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A compendium of RNA-binding motifs
for decoding gene regulation
Debashish Ray1*, Hilal Kazan2*, Kate B. Cook3*, Matthew T. Weirauch1*{, Hamed S. Najafabadi1,4*, Xiao Li3, Serge Gueroussov3,
Mihai Albu1, Hong Zheng1, Ally Yang1, Hong Na1, Manuel Irimia1, Leah H. Matzat5, Ryan K. Dale5, Sarah A. Smith6,
Christopher A. Yarosh6, Seth M. Kelly7, Behnam Nabet6, Desirea Mecenas8, Weimin Li9, Rakesh S. Laishram9, Mei Qiao10,
Howard D. Lipshitz3, Fabio Piano8, Anita H. Corbett7, Russ P. Carstens6, Brendan J. Frey4, Richard A. Anderson9,
Kristen W. Lynch6, Luiz O. F. Penalva10, Elissa P. Lei5, Andrew G. Fraser1,3, Benjamin J. Blencowe1,3, Quaid D. Morris1,2,3,4

& Timothy R. Hughes1,3

RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized.
Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct
genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary
conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred
from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data.
Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling
new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data
provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for
determining post-transcriptional regulatory mechanisms in eukaryotes.

RNA-binding proteins (RBPs) regulate numerous aspects of co- and
post-transcriptional gene expression, including RNA splicing, polya-
denylation, capping, modification, export, localization, translation and
turnover1,2. Sequence-specific associations between RBPs and their
RNA targets are typically mediated by one or more RNA-binding
domains (RBDs), such as the RNA recognition motif (RRM) and
hnRNP K-homology (KH) domains. The human genome, for example,
encodes 239 proteins with RRM domains and 38 with KH domains,
among a total of 424 known and predicted RBPs3. Canonical RBDs
typically bind short, single-stranded (ss)RNA sequences3,4, but some
also recognize structured RNAs5.

A minority of the thousands of RBD-containing proteins in eukar-
yotic genomes have been studied in detail, and the assays used to
generate the motifs are heterogeneous. For example, 15% of human,
8% of Drosophila and 3% of Caenorhabditis elegans RBD-containing
proteins have known RNA-binding motifs3 (Supplementary Data 1).
There are virtually no data on the sequence preferences of RBPs in
most organisms, despite the fact that the high numbers of RBPs in
some species (such as protist parasites) suggest that gene expression is
mostly regulated post-transcriptionally6. The motifs for DNA-binding
proteins can be highly similar for closely related proteins, allowing
accurate inference of motifs7,8, and in some cases motifs can even be
predicted on the basis of specific interactions between DNA-contacting
amino acid residues and DNA bases9,10. In contrast, owing to the much
higher flexibility of the RNA–protein interface for major types of
RBPs, it has been questioned whether such RNA-binding recogni-
tion codes exist5. Altogether, the lack of motifs for the vast majority

of RBPs across all branches of eukaryotes hinders analysis of post-
transcriptional regulation.

To address this issue, we set out to identify binding motifs for a
broad range of RBPs, spanning both different structural classes and
different species. The resulting motifs represent an unprecedented
resource for the analysis of post-transcriptional regulation across
eukaryotes; provide insight into the function and evolution of both
RBPs and their binding sites; reveal broad linkages among different
post-transcriptional regulation processes; and uncover an unexpected
role for a splicing factor in the control of transcript abundance that is
mis-regulated in autism.

Large-scale analysis of RBPs
RNAcompete is an in vitro method for rapid and systematic analysis
of RNA sequence preferences of RBPs11. It involves a single competi-
tive binding reaction in which an RBP is incubated with a vast molar
excess of a complex pool of RNAs. The protein is recovered by affinity
selection and associated RNAs are interrogated by microarray and
computational analyses. Here we used a newly designed RNA pool
comprising ,240,000 short (30–41 nucleotides) RNAs that contains
all possible 9-base nucleotide sequences (9-mers) repeated at least 16
times. For internal cross-validation, the pool was divided into two
halves, each of which contained at least eight copies of all possible
9-mers, 33 copies of each 8-mer, and 155 copies of each 7-mer.

