later disease stages, as shown by a positive cor-
relation between IRDS gene expression and T-cell exhaus-
tion in the epithelium (Supplementary Fig. S29A–S29C). 
This suggests active immune surveillance by both TRM and 
CTL, as well as conditions supporting immune editing and 
selection in HGSOC precursors.

discussion

We have developed a multi-patient and multistage resource 
of high-plex imaging and spatial transcriptomics data with 
which to study HGSOC development, from precancer lesions 
(p53.I signatures and STIC.Is) to invasive cancer. Our analysis 
reveals that localized IFN signaling and CIN are early events 
that increase with progression, accompanied by significant 
reorganization of the immune microenvironment. Activated 
TRM and components of the NK–cDC1 axis are already pres-
ent at the p53 signature stage, indicating early immune sur-
veillance at the inception of HGSOC development in the FT. 
This immune response intensifies with increased abundance 
of activated CTLs in STIC.I lesions. However, during the 

Figure 7. (Continued) into cancer. Early on, despite limited genomic instability, innate immune responses, including the NK–cDC1–CTL axis and TRM cells, 
help contain p53 signature cells. Increasing aneuploidy or extrinsic factors can enhance immune surveillance, potentially eliminating precancer clones 
before significant proliferation occurs. During early STIC expansion, there is pronounced IFN response activation, with activated cDC1 and APCs and NK 
cell–secreted chemokines, further attracting cDC1. This environment suggests active immune surveillance and is accompanied by interactions among 
APCs, activated CD4+, and CD8+ T cells. However, immunosuppressive cells, such as M2-like macrophages and Tregs, also emerge, indicating a complex 
equilibrium in which cytotoxic and suppressive forces coexist. As STIC lesions advance, there is a reduction in CD8+ T cells and the interactions between 
APCs and CD4+ T cells, along with an increase in exhausted CD8+ CTL and CD4+ cells expressing LAG3, almost no NK and cDC1 cells, and more suppressive 
APCs. The transition from STIC to overt cancer involves hallmark mechanisms such as TGF-β signaling, which excludes CTLs, changes in cytokine and 
fibroblast profiles, and induction of EMT and migratory programs. Dotted arrows indicate the hypothetical timing of these events, suggesting a prolonged 
interval from p53 signature to early STIC, followed by a more rapid progression from early to late STIC. (Created with BioRender.com.)
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transition from STIC.I to cancer-associated STIC, we observe 
a significant decrease in the NK–cDC1 axis. This decline 
coincides with an increase in activated CD8+ T cells, exclusion 
and dysfunction of these cells, reduction of CD4+ T cell–APC 
interactions, and increase in Tregs. These findings highlight a 
dynamic competition between immune surveillance and im-
mune suppression, in which initial immune responses in early 
lesions are progressively antagonized by immune-suppressive 
mechanisms as HGSOC progresses (Fig. 7A and B).

The molecular heterogeneity observed in precancer lesions 
offers insights into interactions between the immune re-
sponse and precursor phenotypes. Early localized IFN 
activation in p53 signatures and STICs, combined with the 
gradual accumulation of tumorigenic programs downstream  
of cGAS-STING or IFN pathways—such as NF-κB, IRDS, or IL6 
induced STAT3 pathways (41, 74, 91)—may drive immune 
editing and selection in precursor populations. Traditionally, 
this heterogeneity and extensive genomic instability [includ-
ing MN rupture and the catastrophic genomic events that 
drive genome evolution, immune evasion, and disease spread 
(41, 63, 64, 72)] have been viewed as hallmarks of later tumor 
evolution and chemoresistance (3, 14, 25, 56, 92). However, 
our data suggest that these processes are likely to be influ-
ential much earlier in HGSOC development. This phenotypic 
variability in STIC lesions, including differences in prolifera-
tion and DNA damage, may help inform diagnostic risk strat-
ification by identifying STIC lesions with increased potential 
for malignant transformation and dissemination (93, 94).  
Variability in STIC microenvironment coupled with known 
genetic alterations in HGSOC, such as 6p loss leading to MHC 
class I loss and 6q loss affecting IFN-γ receptor 1 (IFNGR1; refs. 
25, 56, 92, 95), highlights the potential for intricate interplay 
between genetic mutations, precursor cell phenotypes, and lo-
calized immune interactions during cancer development (96).

