p21Cip1 Promotes Cyclin D1 Nuclear Accumulation via Direct Inhibition of Nuclear Export*

Jodi R. Alté, Andrew B. Gladden§, and J. Alan Diehl§¶

From the §Department of Cancer Biology, The Leonard and Madlyn Abramson Family Cancer Research Institute, University of Pennsylvania Cancer Center, Philadelphia, Pennsylvania 19104 and the ¶Eppeley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198

Received for publication, September 13, 2001, and in revised form, December 11, 2001
Published, JBC Papers in Press, December 20, 2001, DOI 10.1074/jbc.M108867200

There is increasing evidence that p21Cip1 and p27Kip1 are requisite positive regulators of cyclin D1-CDK4 assembly and nuclear accumulation. Both Cip and Kip proteins can promote nuclear accumulation of cyclin D1, but the underlying mechanism has not been elucidated. We now provide evidence that p21Cip1 promotes the nuclear accumulation of cyclin D1 complexes via inhibition of cyclin D1 nuclear export. In vivo, we demonstrate that p21Cip1 can inhibit glycogen synthase kinase 3β-triggered cyclin D1 nuclear export and phosphorylation-dependent nucleocytoplasmic shuttling. Furthermore, we find that cyclin D1 nuclear accumulation in p21/p27 null cells can be restored through inhibition of CRM1-dependent nuclear export. The ability of p21Cip1 to inhibit cyclin D1 nuclear export correlates with its ability to bind to Thr-286-phosphorylated cyclin D1 and thereby prevents cyclin D1-CRM1 association.

Cell cycle progression requires the sequential and ordered activation of the cyclin-dependent kinases (CDKs) and inactivation of CDK inhibitors. D-type cyclins (D1, D2, D3), the regulatory subunit of the CDK4/6 kinase, function as critical mitogenic sensors that integrate growth factor-initiated signals with G1-phase progression (1). Mitogenic stimuli trigger the accumulation of active cyclin D1-CDK4 complexes through both increased cyclin expression and decreased cyclin proteolysis and through the promotion of cyclin D-CDK4 assembly (1). Mitogen-dependent expression of cyclin D1 depends upon growth factor-mediated activation of a signal transduction cascade consisting of Ras, Raf-1, and the extracellular signal-regulated protein kinases (ERK1 and 2) (2–8). Accumulation of cyclin D1 during G1 also relies upon mitogen-dependent inhibition of glycogen synthase kinase 3β (GSK-3β) via activation of phosphatidylinositol 3-kinase and Akt (protein kinase B) (9). The subcellular localization of cyclin D1 complexes also oscillates during the cell cycle, being nuclear throughout G1-phase and cytoplasmic during the remainder of interphase (9–11). Nuclear export of cyclin D1 is a major determinant of cyclin D1-CDK4 localization (12). Phosphorylation of cyclin D1 at a single threonine residue, Thr-286, by GSK-3β facilitates the binding of cyclin D1 with the nuclear exportin, CRM1, and thereby promotes cyclin D1 nuclear export (12). Because neither cyclin D1 nor CDK4 has a recognizable nuclear localization signal, the mechanisms governing cyclin D1 nuclear import remain undefined.

Until recently, members of the Cip/Kip family were considered universal inhibitors of CDK activity. The demonstration that both p21Cip1 and p27Kip1 are components of active cyclin-CDK complexes (13–15) and that p21Cip1 can promote the assembly of cyclin D-CDK4 complexes in vitro (14) has stimulated the re-evaluation of this hypothesis. p21Cip1 and p27Kip1 have also been implicated as nuclear import factors for the cyclin D-CDK4 complex. Unlike cyclin D1, both p21Cip1 and p27Kip1 contain canonical nuclear localization signal motifs (16, 17) and can promote the nuclear accumulation of cyclin D1-CDK4 complexes in transient transfection experiments (14, 18, 19). However, although p21Cip1 can facilitate the nuclear accumulation of cyclin D1, the loss of both p21Cip1 and p27Kip1 does not abolish cyclin D1 nuclear import (18). Thus, neither p21Cip1 nor p27Kip1 are strictly required for cyclin D1 nuclear import, and it is possible that they promote the nuclear accumulation of the cyclin D1-CDK4 complex via an alternative mechanism. We now demonstrate that p21Cip1 promotes the nuclear accumulation of cyclin D1-CDK4 through its ability to inhibit GSK-3β-triggered cyclin D1 nuclear export.