We initially determined the sequence preferences for 207 different
RBPs, corresponding to seven different structural classes and repre-
senting the products of 193 unique RBP-encoding genes (in several
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cases, more than one isoform or protein fragment was analysed; Sup-
plementary Data 2). Some proteins were measured more than once,
resulting in 231 experiments. The analysed RBPs included 85 from
human, 61 from Drosophila and an additional 61 from 18 other
eukaryotes selected to be dissimilar to already profiled RBPs. Most
RBP fragments analysed (148) contained all annotated RBDs in the
protein in addition to 30–50 flanking residues. These fragments suc-
ceed more often than full-length proteins or individual RBDs in trial
experiments (Supplementary Table 1) and yield data that are consist-
ent with previously known motifs (see below).

Following protein binding microarray procedures12, we processed
the data for each RNAcompete experiment to produce both Z and E
scores for each individual 7-mer; these summarize the intensity and
rank, respectively, of RNAs containing the 7-mer. For each experi-
ment we also generated motifs and consensus sequences. Representa-
tive data are shown in Fig. 1a; the scatter plot displays Z scores and
motifs for the two halves of the RNA pool for ZC3H10, a human
protein with three CCCH zinc fingers that, to our knowledge, has
no previously known motif. The vast majority of RBPs appear to bind
target sequences in ssRNA, and none absolutely requires a specific
RNA secondary structure, although 22 RBPs display a significant
preference for (n 5 7) or against (n 5 15) predicted hairpin loops
(see Supplementary Data 3). These findings are consistent with a
previous analysis of in vivo binding data13 and with the observation
that most RBDs fundamentally recognize ssRNA5. In almost all cases,
E scores for 7-mers from the two halves of the RNAcompete pool for a
given protein are more similar to each other than to those of other assayed

proteins, highlighting the specificity and diversity of RBP sequence pre-
ferences (Fig. 1b, Supplementary Fig. 6 and Supplementary Data 4).

Of the 193 unique RBPs, 52 have previously identified consensus
RNA-binding sequences. Most of these have obvious similarity to our
RNAcompete-derived motifs (Supplementary Data 5; 35 very similar,
six partial matches, and 11 discrepancies). Some discrepancies have no
clear explanation, but may be due to differences between in vitro and in
vivo data, different binding conditions, and/or the proteins analysed
(for example, full-length versus RBDs). However, RNAcompete motifs
are predictive of RNA sequences bound by the same proteins (or their
close homologues) in vivo, as determined from data sets that we com-
piled from other studies (Fig. 1c; see Supplementary Table 2 for
details). In some cases, the RNAcompete motif substantially outper-
forms the literature motif by AUROC (area under the ROC curve)
analysis (Supplementary Fig. 2; values are in Supplementary Data 5):
for example, for QKI (quaking), the AUROC for the RNAcompete
motif was 93% versus 83% for the literature motif. We found only
one instance in which the RNAcompete motif did not have a signifi-
cant and positive AUROC to at least one corresponding in vivo data set:
the RNAcompete motif for FUS produced an AUROC ,0.5 when
compared to in vivo crosslinking-based data for both FUS and its
paralogue TAF15 (ref. 14). One possible explanation is that the con-
sensus that we identified (CGCGC) contains no U residues, and there-
fore would not crosslink efficiently to protein. Collectively, these
analyses demonstrate that the RNAcompete motifs are generally both
accurate and functionally relevant.

Conservation of ancient motifs
Among the 207 RBPs we initially analysed, most yielded RNA-binding
data distinct from that obtained from all other proteins (Fig. 1b and
Supplementary Fig. 6). The major exception is that proteins with clo-
sely related RBDs typically yield very similar data. Figure 2 shows
motifs for all of the RRM and KH domain proteins in this initial set,
clustered by sequence identity among the RBDs. In numerous instances
(shaded), groups of ancient families retain closely related sequence
preferences. This is clearly seen in RNAcompete-derived motifs for
families of proteins with previously characterized members, including
the A2BP1/RBFOX1 (hereafter referred to as RBFOX1), BRUNO/
ARET, and ELAV/HuR groups (see numbered insets in Fig. 2), as well
as for proteins with previously uncharacterized RNA-binding prefer-
ences. For example, all RBPs in the SUP12–RBM24–RBM38 cluster
(Fig. 2, inset 2) prefer similar (G1U)-rich sequences. These nematode,
mouse and human proteins are regulators of muscle development15,16,
indicating both biochemical and functional conservation.

