Integrating Remote Cloud and
Local HPC Resources

Angel Pizarro

Institute for Translational Medicine and Therapuetics
Perelman School of Medicine
University of Pennsylvania

& Penn

UNIVERSITY 0f PENNSYLVANIA

Acknowledgements

* Los Jefes:

— Garret FitzGerald
— John Hogenesch
— Junhyong Kim

— Jim Eberwine

El Dinero:

— UL1RR024134 (CTSA)

— PA Department of Health
— UPENN

Mi Equipo:

Anand Srinivasan
Katharina Hayer

Mike Delaurentis
Dimitra Sarantopoulou

The Problem

meaningless line chart showing data growth in genomics

* Not enough compute
* No where to put

= computational
— infrastructure
== e Attracting IT talent
:? \{y“” easier said than done

e No academic institution
does this as well as
mega-corps

Cloud to the rescue!

* “Magical land of
endless compute!”™

e Amazon Web Services

— UPENN strategic
partnership
* |nitial usage caps are
easily lifted on request
— Went from 40 to 300 in 2
days

'+ Then how to integrate?

Integration to Local Resources

* | have no immediate and easy answer for you

* My 2¢C:
— Start with separate resources
— Provide a robust transport mechanism
[— Stabilize both resources J

— Closely monitor usage patterns of both

— THEN AND ONLY THEN start thinking about tight
Integration

The Cloudy Choices Before Us

* Pay someone to provide a solution

 Managed multi-tenant environments
— Hosted provider agreements
* E.g. POD or other non-root accessible resources

— Set-contract VPS & managed hosting
* Assumes administrative rights on resources
e Can be “bear metal” dedicated servers (RackSpace)

— laaS providers
* AWS, RackSpace Cloud, etc.

* [Un]managed single-tenant environments
— laaS where “users” request and administer resources

Managed Multi-tenant Environments

Recreating current HPC environments on AWS
EC2

Known management and execution tools

EC2 is “just different enough” to make your
life a huge pain
Costs are no longer fixed and amortized

— chargebacks are going to be different (and
variable)

Single-tenant Managed Environments

* Bootstrapped Single Purpose Clusters (SPC™)

e Automation is critical

— Permanent resources have a different
management style, allow certain tradeoffs that are
less palatable with cloud resources

* Able to tune SPC’s for each business process

— Instance type, how many, execution engine,
storage strategy, etc.

* Let’s look at an example: RNA-Seq analysis

Algorithm: RNA-Seq Unified Mapper
(RUM)

Bowtie Against Bowtie Against ACC ura Cy

Genome Transcriptome

Base Level Accuracy Junctions Accuracy

\ % of bases aligned correctly & W Junctions EP rate
95% - Junctions FN rate .
l 90% "
Unmapped Bowtie Mappers 8%
by Bowtie

80%
BLAT mappers
75%
- 70%
Blat Against
Genome 8%
60%
55%
Unique Non-Unique o
R I > & & @
Mappers Mappers .»y"g QP‘}QV\C‘ & 8 55 Qoé’ ,(/\»‘8 90"g IS
@ S e C E ¥ O & £
\ / ¥ & d}@% &£ Y é& g
< & By é@,;
| 5 nt file o4 &
e < S
ye files S
(o] D .
Base Level Accuracy Junctions Accuracy
100% 60%
W% of bases aligned correctly T
M Junctions FN rate
untime o
A Run Time (processor hours) B Run Time (processor hours) 80%
450 450
400 400 -
350 350
300 300 60%.
250 250
50%
200 200 i
150 150 40%
100 100
30%
50 50 I S ¢S R PO RS
) T Y F N K NN
& 0,;\" & 8 @QQVAO‘,\,\ ‘bo&} & \@?‘G %ocﬁoqg«c
0+ 0+ Nl 3 2 ¢ &
K S & & &
¢ & & O CRC IS 2 S I SN ¢ & &P &S E S E S 5
& TFEI IS TSI PP g R R & S
& G i o & © & & s & & ¢ & & <&
& & ¢ S & e & & S & &
<& & € «‘?Ye & S N
2 5 2 < <
N & & &
& Q@‘

N Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Grant GR, Farkas MH,
Pizarro AD, Lahens NF, Schug J, Brunk BP, Stoeckert CJ, Hogenesch JB, Pierce EA. Bioinformatics. 2011 Sep 15;27(18):2518-
28. Epub 2011 Jul 19. PMID: 21775302

Closer look at RUM workflow

RUM Flowchart

All Reads

Genome

Bowtie Against

Unmapped

by Eovle /CBLAT mappers)

Merge

Bowtie Against
Transcriptome

kBowtie Mappers)

Blat Against
Genome

Merge

Unique Non-Unique
Mappers Mappers

SAM alignment file

Depth-of-coverage files
Feature Quantifications

Junction Calls

10MM 100bp paired
end simulated data

Lots of 10

— 75% writes

Essentially a map-
reduce workflow

30 “chunks”