EXPERIMENTAL PROCEDURES

Coll Culture Conditions, Transfections, and Virus Production—NIH-3T3 cells and 293T cells were maintained in Dulbecco's modified Eagle's medium containing glucose supplemented with antibiotics (Cellgro) and 10% fetal calf serum (FCS) (Biowhittaker). MEFs derived from p21/p27−/− mice were maintained on a passage protocol wherein 5 × 10⁶ cells were passaged per 60-mm dish every third day. (20). Insect S9 cells were grown in Grace's medium supplemented with 10% heat-inactivated FCS. For expression in insect S9 cells, HA-tagged p21Cip1 or p21/p27 were inserted into the pVL1393 as BamHI to ClaI fragments. Baculovirus encoding HA-CRM1 and FLAG-D1 were previously described. Standard protocols for baculovirus manipulation were followed (21). Derivatives of NIH-3T3 cells engineered to overexpress FLAG-tagged cyclin D1 and were previously described (9). Transient expression of Myc-tagged GSK-3β, HA-tagged p21 or p21/p27, and FLAG-tagged cyclin D1 in NIH-3T3 cells was achieved by calcium phosphate co-precipitation (22). For virus production, human kidney 293T cells were transfected with 15 µg of ectropic helper retrovirus plasmid plus 15 µg of pM-RF-FLAG-D1, FLAG-D1-T286A, or pBabe-p21Cip1. Supernatants collected every 6 h for 48 h were pooled and filtered. Virus infections were carried out on exponentially growing cells in an 8% CO₂ atmosphere in the presence of 10 µg/ml Polybrene (Sigma Chemical Co.). Cells were harvested for indicated analysis 48 h post-infection.

Expression and Purification of Proteins—HA-CRM1, HA-p21 HA-p21/p27, and FLAG-D1 were cloned into the pVL-1393 baculovirus expression vector (Pharmingen), and virus was isolated according to

* This work was supported in part by American Cancer Society Grant RPG-00-303-01 and by National Institutes of Health Grant CA93237 (to J. A. D.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1754 solely to indicate this fact.

§ A 2000 V Scholar. To whom correspondence should be addressed: Tel.: 215-746-6389; Fax: 215-746-5511; E-mail: adiehl@mail.med.upenn.edu.

¶ The abbreviations used are: CDK, cyclin-dependent kinase; ERK, extracellular signal-regulated kinase; MEK, mitogen-activated protein kinase kinase; LMB, leptomycin B; GSK-3β, glycogen synthase kinase 3β; HA, hemagglutinin; HRP, horseradish peroxidase; FCS, fetal calf serum; Rb, retinoblastoma protein.
established procedures (21). Following infection of insect Sf9 cells at high multiplicity with the indicated viral supernatants, cells were lysed in EBC buffer (50 mM Tris- HCl (pH 7.5), 120 mM NaCl, 0.5% Nonidet-P40) and cleared by sedimentation in a microcentrifuge for 10 min. FLAG-D1 and FLAG-D1 complexes were purified by affinity chromatography using M2-agarose beads and eluted with an excess of FLAG peptide (5 μg/ml) solubilized in kinase buffer (50 mM Hepes, pH 8.0, 10 mM MgCl2, 2.5 mM EGTA, 1 mM dithiothreitol, 20 μM ATP, 10 mM β-glycerophosphate, 0.1 mM NaVO3, and 1 mM NaF).

In Vitro Binding, Immunoblotting, and Immunoprecipitation—Protein complexes were phosphorylated with recombinant GSK-3β protein (Calbiochem), 1 mM ATP, and 10 μCi of 32P]ATP for 30 min at 30°C. Phosphorylated complexes normalized to phosphorylated cyclin D1 were mixed with a HA-CRM1 lysate and immunoprecipitated with the 12CA5 antibody. Precipitated complexes were resolved on denaturing polyacrylamide gels, electrophoretically transferred to nitrocellulose membranes (Millipore), subjected to autoradiography, and then blotted with the cyclin D1 monoclonal antibody (D1-17-13G). Sites of antibody binding were visualized with either protein-conjugated horseradish peroxidase (HRP, EY Laboratories), anti-mouse conjugated HRP, or anti-rabbit conjugated HRP (Amersham Biosciences, Inc.). Pulse-chase experiments were performed as previously described (9).

For detection of both total and P-286 cyclin D1 complexes, NIH-3T3 cells stably overexpressing FLAG-D1 were arrested in G0 by serum starvation for 36 h and stimulated to re-enter the cell cycle by the re-addition of FCS. Lysates were prepared in EBC buffer (23) during C (9 h)- and S (20 h)-phases, and 1500 μg of total protein was immunoprecipitated with M2-agarose (Sigma) or the phosphorylation-specific cyclin D1 antibody (P-286). Bound proteins were resolved on denaturing polyacrylamide gels, electrophoretically transferred to nitrocellulose membranes (Millipore), and blotted with antibodies specific for total cyclin D1 or Thr-286-phosphorylated cyclin D1. Detection of HA-p21 was achieved by immunoblot with either the 12CA5 monoclonal antibody (P-286) or an antibody raised against a peptide derived from the C terminus of p21Cip1 (Santa Cruz Biotechnologies, SC-397). Sites of antibody binding were visualized with protein-conjugated horseradish peroxidase (HRP, EY Laboratories).

