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With the growing appreciation of RNA splicing’s role in gene regulation, development, and disease,
researchers from diverse fields find themselves investigating exons of interest. Commonly, researchers
are interested in knowing if an exon is alternatively spliced, if it is differentially included in specific tis-
sues or in developmental stages, and what regulatory elements control its inclusion. An important step
towards the ability to perform such analysis in silico was made with the development of computational
splicing code models. Aimed as a practical how-to guide, we demonstrate how researchers can now use
these code models to analyze a gene of interest, focusing on Bin1 as a case study. Bridging integrator 1
(BIN1) is a nucleocytoplasmic adaptor protein known to be functionally regulated through alternative
splicing in a tissue-specific manner. Specific Bin1 isoforms have been associated with muscular diseases
and cancers, making the study of its splicing regulation of wide interest. Using AVISPA, a recently released
web tool based on splicing code models, we show that many Bin1 tissue-dependent isoforms are correctly
predicted, along with many of its known regulators. We review the best practices and constraints of using
the tool, demonstrate how AVISPA is used to generate high confidence novel regulatory hypotheses, and
experimentally validate predicted regulators of Bin1 alternative splicing.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction biogenesis of miRNAs that span exon–intron boundaries in primary
Splicing, the removal of introns and precise joining of exons, is
an essential step in the biogenesis of mature eukaryotic mRNA.
High-throughput studies across multiple tissues show that the
inclusion of exonic regions in mature mRNAs can greatly vary, with
�95% of human multi-exon genes undergoing alternative splicing
(AS) [1,2]. The increased complexity of the transcriptome has sev-
eral consequences. First, it serves to expand the proteome by
allowing the same gene to produce mRNA isoforms that differ in
coding sequence [3]. Additionally, AS can influence the fate of
mRNA transcripts, either by the introduction of premature stop co-
dons, which marks the transcript for nonsense-mediated decay [4],
or by altering untranslated regions, which influences the presence
of elements involved in transcript stability, translation efficiency,
and localization [5]. Recently, AS was also shown to regulate the
transcripts [6]. Highlighting the importance of splicing and its reg-
ulation, studies estimate that anywhere from 15 to 50 percent of
disease-causing mutations affect splicing [7].

Alternative splicing’s key role in post-transcriptional control of
gene expression and its pervasiveness motivated much work to
elucidate the mechanisms of AS regulation. Besides identifying
spliceosome components and their interactions with the core splic-
ing signals, decades of research resulted in the identification of
many cis- and trans-acting elements involved in pre-mRNA splicing
[for reviews see 8,9]. These include features such as splice site
strength [10], local secondary structure [11], and splicing regula-
tory elements (SREs) which interact with RNA binding proteins
(RBPs) to enhance or repress exon inclusion [12].

The role of AS in gene expression and disease state has also led
to much interest in the broader community in mapping AS regula-
tory elements controlling exons of interest. Researchers became
interested in identifying splicing defects due to mutations, tracing
putative regulators, and understanding how exon inclusion levels
change across cellular conditions. Consequently, tools were devel-
oped to identify some of the elements affecting splicing outcome.
For example, a number of tools were created that search for splice
sites and branch points and score how well they bind core splice-
osomal components [13–15]. Tools are also available for basic mo-
tif searches for putative SREs or RBP binding sites [16,17], and
some allow for scoring of core splicing signals as well [18,19].
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The decades of research into splicing regulation revealed splic-
ing to be a highly complex process, involving many regulatory ele-
ments interacting in a context specific manner. This observation
motivated researchers to move from descriptive tools that give a
‘‘parts list’’ to a predictive splicing ‘‘code’’, as a set of probabilistic
rules that would predict splicing outcome directly from genomic
sequence, given the cellular context [12]. Consequently, machine
learning techniques were applied to high throughput, exonic level,
expression data to develop such probabilistic code models [20].
Using over a thousand putative regulatory elements such as se-
quence motifs, RNA structure, and conservation, these algorithms
were able to give accurate predictions for changes in exon inclu-
sion levels across four main mouse tissue groups: central nervous
system (CNS), muscle, digestive, and embryonic vs. adult tissues.
Briefly, given a putative alternative cassette exon, these algorithms
first compute the values for the many putative regulatory features
extracted from the exon and its flanking regions depicted in Fig. 1a.
They then use these values along with the cellular context (e.g.,
CNS tissue) to predict the splicing outcome (e.g., ‘‘increased exon
inclusion in the brain’’). These new algorithms thus offered a
framework for performing predictive splicing analysis. Indeed, ini-
tial work demonstrated the splicing code models were able to
identify novel splicing changes affecting functional domains in dis-
ease-associated genes, recapitulate much of the previous results
about regulatory elements, and identify novel regulatory elements
that were experimentally verified [20]. Follow up research also
demonstrated that splicing code models originally derived for
mouse were successfully applied to human, chicken and frog with
a high degree of overlap in underlying regulatory features [21].
However, these works were limited to sets of previously identified
alternative cassette exons, and thus could not offer researchers
splicing analysis for general usage.