Immune evasion is a critical factor in HGSOC progression. 
Along the progression axis, IFN signaling coincides with 
HLA-A expression, responsible for antigen presentation to 
CTLs. However, upregulation of HLA-E expression may rep-
resent a key immune suppression mechanism during STIC 
clonal expansion. This aligns with findings in other cancers, 
in which high HLA-E expression inhibits NK cell activity by 
engaging NKG2A receptors, thereby suppressing NK cell–
mediated cytotoxicity (46, 48, 60–62). The observed decline 
in the NK–cDC1 axis and dysfunction in adaptive immunity 
suggests that targeting NK cell reactivation using therapies 
such as humanized anti-NKG2A antibodies [e.g., monali-
zumab (60)] may be a promising strategy for early interven-
tion, particularly in high-risk patients with STIC.I lesions 
linked to peritoneal cancer development (9). However, more 
detailed NK cell profiling will be needed to understand the 
functions of NK cells in HGSOC evolution.

Immune surveillance, driven by activated NK cells, cDC1, 
and TRM cells, along with elevated IFNG and TNF (77, 89, 90) 
in the adjacent stroma, likely restrains the progression of early 
lesions, such as p53 signatures. This environment, sustained 
by feedback established between these immune cell types and 
recruited CTLs, may limit abnormal growth and prevent can-
cer progression. However, for clonal selection and expansion 
to occur, additional factors are likely required (97–99). These 
likely occur over the course of decades (7, 8, 10, 11, 13) and 

include repeated ovulatory-related stress leading to epithelial 
damage, increased cell proliferation, and genomic instability 
(8, 100). High STING expression in ciliated cells of the FT (55) 
may prime these cells to protect neighboring secretory cells 
from transformation arising from ovulatory-related stress 
and DNA damage, potentially suppressing the development 
and progression of precursor lesions. These ciliated cells 
are generally lost during the transition from p53 signatures 
to STIC, both within the precursors themselves and in the 
neighboring normal FT, eliminating their protective func-
tion. Within precursor lesions, a shift in the IFN response 
from early immune surveillance to chronic stimulation, may 
further promote IRDS and IFNɛ suppression (41); this serves 
to induce tolerance to DNA damage, immune suppression, 
and T-cell exhaustion. Furthermore, macrophage-derived 
APCs, although increasing in prevalence in later stages, show 
reduced interaction with CD4+ T cells, indicating a functional 
shift that also promotes a transition from activation to im-
mune suppression (80, 83). Thus, multiple coupled changes 
in epithelial cells and the TME are likely to play a role in the 
progression to more advanced stages of disease.

In summary, our findings suggest that failure of the NK–
CTL axis combined with microenvironment remodeling that 
promotes immune evasion and CTL inhibition are critical 
drivers of early HGSOC development (101). Our data provide 
detailed insights into the temporal and spatial changes in the 
immune landscape and molecular transitions during HGSOC 
progression that are broadly consistent with an emerging view 
of precancer evolution. The data also serve as a large-scale 
public resource for further exploration of the interactions 
between transcriptional changes, cellular phenotypes, and 
immune organization in precancer ecosystems. To facilitate 
future studies on mechanisms driving cancer development 
and progression, we have integrated our spatial transcriptomics 
and imaging data into an enhanced version of cBioPortal. We 
expect that these studies will yield new strategies for preven-
tion, diagnosis, and early intervention in HGSOC (102).

Limitation of the Study

Although this study provides insights into the immune 
landscape of HGSOC development and represents the largest 
available dataset of transcriptional and multiplexed imaging 
data of precancer, the sample size is still limited relative to the 
complexity of the disease and interpatient variability. Analysis 
of additional specimens will be needed to fully describe immune 
response across the HGSOC spectrum. In addition, 25% of STIC 
lesions associated with cancer have been reported to be dissemi-
nated cancer cells, reflecting the complexity of studying HGSOC 
progression in clinical settings (12). Expanding the cohort to in-
clude more STIC.I lesions would allow for the discovery of addi-
tional mechanisms relevant to disease progression and improve 
the identification of markers linked to clinical outcomes, offer-
ing a more complete understanding of HGSOC progression.