Immunofluorescence and Interspecies Heterokaryon Shuttling Assay—NIH-3T3 cells seeded on glass coverslips were transfected with expression vectors encoding the indicated DNA's. Cells were fixed 36–48 h following transfection using 3% paraformaldehyde. For visualization of cyclin D1, coverslips were stained with either a mouse-specific cyclin D1 monoclonal antibody (D1-17-13G) or the FLAG-specific M2 monoclonal (Sigma) in phosphate-buffered saline containing 1% dry milk. Secondary antibody staining was performed for 30 min using fluorescein isothiocyanate-conjugated anti-mouse (Amersham Biosciences, Inc.). For visualization of FLAG-tagged cyclin D1 and HA-tagged p21 in the same cell, fixed cells were incubated with the mouse-specific cyclin D1 monoclonal antibody (D1-17-13G) followed by biotinylated anti-mouse (1:500), and streptavidin Texas Red (1:500). Detection of p21 (12C) was achieved by incubation with the p21 C-19 antibody (Santa Cruz Biotechnologies, SC-397) followed by fluorescein isothiocyanate-conjugated anti-rabbit (Amersham Biosciences, Inc.). Detection of Thr-286-phosphorylated cyclin D1 was achieved by incubation with affinity-purified P-286 antibodies (50 μg/ml). In all cases, DNA was visualized using Hoechst 33258 dye at a 1:500 dilution. Coverslips were mounted on glass slides with Vectashield mounting medium (Vector Laboratories). Heterokaryon shuttling assays were performed as previously described (10).

RESULTS

Constitutive Nuclear Export of Cyclin D1 in p21/pg7/−/− MEFs—Targeted deletion of both p21Cip1 and p27Kip1 inhibits efficient nuclear accumulation of wild-type cyclin D1 (18). Because CRM1-dependent nuclear export is a major determinant in cyclin D1 localization, we wondered if an increased rate of cyclin D1 nuclear export might be responsible for its cytoplasmic localization in cells null for both p21Cip1 and p27Kip1. Murine embryonic fibroblasts prepared from mice lacking both p21Cip1 and p27Kip1 (p21/pg7/−/− MEFs) were infected with retrovirus encoding either wild-type cyclin D1 or D1-T286A. The expression of ectopic cyclin D1 in p21/pg7/−/− MEFs is necessary, because levels of the endogenous protein is reduced at least 10-fold due to increased proteolysis (18). Localization of cyclin D1 was monitored by indirect immunofluorescence with a monoclonal anti-cyclin D1 antibody specific for murine cyclin D1. In asynchronously proliferating wild-type (panels g–h) or p21/pg7/−/− MEFs (panels a–f) were infected with retrovirus encoding either FLAG-D1 or FLAG-D1-T286A. Thirty-six hours post-infection, cells were fixed and processed for immunofluorescence with a cyclin D1-specific antibody (top panels) and Hoechst dye (bottom panels). Where indicated, cells were treated with leptomycin B (LMB) for 2 h prior to fixation. B, nuclear localization of cyclin D1 from part A was quantitated and is shown with bars representing standard deviation from at least three independent experiments.

Body specific for murine cyclin D1. In asynchronously proliferating wild-type MEFs, cyclin D1 is predominantly nuclear in greater than 60% of the cells (Fig. 1A, panel g; Fig. 1B, column 4), whereas in p21/pg7/−/− MEFs wild-type cyclin D1 localized to the cytoplasm in a majority of the cells (Fig. 1A, panel a; Fig. 1B, column 1). In contrast the nuclear export-defective cyclin D1-T286A was exclusively nuclear in p21/pg7/−/− MEFs (Fig. 1A, panel c, Fig. 1B, column 3). The nuclear localization of cyclin D1-T286A suggests that cyclin nuclear import occurs unimpeded in the absence of p21Cip1 and p27Kip1 and that the cytoplasmic localization of wild-type cyclin D1 results from an increase in its rate of nuclear export. To test this hypothesis, we determined if cyclin D1 nuclear localization could be restored by inhibition of its nuclear export. Cyclin D1-infected p21/pg7/−/− MEFs were treated with leptomycin B (LMB), which was previously shown to inhibit cyclin D1 nuclear export via inhibition of CRM1 (12, 24). LMB treatment effectively redirected wild-type cyclin D1 to the nucleus of a majority of p21/pg7/−/− MEFs (Fig. 1A, panel a; Fig. 1B, column 2). These results demonstrate that cyclin D1 nuclear accumulation can be restored in the absence of either p21Cip1 or p27Kip1 through the specific inhibition of CRM1-dependent nuclear export. Furthermore, these results demonstrate that neither p21Cip1 nor p27Kip1 is required for cyclin D1 nuclear import.

p21Cip1 Overrides GSK-3β-dependent Nuclear Export of Cyclin D1—Overexpression of GSK-3β directs the quantitative nuclear export of cyclin D1 via a CRM1-dependent pathway (12). To examine the role of p21Cip1 as an inhibitor of cyclin D1 nuclear export, we tested the capacity of p21Cip1 to override GSK-3β-triggered cyclin D1 nuclear export. To characterize the role of p21Cip1 in the regulation of cyclin D1 nuclear export, it

Fig. 1. Inhibition of nuclear export restores cyclin D1 nuclear localization in p21/pg7/−/− MEFs. A, asynchronously proliferating wild-type (panels g–h) or p21/pg7/−/− MEFs (panels a–f) were infected with retrovirus encoding either FLAG-D1 or FLAG-D1-T286A. Thirty-six hours post-infection, cells were fixed and processed for immunofluorescence with a cyclin D1-specific antibody (top panels) and Hoechst dye (bottom panels). Where indicated, cells were treated with leptomycin B (LMB) for 2 h prior to fixation. B, nuclear localization of cyclin D1 from part A was quantitated and is shown with bars representing standard deviation from at least three independent experiments.