Subtle differences between more distantly related proteins are
found. A notable instance is the group of distant relatives of the meta-
zoan spliceosomal U1 snRNP-binding protein SNRPA/SNF; family
members from fungi, protists and algae have all maintained the pre-
sumed ancestral CAC core-recognition specificity17, but differ in their
preference for flanking nucleotides (Fig. 2, inset 5). The marked change
in the central ‘UCAC’ in the unusual consensus in Trypanosoma brucei
(HUUCACR) seems to correspond to the unusual T. brucei U1 loop
sequence (CAUCAC versus AUUGCAC in most other species).

Quantification of the relationship between RBD sequence identity
and RNA-binding motifs by three different metrics shows that, on
average, amino acid sequence identity higher than ,70% yields very
similar motifs (Fig. 3a). Thus, two proteins for which their RBDs are
.70% identical are likely to have a similar, if not identical, RNA
sequence specificity. Motifs remain similar at 50% identity. This
observation is of tremendous practical value, because it provides a
simple heuristic by which the RNA sequence preferences of previously
uncharacterized RBPs can be reliably inferred. Anecdotally, it has
been reported that specific pairs of closely related RBPs often bind
similar sequences (for example, human NOVA1 and NOVA2 and
Drosophila Pasilla18); to our knowledge, however, neither the generality
nor the precise limitations of this observation have been previously
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Figure 1 | RNAcompete data for 207 RBPs. a, 7-mer Z scores and motifs for
the two probe sets for ZC3H10. b, Two-dimensional hierarchical clustering
analysis (Pearson correlation, average linkage) of E scores for 7-mers with
E $ 0.4 in at least one experiment, with the two halves of the array kept as
separate rows. Long systematic names have been shortened to species
abbreviations and RNAcompete assay numbers. c, ROC curves showing
discrimination of bound and unbound RNAs by the corresponding protein in
vivo. The curve with the highest AUROC is shown if there are multiple in vivo
data sets for a protein. FUS and TAF15 were excluded.
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established. Indeed, the heterogeneity of previous data may have com-
plicated comparisons between motifs; for example, very different
motifs have been previously described for different HNRNPA family
members from human and Drosophila19–22, whereas the RNAcompete
motifs for the same proteins are closely related (Fig. 2, inset 1).

If we assume that a closely related RNA motif will be bound by any
protein that has .70% sequence identity in its RBDs to those in one of
the 207 proteins that we analysed, then the RNAcompete data collec-
tively capture observed or inferred motifs for 57% of all human and

30% of all metazoan RBPs that contain multiple RBDs (which are most
likely to bind RNA in a sequence-specific manner) (Fig. 3b and data
not shown). Furthermore, if we incorporate previously described
motifs compiled from the literature3, and use a threshold of 50% iden-
tity between RBDs (a level at which the motifs are typically related,
albeit often not identical), then we are able to additionally infer binding
preferences for ,10% of RBPs even in plants and protists, despite only 3
and 25 proteins, respectively, having been analysed experimentally
(Fig. 3b). We tested the accuracy of these heurisitics by performing
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Figure 2 | Motifs obtained by RNAcompete for RRM (outer ring) and KH
domain proteins (inner ring). The dendrograms represent complete linkage
hierarchical clustering of RBPs by amino acid sequence identity in their RBDs.
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similarity versus per cent amino acid sequence identity in all RBDs for pairs of
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correlation between PFM affinity scores against 10,000 random-sequence 100-
mers, or human 39 UTRs (for human RBPs). Columns indicate average; error
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‘Multi-RBD’ and ‘‘All’’ indicate proteins with .1 or .0 RBDs, respectively.
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RNAcompete analysis of 12 additional proteins from diverse species
that are 61–96% identical to proteins with novel motifs that were among
the 207 RBPs. These new motifs were highly similar (Fig. 3a, c), even
those from distant eukaryotic groups (for example, metazoans versus
plants or fungi). Using a cutoff of 70% sequence identity between RBDs,
we have systematically mapped motifs across 288 sequenced eukar-
yotes. This compendium is available in a searchable online database,
cisBP-RNA (catalogue of inferred sequence binding preferences for
RNA) (http://cisbp-rna.ccbr.utoronto.ca/).