Methods

Patient Specimens and Experimental Design

In total, 43 patients were identified from the University of Pennsyl-
vania and the Swedish Cancer Institute, Seattle, hospital databases, 
which met our criteria of the presence of either STIC.I lesions (n = 9), 
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p53.I signatures (n = 10), or STIC with concurrent carcinoma (n = 24). 
After Institutional Review Board approval, serial sections of 5 μm  
thickness were processed. H&E stain was performed from the same 
block for CyCIF and GeoMx analyses (R. Drapkin, N. Shih, S. Coy) 
to confirm the diagnosis. One specimen per patient was processed, 
except one, patient 11 (bilateral STIC with concurrent carcinoma 
whereby both specimens were processed). In total, 44 formalin-fixed, 
paraffin-embedded specimens were collected, and all were processed 
for multiplex imaging using CyCIF. For microregion whole transcrip-
tomics (GeoMx), 35/44 specimens were available and processed with 
more than 600 ROIs (n = initial 603 ROI collection), including 
normal FT/Fim, precancer lesions, and/or cancer. Tissue processing 
for both techniques is in Supplementary Methods.

2D CyCIF

Protocol for CyCIF was performed as described as Lin and col-
leagues (28, 54). The detailed protocol is available in protocols.io 
(https://doi.org/10.17504/protocols.io.bjiukkew). In brief, the slides 
were baked at 55°C to 60°C for 55 minutes prior to shipping. Then 
upon receiving the slides, BOND RX Automated IHC/ISH Stainer 
was used to bake formalin-fixed, paraffin-embedded slides at 60°C 
for 15 minutes, to dewax the sections using Bond Dewax solution 
at 72°C, and for antigen retrieval using Epitope Retrieval 1 (Leica) 
solution at 100°C for 20 minutes. Slides underwent multiple cycles 
of antibody incubation, imaging, and fluorophore inactivation. All 
antibodies were incubated overnight at 4°C in dark. Coverslips were 
wet-mounted using 200 μL of 50% glycerol/PBS before imaging. 
Images were acquired using a 20× objective (0.75 NA) on a CyteFinder 
slide scanning fluorescence microscope (RareCyte Inc.). Fluorophores 
were inactivated using a 4.5% H2O2, 24 mmol/L NaOH/PBS solution 
and an LED light source for 1 hour. The details of the antibody panel, 
including Research Resource Identifiers, used in this study are men-
tioned in Supplementary Table S4.

Image Processing and Quality Control

Image processing and analysis was performed with the Docker- 
based NextFlow pipeline MCMICRO (https://github.com/labsyspharm/
mcmicro; ref. 32) and with customized scripts in MATLAB (version 
R2024a; MathWorks Inc.: https://www.mathworks.com/products/
matlab.html; ref. 54) and R (version 4.3.3) as described previously. 
Briefly, raw images were stitched and registered from the different 
tiles and cycles after the acquisition using the ASHLAR (103) mod-
ule within the MCMICRO pipeline. After the registration step, the 
OME.TIFF files from each slide were passed through the quantifica-
tion module of MCMICRO. Overall, UNMICST2 (104) was used for 
segmentation and quantification to generate single-cell data. Quality 
control (QC) of the single-cell data includes removing cycles in which 
tissue loss was observed, as previously published, to have the final 
single-cell feature table (54).

Cell Type Identification

All samples and markers were gated independently using an open-
source “gator” viewing and analysis tool as well as binary gating as 
described previously (54). The details of gator can be found at https://
github.com/labsyspharm/minerva_analysis/wiki/Gating. After gen-
erating the initial gate, visual inspection and adjustment was made 
to the final gating table to incorporate with single-cell feature table. 
For cell type and state identification, preexisting knowledge based on 
literature was used as described (54).