Downloaded from www.jbc.org at University of Pennsylvania Library on September 24, 2008
FIG. 2. \(p21^{\text{Cip1}}\) inhibits GSK-3β-dependent cyclin D1 nuclear export. A, asynchronously proliferating NIH-3T3 cells were transiently transfected with the following expression vector combinations: FLAG-D1 and CDK4 (panels a–b); FLAG-D1, CDK4, and GSK-3β (panels c–d); FLAG-D1, CDK4, and p21\(^{\text{Cip1}}\) (panels e–g); FLAG-D1, CDK4, p21\(^{\text{Cip1}}\), and GSK-3β (panels h–j); FLAG-D1, CDK4, and p21\(^{\text{Cip1}}\)–58 (panels k–m); or FLAG-D1, CDK4, p21\(^{\text{Cip1}}\)–58, and GSK-3β (panels n–p). Twenty-four hours post-transfection, cells were harvested and processed for immunofluorescence with the M2 monoclonal antibody to human p21 (p21, green) and cellular DNA was stained with Hoechst dye (blue). B, quantitation of three or four independent experiments performed as described for A. C, SI9 cell lysates containing cyclin D1 and CDK4, along with either wild-type p21\(^{\text{Cip1}}\) or p21\(^{\text{Cip1}}\)–58 were precipitated with a p21\(^{\text{Cip1}}\)-specific antibody (top panel) or the cyclin D1 antibody followed by immunoblot with the p21\(^{\text{Cip1}}\)-specific antibody. Sites of antibody binding were visualized by enhanced chemiluminescence. D, whole cell lysates prepared from NIH-3T3 cells transfected with empty vector (–; lane 1), or vectors encoding either wild-type p21 containing a hemagglutinin antigen (HA) tag (lane 2) or p21\(^{\text{Cip1}}\)–58 containing the HA-tag (lane 3) were subjected to immunoblot analysis with the 12CA5 monoclonal antibody and visualized by enhanced chemiluminescence.

was important to choose a cell type where cyclin D1 localization was properly regulated, dependent upon GSK-3β, and could be reliably transfected with high efficiency. We therefore utilized NIH-3T3 cells where we have previously documented the dependence of cyclin D1 nuclear export on both CRM1 and GSK-3β activity. NIH-3T3 cells were transfected with expression vectors encoding FLAG-tagged cyclin D1, CDK4, with or without HA-tagged wild-type p21\(^{\text{Cip1}}\) and with or without GSK-3β. Localization of cyclin D1 was determined by indirect immunofluorescence with the cyclin D1-specific monoclonal antibodies (Fig. 2A, panels a, c, e, h, k, n; Fig. 2B, quantitation). Expression of p21\(^{\text{Cip1}}\) in the same cells was confirmed with an antibody that recognizes the C terminus of p21\(^{\text{Cip1}}\) (Fig. 2A, panels f, i, l, o). Cyclin D1 localized to the nucleus in the absence of ectopic GSK-3β (panel a) but relocated to the cytoplasm in its presence (Fig. 2A, panel c; Fig. 2B, bar 2). In contrast, co-expression of p21\(^{\text{Cip1}}\) along with GSK-3β restored nuclear accumulation of cyclin D1 (Fig. 2A, panel h; Fig. 2B, bar 4). Overexpression of wild-type p21\(^{\text{Cip1}}\) was also sufficient to override GSK-3β-dependent cyclin D1 nuclear export (data not shown). p21\(^{\text{Cip1}}\) binds directly to sequences in both the cyclin and CDK subunits (25). We therefore considered the possibility that inhibition of GSK-3β-triggered cyclin D1 nuclear export might require direct contact between p21\(^{\text{Cip1}}\) and both subunits of the cyclin-dependent kinase. Deletion of residues 53–58 of p21\(^{\text{Cip1}}\) should compromise binding to CDK4 (26). To confirm the effect of this mutation we examined the ability of wild-type p21\(^{\text{Cip1}}\) or p21\(^{\text{Cip1}}\)-58 to associate with the cyclin D1-CDK4 complex in SI9 cells. Following infection of SI9 cells with the appropriate baculovirus, cell lysates were prepared and binding of the respective p21 proteins to cyclin D1-CDK4 complexes was monitored by precipitation with the cyclin D1-specific monoclonal antibody followed by immunoblot analysis with an anti-p21 antibody. Binding of p21\(^{\text{Cip1}}\)-58 to the cyclin D1-CDK4 complex was reduced by greater than 50% (Fig. 2C, lower panel). Because total levels of both mutant and wild-type p21\(^{\text{Cip1}}\) were comparable, the reduced binding by the mutant was not due to lower protein levels. We next co-transfected NIH-3T3 cells with expression vectors encoding FLAG-tagged cyclin D1 and CDK4, along with HA-tagged p21\(^{\text{Cip1}}\)-58, with or without GSK-3β. In the presence of overexpressed p21\(^{\text{Cip1}}\)-58 only, cyclin D1 complexes were nuclear (Fig. 2A, panel k; Fig. 2B, bar 5). However, upon co-expression of GSK-3β, cyclin D1 was again cytoplasmic (Fig. 2A, panel n; Fig. 2B, bar 6). Ectopic expression of a second p21 mutant, which is defective in cyclin binding (p21\(^{\text{Cip1}}\)-53), also failed to inhibit GSK-3β-triggered cyclin D1 nuclear export (data not shown). Because both wild-type and mutant p21 molecules accumulated to the same level in the transfected NIH-3T3 cells (Fig. 2D, lanes 2 and 3), the failure of p21\(^{\text{Cip1}}\)-58 to inhibit cyclin D1 nuclear export was not due to its reduced accumulation in transfected cells. These results demonstrate that p21\(^{\text{Cip1}}\) does inhibit GSK-3β-dependent cyclin D1 nuclear export and suggest that p21\(^{\text{Cip1}}\)-dependent inhibition requires direct binding of p21\(^{\text{Cip1}}\) with the cyclin D1-CDK4 complex.