AVISPA (http://avispa.biociphers.org) is a recently released web
tool aimed to make splicing code models accessible for general
usage [22]. Implemented as a Galaxy server to support iterative up-
dates of new datasets and improved models [23], AVISPA is de-
signed as a user friendly front end to splicing code models. It
allows researchers to analyze an exon of interest to get predictions
of whether the exon is alternatively spliced, whether it is expected
to exhibit tissue-dependent inclusion, and to identify putative reg-
ulatory elements. Fig. 1b provides a brief overview of AVISPA’s in-
put, processing, and output. The user’s query exon of interest is
first mapped to the genome and a set of RNA related features is ex-
tracted. Next, an ensemble of over 5000 splicing code models is
used to derive predictions of the splicing outcome. The exon is first
A

Putative alternative exon

PreA A PostA

Cassette exon triplet

or

Input AVIS

Map to
genome/
transcript

Ext
RN

feat

PreA I1(5') AI1(3') I2(5') I2(

a

b
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scored for how likely it is to be an alternatively spliced cassette
exon. If confidence in alternative splicing passes a significance
threshold, the exon’s feature set is then run through a second set
of models that predict whether the exon will be differentially in-
cluded in specific tissues. Importantly, beyond the prediction of
splicing outcome, AVISPA also reports the query’s feature enrich-
ment and the effects of the in silico removal of regulatory motifs
on the splicing prediction [22]. In all, AVISPA offers those without
a computational background, or even those outside of the splicing
field, the ability to interrogate current splicing code models to gain
insights on the splicing profile and regulation of exons in genes of
interest.

This paper serves as a ‘‘how-to guide’’ for in silico splicing anal-
ysis, focusing on how to use the AVISPA web tool. Before delving
into analysis details, it is important for potential users to first note
some limitations of AVISPA’s current implementation. First, AVISPA
does not predict whole transcript structure but rather local
changes in exon inclusion levels under different conditions. Sec-
ond, it only supports cassette exons. While cassette exons are the
most common form of alternative splicing in mammals [1], many
other forms are known, such as 30 and 50 splice site variations,
but are not yet supported. Third, AVISPA only supports predictions
for differential splicing in the four main tissue groups listed before.
Finally, it does not predict absolute exon inclusion levels. This
means that instead of predicting, for example, ‘‘40% exon inclusion
in brain and 20% in most other tissues’’ it offers predictions for ‘‘in-
creased inclusion in the brain’’. Other more technical constraints of
AVISPA’s implementation are discussed as part of the analysis case
described below. Addressing these limitations is an ongoing effort.
Nonetheless, as we illustrate below, AVISPA can be effectively ap-
plied for in silico splicing analysis of genes of interest. Moreover, it
is important to note that none of the limitations described above
are inherent to in silico splicing analysis, and thus can be expected
to be improved upon as updates are introduced into AVISPA.

Here we illustrate how one can use AVISPA to carry out in silico
splicing analysis on a gene of interest, Bin1. Bridging integrator 1
(BIN1) is a nucleocytoplasmic adaptor protein known to be func-
tionally regulated through alternative splicing in a tissue-specific
manner [24]. The mouse version of Bin1 is similar in structure
and organization to the human gene and both play a role in muscle
cell differentiation [25,26]. Moreover, a muscle specific isoform is
essential for membrane curvature and T-tubule biogenesis in skel-
etal muscle and splicing misregulation of this exon has been asso-
ciated with the muscle disorders myotonic dystrophy (DM) and
centronuclear myopathy (CNM) [27,28]. Additionally, BIN1 has
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features of a tumor suppressor and BIN1 missplicing is associated
with many human cancers due to a loss of its inhibitory interaction
with the oncogenic transcription factor, Myc [29,30]. Fig. 2 illus-
trates some of the more well described splicing patterns of BIN1
and select protein isoforms analyzed in this paper. The figure also
helps to illustrate some of the limitations of AVISPA as prediction
for the complex alternative splicing event involving exons 13–16
is currently not supported. Nonetheless, the tissue-specific pat-
terns and disease association of this gene make a detailed under-
standing of its splicing regulation particularly useful.

While some splicing regulatory elements of the exons of this
gene have been described, it is likely that the full picture is far from
complete. For example, alternative splicing of exons 7 and 13 of
Bin1 were only recently implicated in a network of exons regulated
by the splicing factors Quaking (QKI) and polypyrimidine tract-
binding protein (PTB) in myoblast cells [31]. Using a splicing event
centered on exon 13 as a case study (hereafter, ‘‘triplet 12.13.17’’,
Fig. 2), we describe how to use AVISPA and accurately interpret
the output, while highlighting some current limitations and pre-
cautions that should be considered. Extending this analysis to the
other exons of Bin1, we rediscover experimentally verified features
of disease-associated alternative splicing events and suggest high-
confidence predictions for novel regulatory effects. Finally, we
experimentally validate predicted CNS splicing regulators in vivo
using the mouse Neuro2-a (N2a) neuroblastoma cell line.