Cell Population Proportions

After calculating the average proportion of cells expressing single/
double/triple markers for cell phenotyping on MATLAB, downstream 
quantification across HGSOC stages, including statistical analysis, 

was performed in R (version 4.3.3). To test whether proportions of 
cells with a given phenotype among the whole populations of cells 
differed between disease stages, we used binomial generalized linear 
mixed models (LMMs implemented in the lme4 R package (version 
1.1-34; Bates and colleagues 2014: http://arxiv.org/abs/1406.5823). 
For each ROI, the number of cells with the given phenotype  
(“successes”) and of all other phenotypes (“failures”) were modeled 
using the binomial distribution with a logit link function using the 
lme4 model formula cbind(n_success, n_failure) ∼ stage + (1 + stage| 
patient_id). ROIs were not independent because they were derived 
from the same patients more than once. To account for this, covari-
ance and patient-specific effects were modeled by including random 
intercepts and stage coefficients for each patient. Post hoc contrasts 
between stages were performed using the emmeans R package with 
Benjamini–Hochberg correction for multiple testing. Due to the 
overdispersion of some immune populations, we used binomial gener-
alized LMMs implemented in the glmmTMB R package (version 1.1.9; 
ref. 105) for six major subtypes of immune populations. For each ROI, 
the number of cells with the given phenotype (“successes”) and of all 
other phenotypes (“failures”) were modeled using the binomial distri-
bution with a logit link function using the glmmTMB model formula 
cbind(n_success, n_failure) ∼ stage + (1|patient_id) + (1|observation_
id). ROIs were not independent because they were derived from the 
same patients more than once. To account for this, covariance and pa-
tient-specific effects were modeled by including random intercepts and 
stage coefficients for each patient. Overdispersion was controlled for by 
including an observation-level random effect (106). This model spec-
ification minimized the Akaike information criterion compared with 
other alternative specifications, including negative binomial, beta- 
binomial, and binomial models without observation-level random  
effect. We also tested adding the age of the patient as a variable. However, 
the model did not improve further. The data summary and statistics 
for all CyCIF analysis are in Supplementary Tables S5 and S6.

Neighborhood Analysis (LDA) and Cell–Cell Interactions

LDA analysis for spatial topic analysis was performed using 
MATLAB fitlda function as described previously (54). The pooled fre-
quencies of all samples were used to train the final LDA model, and 21 
topics were isolated. To inspect cell–cell interactions, especially between 
two types of immune cells, a cell type–dependent interaction score was 
generated (107) by a custom MATLAB script, whereby >1 indicates a 
close proximity between two cell types and vice versa. The score was nor-
malized against the distance of random sampling of two cell types of 
interest and then compared with different stages of HGSOC progres-
sion. To allow for the permutation step, only samples with both cell 
types >5 cells were included with further manual inspection of each 
cell type/sample for each stage of HGSOC progression. The interac-
tion score was normalized against the distance of random sampling. 
Because at least five cells of both populations will have to be present 
for random sampling, the number of specimens analyzed from tissue 
imaging was STIC.I (n = 7), STIC.C (n = 16; P = 0.03; cDC1 and acti-
vated CD4+); STIC.I (n = 7), STIC.C (n = 12; P = 0.02; HLA-DR+ CD68+ 
APCs and activated CD4+); and STIC.I (n = 7), STIC.C (n = 14; P = 0.04; 
HLA-DR+CD68+ and activated CD8+). The details of cell types and size 
comparing STIC.I versus STIC.C is in Supplementary Table S5.