Orchestration via StarCluster

 Python command line tool to configure and
launch single-tenant clusters on AWS

IIr-.I:um':..'ﬁl Laptnp/Whorkstat iﬂl:'I

Maste

s
—
- |

>>> Configuring cluster took 5.672 mins
>>> Starting cluster took 6.576 mins

Our StarCluster Plugins

Extend StarCluster’s bootstrapping procedure
GrideEngine Tweaks

— Alter the number of slots on the master

— Enable h_vmem on execution hosts

— Enable exclusive reservation of hosts
RAIDO Ephemeral storage

— Formats all ephemeral disks into a single BTRFS volume
GlusterFS on ephemeral storage

— Parallel shared file system

— Uses above to get massive single-namespace parallel filesystem
PVFS2 on ephemeral storage

— Alternate parallel shared file system

— Built for high I/O workflows

https://github.com/PGF|/StarClusterPlugins

Experiment: Effect of a Shared File
System on Run Time

 NFS from the master host
— Native to StarCluster default strategy, on EBS

e GlusterFS

— FUSE-based, slower than kernel modules

— All nodes on cluster join their ephemeral storage as
one distributed GlusterFS volume

* PVFS2

— Kernel module shunts requests via a pvfs2-client
daemon

— Distributed striped volumes across ephemeral storage

PVFS2 Results

e Killed PVFS2 after 232 minutes

— Master process looked for files and aggressively
cleaned up after itself

— Restarted each “chunk” analysis
— Your algorithm may work better

— There are tuning parameters that allow more file
system consistency

— Can tune the data server and metadata server
layout configuration

PVFS2 Profile Data
(something is not right)

Avg CPU Utilization (Percent)

100
50
W 0
0
4/24 4/24
21:30 22:00

Max Metwork In (Bytes)

400,000,000
300,000,000 f r‘ﬁ
: ”
200,000,000
100,000,000 *ffgb
0
4,24 4/24
21:30 22:00

Avg Disk Reads (Bytes)

1.0
0.5
0.0 -
-0.5
-1.0
4/24 4/24
21:30 22:00

Max Network Out (Bytes)

300,000,000 A/
200,000,000 i:\/\v(\ E
100,000,000 iTU

0

4/24 4124
21:30 22:00

Avg Disk Writes (Bytes)

100,000,000
75,000,000
50,000,000
25,000,000
0

4,24 4,24

21:30 22:00

GlusterFS Results

e Completedin 112 minutes
— 10MM paired end RNASeq data ~ $7.50 to align
— VERY CLEAN SIMULATED DATA

 We've tried using 2 dedicated GlusterFsS file

servers to service the cluster, and that failed
badly.

— NFS time outs, lots of EBS => SSS

 Much better performance to use it as scratch
space on ephemeral drives

— Also cheap, since it utilizes ephemeral drives

GlusterFS Profile Data

Avg CPU Utilization (Percent}

100
|I:Il
i
50 |

|
M4
4,24 4/25 4/25
22:00 oo:oo0 0z2:00

0

Max Metwork In (Bytes)
4,000,000,000

3,000,000,000
2,000,000,000

1,000,000,000 JL_
,

4/24 4725 4725
22:0000:0002:00

Avg Disk Reads (Bytes)
3,000,000

2,000,000

1,000,000

1

4/24 4725 4725
22:00 00:00 02:00

0

Max Metwork Out (Bytes)
5,000,000,000
4,000,000,000

3,000,000,000
|

2,000,000,000
1,000,000,000 ‘I
r r r ﬂ.
|:| a J-L.-

4/24 4725 425
22:0000:0002:00

Avg Disk Writes (Bytes)
1,000,000,000

750,000,000
500,000,000

250,000,000 \
o - 'il"a.-_-
424 4725 4/25
22:0000:0002:00

NFS from the master node

Finished in 91 minutes
Not much faster than GlusterFS

We have seen it fail hard under heavy loads

— 10-15 servers, 90 processes
Unless you RAID, limited to 1TB volumes

Probably best to use local scratch space on
nodes, copy back final results to NFS space

NFS Profile Data

Avg CPU Utilization (Fercent)

100 FI
. My
JI’[:\’\\IIC

|:| =
4/25 4/25 4/25

02:00 03:00 04:00

Max Network In (Bytes)
6,000,000,000

4,000,000,000

2,000,000,000

4/25 4/25 4;25
02:0003:0004:00

Avg Disk Reads (Bytes)
1.0

0.5
0.0
-0.5

-1.0
4/25 4/25 4/25
0z:00 03:00 04:00

Max Network Out (Bytes)
4.000,000,000

3,000,000,000

2,000,000,000

1,000,000,000 'J
. !

4/25 4/25 4/25
02:0003:0004:00

Avg Disk Writes (Bytes)
40,000

30,000
20,000 A

10,000 ;1
|
0 - :

4/25 4/25 4425
02:00 03:00 04:00

Conclusions

* Profile your algorithms, tune Single Purpose
Clusters (SPC™) for CPU and IO

e COMPLETELY automate the process of
bootstrapping SPC’s
— Automate the process of bringing them up and
bringing them down
* Once you have achieved “set it and forget it
status, treat it as a single algorithm/service
that gets integrated with local resources

1