2. Methods

2.1. In silico splicing analysis using AVISPA

The event coordinates provided by Hall et al. [31] were used to
identify the query exon as Bin1 exon 13 flanked by exons 12 and
17. Coordinates for this exon and its flanking regions were down-
loaded from the UCSC genome browser and input into AVISPA.
Running an exon prediction task, or a query, in AVISPA requires
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first uploading the query as genomic coordinates (BED6 format)
or sequence (FASTA format). A query consists of either the putative
cassette exon of interest (‘‘A’’) alone or a cassette exon triplet,
which specifies both the exon upstream (‘‘C1’’ or ‘‘PreA’’) and
downstream (‘‘C2’’ or ‘‘PostA’’) of the query exon (Fig. 1a). If an
exon triplet is specified, the name for each element must follow
a specific format with the region added as a suffix (e.g.,
‘‘Bin1_12.13.17_C2’’ or ‘‘Bin1_12.13.17_PostA’’). Since AVISPA’s
analysis is based on the mm10 mouse genome assembly, the origi-
nal data files of Hall et al. [31] were converted using the Lift-Over
tool integrated within AVISPA’s Galaxy server.

When considering the query event one wishes to analyze, it is
important to keep in mind certain length restrictions that could
lead to an error. AVISPA does not analyze triplets containing micro
exons less than 10 nucleotides (nt) long, exons larger than 5000 nt,
or introns less than 25 nt. Additionally, only the exon proximal
portions of introns are analyzed (i.e., 300 nt from each exon/intron
boundary). For example, while triplet 12.13.17 does not violate any
length restrictions, the region between exon 13 and 17 is quite
large (>5300 nt) and spans multiple introns and exons. This means
only the first 300 nt of the intron downstream of exon 13 (the
I2(50) region) and the last 300 nt of the intron upstream of exon
17 (the I2(30) region) are analyzed. While this region normally cap-
tures the vast majority of known splicing regulatory elements, any
regulatory features located deep within these introns are not con-
sidered in the predictions and will not be reported. In contrast, if an
intron is shorter than 600 nt the entire intron is analyzed and fea-
tures that fall in the overlap of two intronic regions are analyzed
for their effects in both regions.

It is also crucial to avoid misuse of query matching that might
lead to spurious results. After submitting, a query is first matched
to an internal database (DB) of known cassette exons, a DB of
known transcripts, or the reference genome, in that order [22].
Thus, specifying an entire exon triplet in coordinates is the safest
option to produce a mapping, as the coordinates specify the exact
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location in the genome. By contrast, submitting a single exon query
may be simpler for users to execute, but has the potential to match
multiple events in AVISPA’s DB (e.g., the query exon being present
in transcripts with different flanking exons, as in the case of Bin1
triplets 12.13.17 and 12.13.18). In such cases AVISPA will inform
the user that the query exon has multiple matches in the DB and
offer to upload BED files for these matches that the user could then
execute. It is important to note that AVISPA always uses the
matched sequence in its DB. This allows users to submit even a par-
tial sequence of a single exon, and still get AVISPA to match it and
perform splicing analysis for it. Another consequence of using the
matched sequence is that incorrectly defined exon boundaries
and SNVs will be ignored. Fig. 3a shows AVISPA’s output mapping
a sequence matched to Bin1 triplet 12.13.17. In this case, the user
submission included a wrong exonic start position and a fabricated
SNP mismatch, highlighted in green and red, respectively (Fig. 3a).
However, in some cases users may have bona fide alternative 30 or
50 splice site definitions for some of the query’s exons that do not
match the ones in AVISPA’s DB. In such cases, users can submit
the triplet coordinates and check the ‘‘use coordinates as is’’ option.
Using this option, the specified coordinates are matched directly to
the genome, ignoring the known splice sites. The output will be
based on the user defined coordinates, though the DB matched
coordinates are reported as well. Care should be taken when using
triplet coordinates to specify a query. Using this option allows
users to submit genomic regions such as introns and untranslated
regions without any error indication. While useful for exploring
unannotated exons, misuse of this feature may produce highly
inaccurate or meaningless output since AVISPA was not trained
on these types of sequences.

Once a query’s information has been uploaded, the user has sev-
eral options for the splicing analysis execution. Generally, AVISPA’s
pipeline involves two prediction stages. The first stage determines
whether the query exon is alternatively or constitutively spliced,
and the second determines whether the exon is differentially in-
cluded in specific tissues [22]. Before execution, the user can spec-
ify the significance threshold for each prediction stage by using
either a false positive rate (FPR) or relative rank value, calculated
by comparing the query to a labeled set of exons the code model
was trained on. It is important to note that if a query does not pass
the given threshold for the first alternative versus constitutive pre-
diction step, the tissue-specific predictions are not executed in or-
der to save computational costs. However, if there is experimental
evidence for the query exon being alternative, the user may specify
this in a checkbox during submission. Selecting this option sets a
permissive threshold (FPR = 0.5) for the first stage prediction,
resulting in over a 90% chance that a known alternative exon will
proceed to the second, tissue-dependent splicing analysis.