Due to the nature of the above experimental approach, we could not rule out the possibility that p21\(^{\text{Cip1}}\) promotes nuclear accumulation of cyclin D1 by increasing the rate of cyclin D1 nuclear import relative to its rate of nuclear export. To directly assess the capacity of p21\(^{\text{Cip1}}\) to inhibit cyclin D1 nuclear export, we utilized a heterokaryon shuttling assay. This assay utilizes the fact that fusion of cells of two different species can be induced thereby allowing one to monitor the migration of proteins between heterologous nuclei. For a protein to move from one nuclei to the second, it must undergo one round of nuclear export (from the original nucleus) and one round of nuclear import (into the heterologous nucleus). Proteins that are defective in nuclear export will remain localized to the original nucleus. Nucleoplasmin containing a bi-directional transport signal (M9) and a c-myc epitope tag (NPc-M9) was used as a positive control (12, 28, 29). NIH-3T3 cells seeded on glass coverslips were transfected with cyclin D1 and CDK4 or cyclin D1-CDK4 with either wild-type p21\(^{\text{Cip1}}\) or p21\(^{\text{Cip1}}\)-58. Thirty-six hours post-transfection, NIH-3T3 cells were co-cultured with HeLa cells for 3 h prior to cell fusion. Thirty minutes following fusion, shuttling between nuclei was monitored by indirect immunofluorescence with the 9E10 monoclonal antibody (NPc-M9) or the mouse-specific monoclonal antibody to cyclin D1. Murine and human cells were distinguished with Hoechst dye, because murine cells display a punctate staining pattern while human cells display a homogeneous staining pattern. The total number of heterokaryons with protein shut-
FIG. 3. p21CP1 inhibits cyclin D1 nucleocytoplasmic shuttling. A, NIH-3T3 cells transiently expressing cyclin D1, CDK4 (a–c); cyclin D1, CDK4, p21CP1 (d–f); cyclin D1, CDK4, p21Δ53–58 (g–i); or Npc-M9, p21CP1 (j–l) proliferating on glass coverslips were treated with cycloheximide and fused with HeLa cells. Thirty minutes post-fusion, cells were harvested and processed for immunofluorescence microscopy. Npc-M9 was visualized using the 9E10 monoclonal antibody, and cyclin D1 was visualized with either a monoclonal antibody specific for murine cyclin D1 or the M2 monoclonal antibody, and DNA was visualized with Hoechst dye. The differential staining of human (homogenous) versus murine nuclei (punctate) by Hoechst dye facilitated the identification of fusions composed of murine and human nuclei. B, the number of fusions wherein Npc-M9 and cyclin D1 were observed in HeLa nuclei was quantitated and is expressed.

FIG. 4. Inhibition of CRM1-dependent cyclin D1 nuclear export. A, NIH-3T3 cells were transfected with plasmids encoding either wild-type cyclin D1 and CDK4 (panels a–b); cyclin D1, CDK4, and HA-CRM1 (panels c–d); cyclin D1, CDK4, p21CP1, and HA-CRM1 (panels e–g); or D1, CDK4, p21Δ53–58, and HA-CRM1 (panels h–j). Cyclin D1 was visualized with the M2 antibody (top panels); p21 proteins were visualized with a rabbit anti-p21 antibody, and DNA was visualized with Hoechst dye (bottom panel). B, quantitation of the number of cells expressing exclusively nuclear cyclin D1 from A.

Export of cyclin D1 (Fig. 4A; compare panels e and h). These results demonstrate that p21CP1 can promote nuclear accumulation of cyclin D1–CDK4 complexes through inhibition of CRM1-dependent nuclear export.

