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Approach Related Works

Motivation

oEffective computer-patient-provider v *For this work, we formulate the problem as a video question answering *Medical Video Answer Localization Task[1]

Interaction plays a pivotal role In s J (VQA) (e.g. User gives specific query about a video) Locate temporal segments in medical video

determining patient outcomes . G °/ntegrate Large Language Models (LLM) and neurosymbolic *General Video Question Answering Task|[2],[3]

Automated pre-processing of -t | approaches to provide researchers and providers with tailored insights Video and audio joint encoders to answer queries

interactions in video would facilitate W } \ 3 Y/ regarding specific queries *NeuroSymbolic Approach for VidQA[4]

sociotechnical studies Q: How engaged is the Key Components Video information is represented by hyper-graph connecting entities and

patient and provider? 1. LLM-based query-specfic neurosymbolic program generation relations, and answering logic is represented by a functional program

*Goal. Capture, process, and interpret the nuances of communication 2. Library of symbolic modules which capture various aspects of video Limitations:

and non-verbal cues between patients and providers during medical analysis, communication, etc. 1. Current VQA approaches have limitations in long-term reasoning
consultations 3. User-feedback based parameter optimization (future work) 2. Composing multi-modal input(text, audio, video) is limited or black-box

Method Result 1: Query for Levels of Engagement

1. Input Query 2. LLM Module Selection 3. Program Synthesis 4. Evaluation *Query : Calculate the level of engagement a clinician will give to a patient

& Parameter Optimization Output Synthesized Query Program by GPT-4

def calculate_engagement(weight_proximity, weight_silence, video_duration, video):

Selected Modules:

Prom t 2 Ca?cglate the Fevel of er.wgag?ment per second ‘ . . o . . ,
User Query — Module & o+ Rp os + Module & annotator It Proximity’, ‘Silence Detection
/ LlSt ( uery ules We|ghts normalized_proximity = 1 - proximity[i]l[1] / 25 if not np.isnan(proximity[i] [1]) else ©
Modules) normalized silence = @ if silencel[i] else 1
‘ l Zn;Z;Z;;zﬁi;hi \}/z\ijzrl\ti;r(i:gi;i::;e:tnormalized_proximity + weight_silence *x normalized_silence
Find a video where the patient was lying down Module eturn engagement
(VTR) Description Proximity Successful result for
Callculate the Ie\{el of engagement between Posture Recognlltlon —_— —_— [ oss query of levels of engagement
patient and provider (Q) Keyword Detection 1 I Lo =5 R
What did the provider do before the Speaker Diarization s 5
examination? (CR) Silence Detection 0 time(sec) Sos S
Various user query types (Video Text Given user query and high-level Given video and LLM prompt, Loss is computed based off the intervals =1 2.Silence o O B
Retrieval, Quantification, Causal description of existing modules, execute the synthesized query selected to satisfy the query and ground - yniggi 1. é 3 Talki o
Relationship, et ted to GPT-4 selects relevant modul d optimize loss by truth (gt gL around Truth Crediction
elationship, etc) are converted to -4 selects relevant modules program and optimize loss by truth (gt) -\ M, 4 End of visit Minimum loss = 0.15

answer localization task updating module weights “gt will be approximated from user feedback (future)

Engagement (1) : Proximity | or No silence No Engagement (0) : Proximity T and Silence

Conclusions and Future Work

Result 2: Query for Pose During Examination

*Query : Find a video where the patient was lying *Plot *Audio Module : Keyword Detection (lie back) This work demonstrates the feasibility of using LLMs and neurosymbolic
down after the provider’s instruction to lie back Less accuracy in query fpr finding segments E§§:§3; 3%}”2h75r§oﬁ2?ﬁﬂ?rﬁé’fS%T;JZi?353f‘éryn"o“ki“ﬁ;‘d”ﬁ}it?)iff;?’ approaches for scalable patient-provider interaction
Where the patlent WaS Iylng down (29 , ' that also puts you at risk for coronary artery disease,'),
. T——— ety pose ored tyng o e detection (77.74, : Just gonna take_a listen.'), N . . o . . . .
Output Synthesized Query Program by GPT-4 v o T T e T e o) tor you. 00, elmpact: By analyzing and optimizing patient-provider interactions, our systems
def find_patient_laying_down(weight, video_duration, video): 0.6 06 5. ay, you can sit up.’), 52, ' Listen to your lungs.’). . . . .
SRR TR ST Sclected Modules: (16278, "Take & doep breatn orme.) contribute to Dbetter understanding, treatment plan compliance, and patient
‘ . 0.2 0.2 (237.82, ' Thank you.'), (238.34, ' All right, nice to meet you.'), (239.18, ' Nice to meet you also.")] satisfaction
# Iterate over each second in the video KeyWO rd DeteCtIOn >0 0 50 100 150 200 250 o0 0 W.SIO 100 150 200250 u . .
ST RO _ o ont *Visual Module : Posture Detection (lying)
i s e O P J Ground Truth Pose detection - ». 5L B » Ega Future work:
relevance_scores[i] = weight['1f_keywords_segment'] x weight['lf_posture'] € ) € ) vely3 im plot {(1f Keywords. segment 0.5, If posture’ 0.5) . ' I\l o ) i i )
PR PRt 2fter or before” a - laying eIntegrate additional modules (e.g. object detection, sentiment analysis) for
elif i in audio_segments and not posture_timestamps[i]: . 0.8 . . . )
B DRI <©)/\vord IS detected Loss ~~ 0.5 effective interaction analysis
L ot 1 i autiosegnents and posturetiaestang 41 Posture Recognition o - Pose detection £ eDevelop human feedback-based optimization for answering queries
=> Returns posture > acc | Lying dow eExtend the work to augment existing Visual-Language models for general VQA
. L. Limitation: Pose detection module does not function tasks
Prediction . L
well for occluded and higher viewing angles
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