3D CyCIF and Image Processing

One of the cases of STIC coexisting with cancer was processed (20 
μm thickness) for super high-resolution imaging as detailed in Yapp 
C and colleagues (bioRxiv 2024; https://www.biorxiv.org/content/ 
10.1101/2023.11.10.566670v4) using a Zeiss LSM980 confocal  
microscope (Supplementary Method). The staining protocol is similar 
to standard 2D CyCIF with overnight antibody incubation. The de-
tails of the antibody panel, including Research Resource Identifiers, 
are mentioned in Supplementary Table S4.
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Annotation, Selection of ROIs, and Protocol for Microregion 
Spatial Transcriptomics

For microregion spatial transcriptomic profiling, we have used 
the GeoMx platform with the whole transcriptome (WTA) probe sets 
(NanoString) as previously published (75). The ROIs were annotated 
by a board-certified pathologist (S. Coy) based on H&E and visualiz-
ing images from CyCIF (Cycle 1–6). Because we wanted to integrate 
RNA and protein expression, we have annotated all ROIs based on 
the presence or absence of HLA-E expression in both epithelium 
and epithelium–stroma boundary (i.e., adjacent stroma). Unlike the 
cancer group, adjacent stromal compartments of normal FT or Fim 
were collected for all incidental cases when available (Supplementary 
Fig. S2). NanoString GeoMx gene expression analysis utilizing the  
whole transcriptome (WTA) probe set was performed using previ-
ously described methods (75). The WTA probe set is in Supplemen-
tary Table S7, keeping in mind that few probes were generic, meaning 
NanoString could not design those probes for specific receptors, 
such as KLRC2 and KLRC1, such that both receptors are displayed by 
“KLRC2.” Briefly, a 5-μm section was dewaxed and stained overnight 
with antibodies targeting epithelial (pan-cytokeratin) and immune 
cells (CD45), defining cell morphology and highlighting ROIs. The 
section was hybridized with the WTA probes before being loaded into 
the instrument. In total, 603 ROIs were initially selected for collec-
tion and library preparation. Followed by QC, 542 ROIs representing 
different stages of the disease progression were used for downstream 
analysis in this study (Supplementary Methods).

Data Processing and QC for GeoMx Data

All sample processing and sequencing were performed by the 
Dana Farber Institute or Harvard Medical School facility. The QC 
and the quartile-3 (Q3) normalization of the initial data set were 
performed as suggested by NanoString using GeoMx DSP soft-
ware, NanoString (version 3.1.0.221). The detailed steps of QCs 
are mentioned in Supplementary Methods. The annotation of 
these ROIs after the QC is detailed in Supplementary Table S2. The  
ROI numbers for each lesion type are depicted in Supplementary 
Fig. S2. The Q3-normalized count matrix file after the QC and 
segment and probe properties are in Supplementary Tables S8 and 
Table S9, respectively.

Spatial Integration of CyCIF and GeoMx Data

To establish the mapping between GeoMx ROIs and CyCIF data, 
the DNA channel in both whole-slide images was used. The pro-
cess begins by deriving a global affine transformation between the 
downsized whole-slide images of the GeoMx and CyCIF datasets. 
In the second step, we query 2D image patches at full resolution, 
centered around the ROI centroids in the GeoMx image and their 
corresponding locations in the CyCIF image, based on the global 
affine transformation. These pairs of image patches are then used 
for a second round of affine registration. Both rounds of affine reg-
istration are conducted using Oriented FAST and Rotated BRIEF 
(108) feature detection and matching techniques. We processed the 
quantification from integrated ROIs from GeoMx, similar to 2D CyCIF 
as described earlier.

Differential Gene Expression and GSEA

To identify sets of genes that were highly or lowly expressed, dif-
ferential gene expression was performed using GeoMx DSP software, 
NanoString (version 3.1.0.221), using the Q3-normalized counts. DSP 
software was used for LMMs with Benjamini–Hochberg correction 
to perform differential gene expression. Model formula: lesion type 
+ (1|scan_ID) whereby scan_ID refers to the patient/slide ID. The 
LMM is designed to handle data with repeated measurements from 

the same sampling unit, and scan_ID was chosen as a random effect. 
DSP software’s custom R script provided by NanoString was used to 
visualize the data for differential gene expression as a volcano plot.