p21CP1 Inhibits Cyclin D1–CRM1 Association—To determine if inhibition of nuclear export resulted from the capacity of p21CP1 to inhibit GSK-3β-dependent phosphorylation of cyclin D1, whole cell lysates were prepared from Sf9 cells infected with baculoviruses encoding cyclin D1 and CDK4 in the absence or presence of p21CP1. Total cellular protein was resolved by SDS-PAGE, transferred to nitrocellulose membrane, and blotted for total cyclin D1 or Thr-286-phosphorylated cyclin D1 (Fig. 4A, bottom panel). Immunoblot analysis with the P-286-specific antibody (Fig. 5A, bottom panel) revealed the presence of Thr-286-phosphorylated cyclin D1 in the absence (lane 1) and presence (lane 2) of p21CP1. Parallel immunoblot analysis with the cyclin D1 antibody (top panel) revealed equivalent levels of total cyclin D1. We also examined the ability of p21CP1 to inhibit Thr-286 phosphorylation in NIH-3T3 cells. To facilitate detection of Thr-286-phosphorylated cyclin D1, we utilized FLAG-D1 overexpressing NIH-3T3 cells (D1–3T3). D1–3T3 cells were infected with either control (empty) virus or virus encoding wild-type p21CP1 (Fig. 5B). Thirty-six hours post-infection, cyclin D1 was precipitated with either the phospho-specific antibody (lanes 2 and 5) or the M2 monoclonal antibody (lanes 3 and 6). Levels of cyclin D1 were determined by immunoblot with the cyclin D1 monoclonal antibody. As observed in Sf9 cells, phosphorylated cyclin D1 was detected in the absence or presence of ectopic p21CP1 (compare lanes 2 and 5). We noted a slight increase in both total and phosphorylated cyclin D1 in the presence of ectopic p21CP1. This increase likely results from decreased turnover of nuclear cyclin D1 (21) (see below). We conclude that p21CP1 does not inhibit phosphorylation of cyclin D1 at threonine 286.

We next determined if p21CP1 could prevent the binding of cyclin D1 nuclear export.
CRM1 to Thr-286-phosphorylated cyclin D1, D1-p21Cip1, or D1p21Δ53–58 complexes. Complexes were purified from Sf9 cells by affinity chromatography and phosphorylated with recombinant GSK-3 and [32P]γATP. The purified complexes were normalized to levels of phosphorylated cyclin D1 (Fig. 5C), mixed with Sf9 lysates containing HA-CRM1 and re-precipitated with the 12CA5 antibody, which is directed against the N-terminal HA-epitope tag encoded by HA-CRM1. Following transfer to nitrocellulose membrane, cyclin D1 was visualized by both autoradiography, to detect 32P-labeled cyclin D1 (Fig. 5D, bottom panel), and by immunoblot with the cyclin D1 antibody (Fig. 5D, top panel). Phosphorylated cyclin D1 was readily detectable in the CRM1 precipitates in the absence of p21Cip1 (lane 2). In contrast, p21Cip1-bound cyclin D1 did not efficiently co-precipitate with CRM1 (lane 3). Binding of p21Δ53–58 was reduced but did not eliminate D1-CRM1 interactions (lane 4) consistent with the reduced capacity of this mutant to bind to and inhibit D1 nuclear export. These results demonstrate that p21Cip1 binding prevents association of CRM1 with phosphorylated cyclin D1.

Efficient nuclear export of cyclin D1 requires phosphorylation at Thr-286. The requirement for either p21Cip1 or p27Kip1 to promote nuclear accumulation of cyclin D1 during G1-phase implies that cyclin D1 can be phosphorylated on this residue during G1- and S-phases. D1–3T3 cells were rendered quiescent by serum deprivation for 36 h. Cell lysates were prepared following addition of FCS in late G1-phase (9 h) and late S-phase (20 h). S-phase entry was monitored in parallel by pulse label with bromodeoxyuridine (data not shown). Cyclin D1 complexes were isolated by precipitation with either the M2 monoclonal antibody or the antibody directed against phosphorylated Thr-286. Phosphorylated cyclin D1 could be detected in G1- and S-phases, although the level of Thr-286-phosphorylated cyclin D1 was increased during S-phase (Fig. 6A, lanes 5 and 6, top panel). We noted that less cyclin D1 was detected in the phospho-specific precipitates (compare lanes 2 with lanes 5 and 6, top panel) suggesting that only a fraction of the total cyclin D1 is phosphorylated on this residue. Upon blotting with the phospho-specific antibody, equal levels of Thr-286-phosphorylated cyclin D1 were detected in both the M2- and phospho-specific precipitates (compare lanes 2 and 3 with lanes 5 and 6, second panel). These data demonstrate that a sub-population of cyclin D1 is phosphorylated on Thr-286 during G1+, with peak levels of phosphorylation occurring during S-phase.

To conclusively demonstrate that p21Cip1 promotes the nuclear accumulation of Thr-286-phosphorylated cyclin D1, NIH-3T3 cells were transfected with plasmids encoding either cyclin D1 or cyclin D1 and p21Cip1. The localization of phosphorylated cyclin D1 was determined with the anti-phospho-286 antibody. In the absence of exogenous p21Cip1 phosphorylated cyclin D1 localized to nuclear and cytoplasmic compartments (Fig. 6B, panel a). We noted that cytoplasmic phosphoryl-cyclin D1 tended to accumulate as cytoplasmic aggregates (panel a). We have
noted similar cyclin D1 localization in cells treated with proteasome inhibitors (data not shown) suggesting that this localization might represent sites of cyclin D1 proteolysis. In contrast, co-transfection of p21Cip1 and p27Kip1 resulted in the exclusive nuclear localization of Thr-286-phosphorylated cyclin D1 (panel c). These results demonstrate that p21Cip1 and p27Kip1 inhibit nuclear export of Thr-286-phosphorylated cyclin D1.