After execution, AVISPA’s graphical summary of the in silico
splicing analysis is available either through the web tool’s inter-
face, or as downloadable html files. The summary files include
splicing prediction confidence, assessments of enriched regulatory
features in the query, and evaluations of the in silico removal of
regulatory cis elements on predictions. Extracts from these sum-
mary files for two of Bin1 splicing events are discussed in the re-
sults section.

2.2. In vivo experimental validation

2.2.1. Cell culture and transfection
For in vivo validation of AVISPA’s CNS predictions, Neuro-2a

(N2a) cells (ATCC, CCL-131) were cultured according to the manu-
facturer’s recommendations in DMEM (Cellgro 10-013) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS)
(Gibco 16000-044). To deplete splicing factors that AVISPA predicts
to be relevant to our events, cells were transiently transfected
Please cite this article in press as: M.R. Gazzara et al., Methods (2013), http://
using Lipofectamine 2000 (Life Technologies 11668019), according
to manufacturer’s recommendations, with siRNA targeting Ptbp1,
Qk, or green fluorescent protein (GFP) control (Thermo Scientific
Dharmacon M-042865-01, M-042676-01, or P-002048-01, respec-
tively). Protein depletion was confirmed from whole cell lysates by
Western blot using antibodies for QKI (Bethyl Laboratories, Inc.
A300-183A) or PTB (Calbiochem NA63), with hnRNP L (Abcam
ab6106) as a loading control.

2.2.2. RT-PCR analysis
RNA was isolated 48 h following transfection using RNA-Bee

(Tel-Test, Inc. Cs-105B) following the manufacturer’s protocol. Re-
verse transcription-PCR (RT-PCR) was performed as previously de-
scribed in detail [32] using sequence specific primers for Bin1
triplet 12.13.17 (Forward: 50-GCTGCTACCCCTGAGATCAGAGTG;
Reverse: 50-GTTGCTTCACTGGCTGCTGTTCCC) and triplet 6.7.8
(Forward: 50-AGCTGGTGGACTATGACAGTGCCC; Reverse: 50-CGCG
ATGCTCTGGAACGTGTTGAC). Gels were quantified by densitome-
try through the use of a Typhoon PhosphorImager (Amersham
Biosciences). Percent inclusion was calculated as the percent of
isoforms including the variable exon over the total isoforms
relevant for each exon triplet analyzed.
3. Results and discussion

A query for Bin1 triplet 12.13.17 was uploaded in the form of a
triplet BED as described above and AVISPA was executed with the
default parameters (FPR = 0.05 for alternative vs. constitutive splic-
ing and rank value = 0.05 for tissue-specific predictions). To gain
further insights on Bin1 splicing patterns, the same process was re-
peated for all of Bin1 exons found in RefSeq and AVISPA’s transcript
DB.

3.1. Interpretation of AVISPA output for cancer-associated Bin1 triplet
12.13.17

3.1.1. Analysis of alternative vs. constitutive and tissue-specific
predictions

Fig. 3 highlights the three sections of the query summary for
triplet 12.13.17 that is used to navigate through the various splic-
ing predictions that AVISPA provides. We see from the query
matching section of the output (Fig. 3a) that this exon was
matched to AVISPA’s DB of cassette exons (level 1), indicating tran-
script-based support for this exon being alternatively spliced.
Query match details indicate the coordinates of the matched event
used for predictions, and we see there are differences between the
query and the matched sequence. As mentioned before, it is the
matched sequence that is analyzed, not the input which had a mis-
labeled exonic start position and a fabricated SNP.

The results of the splicing predictions are presented as a table
and indicate that, based on the specified thresholds, this exon is
both alternatively spliced and differentially included in all four tis-
sue groups (Fig. 3b). Notably, passing the significance threshold for
multiple tissues can occur for multiple reasons. Obviously, the
more permissive the significance threshold used, the higher the
chance more tissue-dependent predictions will pass it. Also, some
regulatory features are shared between models for different tissue-
dependent splicing and their occurrence will push for higher scores
in all prediction tasks. Some of those features may be general reg-
ulation indicators, such as high intronic conservation around the
alternative exon, while others represent factors known to operate
in different tissues, such as FOX-1/2 binding in both muscle and
brain tissues [33]. It is therefore important to also compare the rel-
ative confidence in the predictions and the chance of error. For
example, the summary shown in Fig. 3b indicates a false positive
dx.doi.org/10.1016/j.ymeth.2013.11.006
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Fig. 3. Query matching and predictions summary for Bin1 triplet 12.13.17. (a) The query matching section provides information on which database the query was matched
against (known events, known transcripts, or the genome), the matched sequence location, and any discrepancies between the query and the matched sequence. Here, a
different start position (green circle) and a single nucleotide discrepancy (red circle) were detected. (b) The predictions table lists for every prediction task (rows) the
matching false positive rate (FPR), relative rank, and sensitivity associated with the query’s score. Only predictions that pass the user defined threshold are listed. Predictions
for differential inclusion are denoted with an up blue arrow, and for differential exclusion with a down red arrow. Here, the muscle dependent splicing predictions were
expanded for illustrative purposes (details for other predictions are found by clicking the ‘‘+’’ in the output). In this case AVISPA’s predictions were more confident in muscle
dependent differential exclusion, though predictions for changes in both directions passed the user defined threshold. Additionally, links to the in silico feature analysis (as in
Figs. 4b and 6a) for each prediction are available as clickable bar charts in the final column. (c) The final portion of the output summary allows users to visualize predicted
regulatory motifs for each prediction by mapping them to the UCSC genome browser (‘‘Motif map’’ icon, as in Figs. 4c and 6b) or representing NFE values (see main text) as
stacked bar charts colored by regional location (‘‘Motif effect’’ icon, as in Fig. 4a). Users can specify which splicing prediction they wish to visualize and apply regional
restrictions by using the drop down menus.
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rate of 0.003 for the alternative versus constitutive prediction step.
This means that, based on comparisons between the query and
the negative set used to train the model, the probability of
falsely rejecting the null hypothesis (i.e., classifying this exon as
Please cite this article in press as: M.R. Gazzara et al., Methods (2013), http://
alternative when it is actually constitutive) is 0.3% (Fig. 3b, first
row). The rank values for the the tissue-dependent splicing predic-
tions indicates that the most confident prediction is for differential
inclusion in CNS where only 0.2% of the samples in the reference
dx.doi.org/10.1016/j.ymeth.2013.11.006
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set achieve a score as high as this Bin1 exon 13 triplet (Fig. 3b,
rank = 0.002).