The output of differentially expressed genes was exported from 
the DSP software [i.e., a ranked list of differentially expressed genes 
between two sets of experimental conditions, such as p53.I (epithelial) 
versus STIC.I (epithelial), shown in Fig. 2A and B]. Then GSEA 
analysis using MsigDB (35) Cancer Hallmark pathways and reac-
tome pathways (36) were performed. MsigDB GSEA was performed 
in R (version 4.3.3) using msigdbr (hallmark gene set, category = = H) 
and fgsea packages. GSEA on reactome database was performed using 
GeoMx DSP software and visualized using R. The output for reac-
tome pathways shown in Supplementary Fig. S4A and S4B is also 
provided in Supplementary Tables S10 and S11. The visualization of 
the GSEA was adapted (109).

Modeling the Progression of HGSOC Using Published Gene 
Set by Bayesian Regression Modeling

To study the relationship between gene expression and can-
cer lesion progression, we used a Bayesian ordinal regression model 
implemented by the brms R package (110). We preprocessed GeoMx 
expression counts by Q3 normalized to account for sequencing 
depth, followed by log10 transformation to stabilize variances. To 
account for differences in expression levels across genes, we further 
normalized the log-transformed values by scaling to a mean of zero 
and variance of one (z-transform). We fitted one model per gene 
using the model specification gene_expression ∼ mo(stage) + [1 + 
mo(stage)|patient_id] (Fig. 2E and F; Supplementary Fig. S14A–
S14G). The lesion stage was used as ordinal predictor mo(stage) with 
a monotonic constraint to enforce the assumption of an orderly 
sequence of stages. We accounted for repeat measurements from the 
same patients by including patient-specific random intercepts and 
stage coefficients. To model expression of gene sets, we modified the 
model to include another random effect and its interaction with 
patient_id (gene_expression ∼ mo(stage) + [1 + mo(stage)|patient_id 
* gene]. This modification allows every patient and gene to have a 
different expression baseline and expression changes at each disease 
stage. The “*” operator between patient and gene enables genes to 
behave differently in every patient (i.e., interaction). As a result, we 
can look at the expression along with the progression axis as a gene 
set, such as the IRDS gene set shown in Supplementary Fig. S14E. To 
investigate the effect of HLA-E expression on other genes, we further 
modified the model to include a fixed effect coefficient serving as 
binary indicator for presence or absence of HLA-E in the CyCIF image 
of the ROI (gene_expression ∼ mo(stage) * hlae_e + [1 + mo(stage) 
* hlae_e|patient_id * gene]. We tested this modified model first to 
confirm whether HLA-E expression in protein and RNA levels match. 
Supplementary Figure S14C indicates that HLA-E RNA expression is 
higher in clones that are HLA-E+ by CyCIF, including an increased 
trend observed from FT.C to cancer. For significance testing, we used 
the proportion of the 95% highest density interval within the region of 
practical equivalence (0.05 times the SD). Comparisons with >95% of 
the highest density interval outside the region of practical equivalence 
were significant (*), whereas those with >99% were considered very sig-
nificant (**; ref. 111). In most cases, matched FT was chosen as a refer-
ence, meaning p53.I and STIC.I were compared with FT.I, and STIC.C 
and cancer were compared with FT.C. One exception was the stromal 
component from the cancer group, in which we used p53.C as a refer-
ence due to the unavailability of normal FT or Fim from this group.

Statistical Analysis

All statistical significance is considered P < 0.05 unless stated 
otherwise. Other statistical analyses, such as t test, were performed 
using R (version 4.3.3) or Graph Pad Prism [version 10.0.2 (232)].
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Data Availability

Both CyCIF images and GeoMx data are available through 
https://www.cbioportal.org/study/summary?id=ovary_geomx_
gray_foundation_2024. GeoMx data are available as Count Matrix  
as a Supplementary Table S8 through https://doi.org/10.5281/
zenodo.14502077. Raw files for GeoMx are submitted to Gene Ex-
pression Omnibus (Accession number: GSE281193). New codes for 
this manuscript are available at https://github.com/labsyspharm/
stic-ms-2024. More information about the dataset will be found at 
https://www.graybrcaatlas.org/atlas-datasets/kader-lin-hug-2024/. 
The data is available at the HTAN Data Portal (https://data. 
humantumoratlas.org/). See Supplementary Table S1 for the HTAN 
IDs of each sample.
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