Nuclear localization of cyclin D1 has been hypothesized to potentiate its accumulation via decreased proteolysis (9). Consistent with this hypothesis, overexpression of either p21Cip1 or p27Kip1, which enforces the nuclear localization of cyclin D1 complexes (data herein) will decrease the rate of cyclin D1 turnover (18). These results are consistent with the idea that cyclin D1 must be exported from the nucleus for efficient proteolysis. To further test this hypothesis, we compared the half-life of cyclin D1 in untreated versus LMB-treated NIH-3T3 cells. We have previously shown that LMB treatment does not inhibit Thr-286 phosphorylation (12); thus, any difference in cyclin D1 turnover cannot be attributed to differential cyclin D1 phosphorylation. LMB treatment extended the cyclin D1 half-life greater than 3-fold as determined by pulse-chase analysis (Fig. 6C). These data suggest that Cip/Kip proteins facilitate cyclin D1 accumulation via specific inhibition of cyclin D1 nuclear export thereby resulting in reduced cyclin proteolytic degradation.

DISCUSSION

Regulation of Cyclin D1 Nuclear Export by Cip/Kip—There is increasing evidence that Cip/Kip proteins function as regulators of cyclin D1 nuclear accumulation. Based largely on the ability of p21Cip1 and p27Kip1 to promote nuclear localization of cyclin D1-CDK4 complexes in transient transfection experiments, it was proposed that Cip/Kip proteins are regulators of cyclin D1 nuclear import. However three pieces of evidence demonstrate that neither p21Cip1 nor p27Kip1 are strictly required for cyclin D1 nuclear import. First, although inefficient, low levels of cyclin D1 can still enter the nucleus of p21Cip1−/− MEFs (Fig. 1) (18). Second, nuclear localization of cyclin D1 in p21Cip1−/− p27Kip1−/− MEFs can be completely restored by inhibition of the nuclear exportin CRM1 with leptomycin B. Third, cyclin D1-T286A, a mutant protein that is refractory to CRM1-dependent nuclear export, is exclusively nuclear in the absence of both p21Cip1 and p27Kip1. These data demonstrate that cyclin D1 nuclear import remains intact in the absence of either Cip1 or Kip1. In contrast our data suggest that deletion of p21Cip1 and p27Kip1 results in an increase in the rate of cyclin D1 nuclear export. We noted that both p21Cip1 and p27Kip1 can abolish cyclin D1 nucleocytoplasmic shuttling, a process that is dependent upon nuclear export (28). In addition, ectopic expression of either p21Cip1 or p27Kip1 inhibited GSK-3β triggered cyclin D1 nuclear export. Finally, p21Cip1 efficiently inhibited the ability of ectopic CRM1 to shuttle cyclin D1 out of the nucleus and abolished cyclin D1-CRM1 association. These observations in concert with the ability of LMB to restore nuclear accumulation of cyclin D1 in p21Cip1−/− p27Kip1−/− cells imply that p21Cip1 and p27Kip1 are inhibitors of cyclin D1 nuclear export. Accordingly, through inhibition of cyclin D1 nuclear export, p21Cip1 and p27Kip1 promote cyclin D1-CDK4 nuclear accumulation. In their absence, the rate of cyclin D1 nuclear export is increased such that there is no net cyclin nuclear accumulation. Although neither p21Cip1 nor p27Kip1 is strictly required for cyclin D1 nuclear import, we cannot eliminate the possibility that they may also facilitate cyclin D1 nuclear import under certain conditions. By increasing nuclear import and inhibiting nuclear export of cyclin D1, Cip/Kip proteins would ensure the efficient nuclear accumulation of cyclin D1 during G1-phase.

If phosphorylation of Thr-286 is required for cyclin D1 nuclear export, why have cells developed a second mechanism that can override this signal? The answer to this question likely stems from the fact that the GSK-3β also shuttles between nuclear and cytoplasmic compartments (9). One could envision a leaky regulation of cyclin D1 phosphorylation resulting in Thr-286 phosphorylation during G1-phase, a point requiring nuclear accumulation of cyclin D1. In point of fact, early experiments demonstrated increasing levels of total cyclin D1 phosphorylation during G1-phase (23). Our data are consistent with this observation and demonstrate that phosphorylation does occur on Thr-286 during G1-phase. Phosphorylation of cyclin D1 during G1-phase will necessitate that an alternative measure be taken to maintain cyclin D1 in the nucleus during G1-phase. The ability of p21Cip1 to block CRM1-cyclin D1 binding and maintain phosphorylated cyclin D1 in the nucleus demonstrates that p21Cip1 binding is a dominant event that overrides Thr-286 phosphorylation-triggered cyclin D1 nuclear export. Thus, the binding of Cip/Kip proteins to the cyclin D1 complex will effectively reduce the rate of cyclin D1 nuclear export during G1-phase, thereby allowing the cell to accumulate a threshold level of cyclin D1-CDK4 kinase necessary to promote restriction point passage. In contrast, the absence of p21Cip1 and p27Kip1 would result in the rapid export of cyclin D1 and the absence of cyclin D1-CDK4 nuclear accumulation as is observed in p21Cip1−/− p27Kip1−/− MEFs.