In addition to predicting whether the query is differentially
spliced in these tissue groups, AVISPA also supplies predictions
for whether the exon exhibits increased inclusion or increased
exclusion in these tissues. This information about the polarity of
the tissue-dependent splicing changes is provided for each tissue
group by clicking on the ‘‘+’’ sign in the splicing prediction table,
and here we show muscle as an example (Fig. 3b). In muscle AVI-
SPA makes predictions that pass the given significance threshold
for both increased inclusion (rank = 0.006) and increased exclusion
(rank = 0.002). Dual high confidence predictions such as this indi-
cate that the exon has features that strongly suggest there is a
splicing change in muscle, but the direction of this change is less
clear.

Similar bi-directional predictions are given for CNS, embryo,
and digestive tissues, but the relative magnitudes of these predic-
tions point to an interesting hypothesis where the exon is differen-
tially included during development but then excluded in adult
tissues (increased inclusion rank = 0.002 for embryo; increased
exclusion rank = 0.002 for CNS, muscle, and digestive tissues). Such
a splicing pattern would be in line with reports that missplicing of
the BIN1 gene, leading to inclusion of exon 13, is associated with
human cancers (Fig. 2, Bin1 12.13.17 and Bin1 12.13.18). Specifi-
cally, several works have shown that when exon 13 is included
in this way in adult tissues in both human and mouse cell lines,
BIN1 no longer interacts with Myc to inhibit oncogenic activity
[24,29,30,34,35]. We note that this same tissue-specific preference
for inclusion in embryo and exclusion in adult tissues is observed
with the splicing prediction for the Bin1 12.13.18 triplet (data
not shown).

3.1.2. CNS regulatory feature analysis
In addition to splicing predictions, AVISPA provides the user

with information about numerous regulatory features used to
make these predictions. This information can help guide users to
which cis and trans elements may control the inclusion of their
exon of interest. The first type of information is the relative enrich-
ment of these features in the query compared to several reference
groups of exons, such as alternative or constitutive exons. This
information is available to users as ‘‘Feature Effect’’ files for each
prediction made, found by clicking on the bar charts in the right-
most column (Fig. 3b). Here we use the outputs for the CNS-spe-
cific predictions as an example.

Various features are represented as a table with a heat map col-
oring scheme to highlight those that have particularly high or low
values for their respective groups (Fig. 4b). Each row represents a
feature and each column compares these features of the Bin1 exon
13 triplet to a reference set. For example, we see that the position
of the first AG dinucleotide upstream of exon 13 scores relatively
high, particularly when compared to the constitutive set where it
scores higher than �98.4% of this set (Fig. 4b, fourth column). Sim-
ilarly, this feature scores higher than �95.8% of the alternative set
(Fig. 4b, third column). The fact that this feature scores higher than
a greater percentage of the constitutive set could be expected be-
cause more distant first AG dinucleotides have been associated
with more distant branch point sequences and alternative splicing
[15]. We also note the high scores for secondary structure free re-
gions downstream of exon 13 (I2(50)) and upstream of exon 17
(I2(30)). Because many splicing regulatory proteins bind RNA in a
single strand state [36], these values indicate a higher likelihood
that RBPs can bind to these regions and regulate exon inclusion.

For putative regulatory sequence motifs, AVISPA also includes a
normalized feature effect (NFE) score, summarized using a bar
chart. For each splicing prediction that passes the user defined
threshold, a matching NFE summary file is produced. Briefly, the
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feature effect (FE) is computed by comparing the predictions for
the ‘‘wild type’’ and an in silico ‘‘mutant’’ where the regulatory mo-
tif has been removed. The NFE score is then computed by normal-
izing each individual feature effect by the total effect of all motifs
evaluated [22]. Given the many possible regulatory elements sur-
rounding a query exon, the NFE score can thus help narrow down
the list of regulatory candidates to ones that are more likely to af-
fect the exon. However, since the scores are normalized per query
and are based on differences in prediction confidence, users should
be careful not to associate NFE scores with a measure of exon
inclusion levels.