Sequence conservation of motif matches
To investigate the functional relevance of the motifs, we identified
strong motif matches within three likely regulatory regions of human
pre-mRNAs (59 untranslated regions (UTRs), 39 UTRs, and/or alter-
native exons with flanking introns), and assessed their degree of con-
servation. Matches to motifs for 49 RBP families (defined on the basis
of 70% identity in the RBDs), representing almost two-thirds of the
human RBPs (104 of 165) with measured or inferred motifs (using
70% RBD identity), displayed a significant increase (false discovery
rate (FDR) ,0.01) in conservation relative to immediate flanking
sequences, in at least one of the regions that we examined (Fig. 4a).
Furthermore, there is an inverse relationship between the degeneracy
of columns within an RNAcompete motif and the evolutionary con-
servation of the matching bases within the predicted binding site in
transcripts, indicating that there is conservation of motif matches
at these sites23 (Fig. 4b and Supplementary Fig. 5). We conclude that
a significant fraction of potential RBP binding sites in regulatory
regions are under purifying selection.

Often the regulatory region(s) in which a motif is conserved are con-
sistent with the known function of the corresponding binding protein(s).
For example, motifs for the alternative splicing factors RBFOX1, RBFOX2
and RBFOX3 (ref. 4) are conserved in introns downstream of alterna-
tive exons, whereas sites for the stability/translation factors PUM1 and
PUM2 are most highly conserved in 39 UTRs24,25 (Fig. 4a). Furthermore,
a striking outcome of the conservation analysis is that many proteins
with well-defined roles in splicing (those with an asterisk in Fig. 4a) also
have conserved motif matches in 39 UTRs, suggesting more diverse
regulatory roles for these factors. Indeed, dual functions for splicing
regulators in 39-end poly-A site selection and mRNA transport have
been described26,27, and dual roles for RBPs in the control of splicing
and stability are emerging28–30. This analysis suggests that RBP multi-
functionality may be more widespread than previously appreciated;
motifs for most (38 out of 49) RBP families shown in Fig. 4a display
significant conservation in more than one of the three regions examined.

Insights into RBP multi-functionality
The sequence conservation of RBP motif matches in transcripts indi-
cates potential new regulatory associations, particularly those assoc-
iated with the 39 UTR (Fig. 4a). To systematically seek possible roles
for RBPs in mRNA stability, we identified cases in which there is a
relationship between (1) the appearance of one or more strong motifs
for an RBP in the 39 UTR, and (2) (anti-)correlation of the abundance
of the transcript and the mRNA expression level of the RBP, over a
diverse panel of different cell and tissue types (Fig. 5a, Supplementary
Table 3 and Supplementary Data 7). If, for example, levels of trans-
cripts with a binding site for an RBP are significantly anti-correlated
with the transcript encoding the RBP, then the RBP is a putative
negative regulator of mRNA stability. This analysis identified several
known regulators of mRNA stability, including RBM4 and ELAVL1
(refs 31, 32), and correctly predicted the direction of their effect
(destabilizing for RBM4 and stabilizing for ELAVL1; Fig. 5a). In other
cases (for example, PUM1 and PUM2), the direction of the effect was
counter to expectation33, indicating that correlation may reflect pos-
sible additional functional roles for these proteins and/or their bind-
ing motifs. Nonetheless, the stabilizing/destabilizing roles predicted
from this analysis were, on average, closely correlated with genome-
wide measurements of RNA stability obtained previously from a
thio-U pulse–chase experiment22 (Fig. 5b), supporting a role for these
proteins in the regulation of mRNA turnover.

We used similar analyses to identify associations between RBP motifs
and alternative splicing patterns. For example, consistent with previous
results34,35, known splicing regulators, including RBFOX and PTB
family members4, were associated with preferential exon inclusion or
exclusion in a manner that correlated with the expression and binding
location of the RBP (Supplementary Fig. 3 and Supplementary Data 7).
Collectively, these analyses indicated previously unanticipated roles in
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alternative splicing and/or mRNA stability for known RBPs with well-
defined sequence preferences as well as for uncharacterized RBPs.