Given the capacity of Cip/Kip proteins to override phosphorylation-triggered cyclin D1 nuclear export, effective removal of cyclin D1 from the nucleus during S-phase will require two events. The first is the phosphorylation of cyclin D1 at Thr-286. The second will be the liberation of cyclin D1 from p21Cip1 and p27Kip1 proteins. Although we have not established the nature of this latter signal, it is likely that accessibility of p21Cip1 to the cyclin D1 complex will be a contributing factor. Accessibility will be sensitive to the rate of Cip1/Kip turnover and to Cip1/Kip localization within the cell. Cip1 and Kip1 are highly labile proteins, with half-lives of less than 30 min in most cell types (30–33). Accumulation of p21Cip1 mirrors that of cyclin D1 subcellular localization. p21Cip1 levels peak during late G1-phase, the point at which cyclin D1 is exclusively nuclear, and its levels dwindle as cells traverse S-phase, the point wherein cyclin D1 becomes cytoplasmic (34).

The subcellular localization of p21Cip1 and p27Kip1 might also contribute to their capacity to regulate cyclin D1 nuclear export in G1 versus S-phase. Phosphorylation of p21Cip1 at Thr-145 is associated with decreased binding to CDK4 and decreased nuclear import (35, 36). Intriguingly, Akt (protein kinase B), the upstream regulator of GSK-3β, targets p21Cip1 at Thr-145 (36). Any shift in Cip/Kip localization resulting in lower levels of nuclear Cip/Kip would result in increased nuclear export of phosphorylated cyclin D1.

Cyclin D1 Nuclear Retention and Cell Cycle Progression—The importance of cyclin D1 nuclear localization is at least 2-fold. First, the critical cell cycle regulatory functions of the cyclin D1 kinase, including phosphorylation of Rb, require its nuclear localization during G1-phase. As a consequence, the failure of the cyclin D1 kinase to accumulate in the nucleus inhibits G1-phase progression (19). Second, although cyclin D1 nuclear localization promotes close proximity with Rb, our data also demonstrate that nuclear localization facilitates rapid accumulation of cyclin D1 through inhibition of proteolytic degradation. Cyclin D1 degradation is regulated via the 26 S proteasome, and efficient proteolysis requires phosphorylation of Thr-286. The capacity of phosphorylation to direct cyclin D1 nuclear export lead to the hypothesis that cyclin D1 destruction preferentially occurs in the cytoplasm (9). Consistent with this hypothesis, inhibition of cyclin D1 nuclear export by treatment of cells with LMB reduced the rate of cyclin D1 proteolytic turnover. Because LMB does not inhibit Thr-286...
phosphorylation by GSK-3β (12), we conclude that cyclin D1 must first be shuttled to the cytoplasm where it undergoes ubiquitin-dependent destruction. The capacity of p27kip1 and p21Cip1 to reduce the rate of cyclin D1 turnover is also consistent with this notion (18). Thus, Cip/Kip proteins not only directly promote the nuclear accumulation of cyclin D1 during G1-phase through inhibition of nuclear export, but also facilitate accumulation through inhibition of cyclin D1 degradation.

Duality of Cip/Kip Function—The Cip/Kip inhibitors (p21Cip1, p27kip1, and p57kip2) and INK4 inhibitors (p15, p16, p18, p19) have the functional capacity to limit cell cycle progression via CDK inhibition in response to cellular stresses or through anti-mitogens such as transforming growth factor-β (37). However, it is clear that the Cip/Kip family is required for efficient assembly of the cyclin D-CDK4 kinase (14, 18), and our results now demonstrate that inhibition of cyclin D1 nuclear export by Cip/Kip proteins is required for cyclin D1-CDK4 nuclear accumulation during G1-phase. The ability of p21Cip1 to promote nuclear accumulation of Thr-286-phosphorylated cyclin D1 along with the inability of cyclin D1 to efficiently accumulate in the nucleus in its absence stresses the importance of their capacity to regulate cyclin D1 nuclear export. These data provide direct evidence for the notion that Cip/Kip proteins serve as dual regulators of cell cycle progression: potent inhibitors of the CDK2 kinase and requisite positive regulators of the cyclin D-CDK4 kinase.

Based on our findings, we propose a model wherein cyclin D1 nuclear export is a critical regulatory step necessary to maintain normal mitogen-dependent cell proliferation. In this model the nuclear accumulation of cyclin D1 is regulated by the nuclear exportin CRM1. The binding of CRM1 to cyclin D1-CDK4 complexes requires phosphorylation of cyclin D1 on a single threonine residue by GSK-3β. Phosphorylation of this residue is in turn determined by the activity of GSK-3β and access of GSK-3β to nuclear cyclin D1 complexes. Cip/Kip proteins function as a master switch that can override Thr-286 phosphorylation thereby preventing CRM1-dependent nuclear export and maintaining cyclin D1 complexes within the nucleoplasm.

Acknowledgments—We thank Charles Sherr for providing NIH-3T3 cells, wild-type MEFs, and cyclin D1-specific antibodies (total and phospho-specific); James Roberts for providing p21/p27−/− MEFs; Guy Adami for providing HA-p21 constructs; and Mark Hannink for providing HA-tagged CRM1. We gratefully acknowledge the excellent technical assistance of Ronald Rimner.

REFERENCES