Fig. 4a represents the NFE scores of regulatory motifs that may
affect CNS Bin1 exon 13 as a stacked bar chart where the colors
represent the region in which a motif was found. This chart is gen-
erated for each splicing prediction and is linked to AVISPA’s sum-
mary page. Selecting the prediction type in the Motif
Visualization section (e.g., CNS) and clicking the ‘‘Motif Effect’’ icon
(Fig. 3c) displays the chart. AVISPA predicts motifs known to bind
the splicing factors NOVA, PTB, FOX-1/2, and QKI to be particularly
important regulators of CNS-specific alternative splicing of Bin1
triplet 12.13.17 (Fig. 4a).

A number of these predictions are consistent with previously
described results. Utilizing another aspect of AVISPA’s visualization
output, the top four motifs were mapped to the UCSC genome
browser by selecting the ‘‘Motif Map’’ icon (Fig. 3c), along with a
custom track of UV cross-linking and immunoprecipitation (CLIP)
tag clusters for NOVA binding in mouse brain [37] (Fig. 4c). The
combined genome browser view shows that numerous AVISPA
predicted, CNS-relevant NOVA motifs correspond to actual in vivo
binding sites (Fig. 4c, top two tracks). The two CLIP binding sites
within the regions considered that are not predicted by AVISPA
lack the YCAY NOVA consensus motif. Additionally, NOVA, the
topped rank motif by NFE (Fig. 4a), was shown to be an important
regulator of exon 13 splicing in mouse brains [37]. Similarly, Mus-
cleblind-like protein (MBNL) ranks eighth overall by NFE (Fig. 4a)
and has previously been observed to have a modest effect on splic-
ing of this event (�5% change) in MBNL1 knockout mouse brains
compared with controls [38]. Finally, we note the appearance of
the SF2/ASF (also known as SRSF1) motif which ranks 7th overall
in CNS by NFE score (Fig 4a). AVISPA similarly predicts this splicing
factor to be influential in muscle (ranks 9th) and embryonic tissues
(ranks 13th) (data not shown). Interestingly, slight SF2/ASF overex-
pression was sufficient to transform immortal rodent fibroblasts, in
part due to increased exon 13 inclusion of the Bin1 event described
here [35]. This result thus highlights the potential role of other
putative regulatory factors described here to maintain BIN1 tumor
suppressor activity.

AVISPA’s CNS predictions also suggest potential novel regula-
tors. FOX-1/2 ranks third by NFE score (Fig. 4a) and is an important
muscle and neuronal specific splicing factor but has not, to our
knowledge, been shown to regulate Bin1. Previous work has shown
that triplet 12.13.17 is under PTB and QKI regulation in the mouse
proliferating myoblast cell line (C2C12) by microarray [31], but the
neuronal regulation of this event has yet to be examined. AVISPA
predicts these two RBPs to be particularly influential for this alter-
native event in CNS tissues where PTB ranks second overall by NFE
and QKI ranks fourth (Fig. 4a). We chose to validate these two no-
vel CNS predictions in vivo using a mouse neuroblastoma cell line.

3.1.3. In vivo validation of AVISPA predictions of PTB and QKI
regulation

To experimentally validate the predicted CNS regulation of our
event of interest by PTB and QKI, we performed low cycle RT-PCR
on RNA extracted from N2a cells depleted for these splicing factors
by siRNA transfection and compared them to control RNA from
cells transfected with siRNA for GFP. Protein depletion was
dx.doi.org/10.1016/j.ymeth.2013.11.006
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Fig. 4. In silico feature analysis of Bin1 triplet 12.13.17 in CNS. (a) Top scoring motif effects represented as a stacked bar chart. Each name in the first column (‘‘MetaFeatures’’)
corresponds to a motif and RBP known to bind it. The second column provides a summed normalized feature effect (NFE) value for all occurrences of that motif in the seven
genomic regions analyzed and the stacked bars are a visual representation of these values where each bar corresponding to NFE of 10�3. Colors correspond to the region in
which the motif was found as in the legend provided. (b) Enrichment of non-motif features. Each feature (row) in the query is compared against several reference sets
(columns) indicated by the header (AS, alternative set; Const, constitutive set; CNS Inc, CNS inclusion set; and CNS Exc, CNS exclusion set). The table entries correspond to the
relative rank of the query’s feature value compared to the reference set of each column. Enrichment is visually represented as a heat map where red is associated with high
values and blue is associated with low values. The region containing each feature is indicated in the second column, with colors matching the provided regional legend. (c)
Motif map of top four scoring motifs on the UCSC genome browser along with a custom track containing NOVA CLIP binding clusters from mouse brain [37] to show overlap
between AVISPA predicted NOVA motifs and in vivo binding sites.
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confirmed by western blot (Fig. 5a). Upon PTB knockdown (KD), we
observed a striking decrease in exon 13 inclusion, with an average
differential of 41% compared to controls (i.e., 85–44% inclusion,
Fig. 5b, p = 3.3 � 10�6, two tailed t-test). While the difference
was not as pronounced upon QKI KD, we observed a consistent de-
crease in exon inclusion, averaging 12% (Fig. 5b, p = 0.01, two tailed
t-test). These data suggest that both PTB and QKI act to promote
exon 13 inclusion, in the context of the exon 12.13.17 triplet.