This analysis predicts that RBFOX1 positively regulates mRNA
stability (Fig. 5a). These targets tend to have the most conserved
RBFOX1 sites in their 39 UTRs (P , 1024; one-sided Mann–Whitney
U-test of ranks; Fig. 5c). To confirm this prediction, we examined
published RNA-seq data following RBFOX1 knockdown by RNA inter-
ference (RNAi)36 and found that the predicted RBFOX1 stability targets
were collectively reduced in abundance (P , 10215, Fig. 5d). In these
same data, the average reduction in transcript abundance increased
with the number of motif matches in the first 300 nucleotides of the
39 UTR, for all mRNAs (Supplementary Fig. 1a). This prediction is
further supported by in vivo experiments in which the mRNA abund-
ance of a reporter construct harbouring a single RBFOX1 site in the 39

UTR increased, relative to an identical reporter containing a mutant
RBFOX1 site, upon induction of RBFOX1 expression (Supplementary
Fig. 1b).

Reduced levels of RBFOX1 in the brains of individuals with autism
spectrum disorder have been associated with widespread changes in
alternative splicing of exons associated with proximal RBFOX1 bind-
ing sites37. Notably, the same RNA-seq data used in ref. 37 also sup-
port a role for RBFOX1 in stabilizing its predicted mRNA targets
(P , 10230, Fig. 5e). Moreover, genes encoding transcripts with pre-
dicted 39 UTR binding sites for RBFOX1 that show decreases in
mRNA levels in autism spectrum disorder are significantly enriched
for voltage-gated ion channels, particularly potassium channels
(Supplementary Fig. 4), indicating that reduction of the stability of
RBFOX1 targets may affect nervous-system-specific processes. This
example illustrates how our compendium of RBP recognition motifs
can suggest novel roles for specific RBPs in post-transcriptional regu-
lation, and can thus also shed new light on their roles in human disease.

Discussion
Learning the patterns of sequence features that dictate global gene
regulation remains a major challenge in computational biology2,38,39.
The analyses above show that RBP motifs can be readily used to infer
human post-transcriptional regulation mechanisms, and can explain
evolutionary constraints found within both coding and non-coding

regions of transcripts. We anticipate that the same will be true in other
species: for example, we have examined data sets measuring translation40,
stability41 and localization42 of transcripts in the early Drosophila embryo,
obtaining dozens of significant associations between the presence of
motif matches and specific regulatory outcomes (Supplementary
Data 8). The fact that many RBP motifs have roughly the same informa-
tion content as motifs of metazoan DNA-binding proteins43, yet face a
much smaller search space (for example, a typical human 39 UTR is
,750 nucleotides in length), suggests that RBPs may have a reduced
requirement for cooperative interactions to achieve high specificity,
relative to transcription factors43.

The functions and evolution of RBPs remain largely unexplored,
particularly with regard to their sequence specificity, whereas the
number of putative RBPs continues to grow44. Our observations sug-
gest that by profiling a relatively small number of RBPs it should be
possible to broadly assess RBP sequence preferences across all eukar-
yotes. We caution that motif inference based on RBD identity alone is
only a first approximation. Nonetheless, inference by simple protein
identity is particularly valuable for those RBPs for which it may not be
possible to derive recognition codes5. This compendium of motifs
provides a valuable resource for furthering our understanding of inter-
actions between RBPs and regulatory sequences, mechanisms of post-
transcriptional regulation, and physiological and disease processes.

METHODS SUMMARY
We performed RNAcompete experiments, data processing, motif derivation and
comparisons to in vivo data sets as previously described11 with modifications (see
Methods). We determined amino acid sequence identity after multiple alignment
of concatenated RBD sequences using clustalOmega45. For sequence scans, we
performed a one-sided Z test for each motif on its sequence scores, and defined
‘strong motif matches’ as those with scores significantly higher than the mean
(FDR ,0.1, corrected for all motifs). We used relative PhyloP scores as a measure
of conservation. ‘Predicted target set’ refers to genes with strong motif matches
that are also the most significantly associated by expression, using leading-edge
analysis46. Details are found in the Methods and Supplementary Information.
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