AVISPA similarly predicted PTB and QKI to be important regula-
tors of the neuronal specific inclusion of exon 7 (triplet 6.7.8, Fig. 2)
where PTB ranks first and QKI ranks fifth by NFE scores (data not
shown). RT-PCR results validate these CNS predictions and show
that, upon PTB or QKI KD, exon 7 inclusion increases on average
by 22% or 34%, respectively (Fig. 5b, p = 2.1 � 10�5, two tailed t-test
for PTB KD; p = 4.5 � 10�7, two tailed t-test for QKI KD). In all, these
data suggest that PTB and QKI normally act to repress exon 7 inclu-
sion and promote exon 13 inclusion in N2a cells and highlight AVI-
SPA’s ability to suggest novel splicing regulators of exons of
interest for experimental investigation.
Fig. 5. In vivo validation of QKI and PTB regulation in N2a cells. (a) Western blots
confirm siRNA knockdown of QKI and PTB when compared to controls transfected
with GFP siRNA. Antibodies for hnRNP-L were used as loading controls. (b) RT-PCR
validations of predicted CNS splicing regulation with QKI or PTB depletion in N2a
cells for triplet 12.13.17 (left) and 6.7.8 (right). Representation of isoform structure
is presented next to each gel and correspond to Fig. 2. Percent inclusion (%inc) and
standard deviation (SD) represent data from at least four replicates.
3.2. Analysis of muscular disease-associated splicing event suggests
novel regulators

As mentioned previously, the misregulation of the muscle-spe-
cific inclusion of Bin1 exon 11 has been associated with muscle
Please cite this article in press as: M.R. Gazzara et al., Methods (2013), http://dx.doi.org/10.1016/j.ymeth.2013.11.006
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Fig. 6. In silico feature analysis of BIN1 triplet 10.11.12 in muscle. (a) Top 25 scoring individual motifs predicted to affect muscle specific splicing predictions, separated by
region. This table provides motif enrichment values compared to reference sets, as in Fig. 4b, and NFE values for each of these individual motifs, as in Fig. 4a. (b) A portion of
the motif map proximal to exon 11 on the UCSC genome browser with select top-scoring motifs of interest, secondary structure, and conservation. Predicted MBNL motifs
show overlap with experimentally derived mutations shown to affect MBNL1 UV-crosslinking to an exon 11 BIN1 minigene [27]. Additionally, we map a CNM patient derived
disease SNP that induces exon skipping in humans (bottom track) or activates an upstream cryptic 30ss (not shown) in canines with IMGD [28], both of which overlap AVISPA
predicted motifs CCACAG and CTGAA, respectively.
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disorders [27,28], making it an intriguing example to analyze
(Fig. 2). Although earlier studies found evidence of exon 11 inclu-
sion in differentiating mouse muscle cells and similar transcript
structure to human BIN1 [25,26], there is a lack of transcriptional
evidence for this exon’s inclusion. Therefore, for the analysis pre-
sented here the human sequence was used instead. Notably, apply-
ing a mouse splicing code to human exons has already been shown
to produce accurate predictions for human exons [21]. Admittedly,
AVISPA’s human exons analysis is still in beta at this time, but Bin1
exon 11 analysis serves well to illustrate AVISPA’s capabilities for
potential users.

AVISPA accurately predicts exon 11 to be alternatively spliced
(FPR = 0.015), in line with known transcript structures (Fig. 2). AVI-
SPA’s output summary prediction table (similar to Fig. 3b, omitted
for this event for brevity) reports tissue-dependent splicing for all
major tissue groups pass the default threshold (Rank <0.05), with
Please cite this article in press as: M.R. Gazzara et al., Methods (2013), http://
the best rank (i.e., most confident prediction) given to differential
splicing in muscle (0.005), followed by digestive (0.009) embryo
(0.016) and CNS (0.023). Although the predicted direction of these
changes was somewhat ambiguous, the relative confidence in the
muscle predictions agrees with the literature, suggesting increased
inclusion of this muscle-specific, PI domain encoding exon (in-
creased inclusion rank = 0.004 vs. exclusion rank = 0.013).

The feature analysis for this event not only recapitulates some
of the known regulatory mechanisms, but also suggests novel
putative regulators of this disease-associated splicing event. In
DM, expanded CUG and CCUG repeats act to sequester the splicing
factor Muscleblind-like-1 (MBNL1), which was shown to be an
important promoter of exon 11 inclusion in a BIN1 minigene repor-
ter in muscle through overexpression and siRNA knockdown
of MBNL1 [27]. AVISPA predicts MBNL1 to be a regulator of this
exon where it ranks fourth by NFE (Fig. 6a). Strikingly, the MBNL1
dx.doi.org/10.1016/j.ymeth.2013.11.006
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binding sites that AVISPA predicts to be influential map to two of
three non-overlapping segments shown by Fugier et al. [27] to bind
MBNL1 by UV cross-linking. Additionally, we observe overlap of
the predicted motifs with four UGC disrupting mutations that to-
gether contribute to decreased MBNL1 binding and a loss of splic-
ing responsiveness upon MBNL1 overexpression or depletion
(Fig. 6b). AVISPA does not predict MBNL binding at those experi-
mental mutation sites that do not contain a motif similar to the
consensus (YGCUKY). MBNL1 CLIP-seq data in mouse muscle and
proliferating myoblasts (C2C12 cell line) does not show binding
within these same regions, which highlights AVISPA’s power to
suggest regulators that may be overlooked when using high-
throughput experimental assays in isolation.

In another study focusing on CNM, a patient derived homozy-
gous mutation at the 30 splice site (30ss) of exon 11 (G>A at the final
nt of the intron) resulted in exon skipping in humans. Similarly, a
30ss mutation (A>G at the second to last nt) that activates an up-
stream cryptic 30ss was found to be the cause of the canine Inher-
ited Myopathy of Great Danes (IMGD) in five affected dogs [28].
While AVISPA currently does not support alternative 30 and 50

splice site predictions, it does identify motifs related to these
events as affecting its splicing predictions. Specifically, AVISPA’s
predictions include a CCACAG motif, which maps to the annotated
30ss of exon 11, and a CTGAA motif mapped to the cryptic alterna-
tive 30ss utilized in IMGD dogs (Fig. 6b). Previous reports show that
competing splice sites can affect splicing potential [39], suggesting
that the conserved yet cryptic alternative 30ss may be functionally
relevant in this event.

The analysis of exon 11 also suggests novel regulatory elements
that may control this disease-associated event. The top scoring mo-
tif in muscle is UGCAUG, a motif known to bind the splicing factor
FOX-1/2 (Fig. 6a). Here, the motif is found downstream of exon 11
in a relatively highly conserved region (Fig. 6b). FOX-1/2 is a brain
and muscle specific splicing factor and it has been shown to more
commonly promote exon inclusion in these tissues when binding
downstream of an alternative exon [33]. In addition, AVISPA’s anal-
ysis also suggests QKI as a putative regulator of this exon in muscle
where it ranks second on an individual motif level (Fig. 6a). Here
QKI is predicted to bind to an ACUAAC motif, a perfect match to
its consensus, in a highly conserved region. Additionally, this motif
falls in a region predicted to be secondary structure free, suggest-
ing this motif exists in an accessible, single stranded form (Fig. 6b).
This result is in line with recent analysis showing QKI can promote
exon inclusion when bound downstream of exons in muscle and
that it regulates splicing of other Bin1 exons [31].

In summary, AVISPA analysis of Bin1 exon 11 is not only consis-
tent with previous published results, but also offers QKI and
FOX-1/2 as important novel regulators of the exon inclusion levels.
AVISPA’s predictions thus serve as hypotheses that can be
experimentally tested to provide a more complete picture of the
regulation of this essential splicing event in muscle.
4. Conclusions

Several decades of research have revealed the prevalence of
alternative splicing throughout the genome, its importance for
post-transcriptional control of gene expression, and many cis-
and trans-acting elements that regulate this complex process.
Much progress has been made more recently in creating predictive
splicing code models that consider how these regulatory elements
may combine to create splicing outcomes that differ across cellular
contexts. Here we have shown how these splicing code models can
now be applied, via the AVISPA web tool, by researchers studying
RNA biogenesis, development, and diseases with a possible splicing
defect component. AVISPA allows researchers to analyze exons
Please cite this article in press as: M.R. Gazzara et al., Methods (2013), http://
from any gene of interest. Its graphical summary allows users to
test whether a given exon matches known cassette events and
transcripts in AVISPA’s DB; assess confidence in the exon being
alternatively spliced and differentially included in specific tissues;
identify enriched regulatory features such as secondary structure
free regions; assess the effect regulatory motifs exert on splicing
predictions; and map these motifs to the genome browser. Using
Bin1 as a case study we supplied a detailed how-to guide for splic-
ing analysis, highlighting important cautions and limitations of
AVISPA’s current implementation that users should consider. We
have shown that AVISPA’s in silico splicing analysis of Bin1 are in
line with many experimental results and suggest novel regulators
of disease-associated splicing events. Such predictions offer users
specific hypotheses that can then be experimentally validated,
for example by using RNAi depletion of splicing factors known to
bind the identified regulatory motifs. Using this strategy, we vali-
dated QKI and PTB as novel CNS regulators of the cancer-related
Bin1 triplet 12.13.17 triplet and the neuronal-specific inclusion of
exon 7 in triplet 6.7.8. We hope the illustrative analysis presented
here will help guide analysis and discoveries pertaining to tran-
scriptome complexity, RNA regulation, and human disease.
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