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Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative
diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal
axons with newly synthesized proteins and lipids, including synaptic components required to maintain pre-
synaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and
organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport
also plays a major role in neurotrophic and injury response signaling. This review provides an overview of
axonal transport pathways and discusses their role in neuronal function.
The active transport of organelles, proteins, and RNA along

the extended axons of neurons has long fascinated scientists.

The remarkable fact that the axon depends on the biosynthetic

and degradative activities of the soma, located up to a meter

away, highlights the importance of active transport. Genetic

evidence confirms an essential role for active transport in the

neuron, as defects in many of the proteins involved are sufficient

to cause either neurodevelopmental or neurodegenerative

disease (Table 1).

Metabolic cell-labeling experiments in the 1960s demon-

strated the rapid movement of newly synthesized proteins along

theaxon in aprocessonce termed ‘‘cellulifugal transport’’ (Weiss,

1967). Experiments with drugs that disrupt the cellular cytoskel-

eton demonstrated that microtubules are required for active

transport along the axon (Kreutzberg, 1969). Pulse-chase label-

ing experiments led to the discovery of multiple phases of trans-

port (reviewed in Griffin et al., 1976). Organelles were observed

to move outward from the cell body at ‘‘fast’’ speeds of up to

400 mm/day, or �1 mm/s, while cytoskeletal proteins and some

soluble proteins were observed to move via ‘‘slow’’ transport,

at speeds of <8 mm/day, or <0.1 mm/s. Outward-bound, antero-

grade (also known as orthograde) transport was most clearly

defined by these metabolic labeling approaches. However, the

retrograde transport of organelles from the distal axon back

toward the cell body was also observed (Griffin et al., 1976).

The development of live-cell imaging allowed the direct observa-

tion of organelle motility (Allen et al., 1982; Brady et al., 1982).

These observations led to the discovery of themicrotubulemotor

kinesin (Vale et al., 1985), now known as kinesin-1 (see Table 1);

cytoplasmic dynein was discovered soon after (Paschal et al.,

1987). Breakthrough experiments using nerve ligation assays

identified kinesin-1 as a major motor for anterograde transport

along the axon (Hirokawa et al., 1991) and dynein as the motor

for retrograde transport (Hirokawa et al., 1990).

Since these initial discoveries there has been considerable

progress in understanding the mechanisms regulating the trans-

port of organelles including mitochondria, lysosomes, autopha-

gosomes, and endosomes (Figure 1), as well as the transport
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mechanisms involved in neurotrophic and injury signaling.

Together, these studies support a model in which the regulation

of transport is compartment specific. The complement of

motors, adaptors, and scaffolding proteins bound to each cargo

is organelle specific, leading to distinct patterns of motility and

localization along the axon. Thus, while broad themes emerge,

the specific mechanisms regulating the transport of each organ-

elle or protein complex may be unique. Further, there is

increasing evidence for the localized regulation of trafficking in

key zones along the axon, such as the axon initial segment or

in the distal axon.

Here, we discuss both general themes and specific mecha-

nisms involved in axonal transport. We will review recent prog-

ress and highlight some of the critical questions that remain,

focusing on the mechanisms that regulate the dynamic traf-

ficking of organelles along the axon.

Molecular Motors Drive Transport along the Neuronal
Cytoskeleton
The Neuronal Cytoskeleton

Microtubules, actin filaments, and intermediate filaments all

contribute to themorphology and function of neurons, but axonal

transport depends almost entirely on microtubules. Microtu-

bules are polarized tubulin polymers with fast-growing plus

ends andmore stable minus ends, organized in a generally radial

array in the soma with plus ends directed toward the cortex. In

the axon, parallel microtubules form a unipolar array with plus

ends oriented outward (Burton and Paige, 1981; Stepanova

et al., 2003), while in dendrites microtubule organization is

more complex, with microtubules often organized in arrays

with mixed polarity (Baas et al., 1988; Kleele et al., 2014; Kwan

et al., 2008). In the cell body, microtubule minus ends may be

rooted near the centrosome, but microtubules along axons are

likely to be capped at their minus ends by a mechanism that is

not yet understood (Kuijpers and Hoogenraad, 2011).

Microtubule-associated proteins, or MAPs, are bound along

the length of axonal and dendritic microtubules. The canonical

role for MAPs is to promote microtubule polymerization and
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Table 1. Neurodevelopmental and Neurodegenerative Diseases Caused by Mutations in the Axonal Transport Machinery

Protein(s) Gene(s) with Known Mutation Disease(s) References

Motor Proteins

Dynein DYNC1H1 CMT, SMA-LED, ID,

MCD (Epilepsy)

Weedon et al., 2011; Tsurusaki et al., 2012; Harms et al., 2012;

Willemsen et al., 2012; Poirier et al., 2013; Fiorillo et al., 2014

Kinesin-1 KIF5A, KIF5C HSP (SPG10), ID, MCD Ebbing et al., 2008; de Ligt et al., 2012; Poirier et al., 2013

Kinesin-13 KIF2A CDCBM3/MCD Poirier et al., 2013

Kinesin-3 KIF1A, KIF1B, KIF1C HSP (SPG30), CMT2A,

HSN, MR, SPAX

Erlich et al., 2011; Zhao et al., 2001; Rivière et al., 2011;

Hamdan et al., 2011; Klebe et al., 2012; Dor et al., 2014;

Novarino et al., 2014

Kinesin-4 KIF21A CFEOM Yamada et al., 2003

Motor Adaptors and Regulators

Dynactin DCTN1 Perry syndrome, MND Puls et al., 2003; Farrer et al., 2009; Caroppo et al., 2014;

Araki et al., 2014

BICD2 BICD2 SMA, HSP Neveling et al., 2013; Peeters et al., 2013; Oates et al., 2013

Huntingtin HTT HD HDCRG, 1993

Lis-1 PAFAH1B1 Lissencephaly Dobyns et al., 1993; Reiner et al., 1993

NDE1 NDE1 Microcephaly, MHAC Alkuraya et al., 2011; Bakircioglu et al., 2011;

Paciorkowski et al., 2013

Rab7 RAB7A CMT2B Verhoeven et al., 2003

Cytoskeleton and Associated Proteins (e.g., MAPs)

CLIP-170 CLIP1 ARID Larti et al., 2014

Doublecortin DCX Lissencephaly des Portes et al., 1998a, 1998b; Gleeson et al., 1998

Microtubules TUBA1A, TUBA8, TUBG1,

TUBB3, TUBB2B

Lissencephaly, MCD,

microcephaly,

polymicrogyria, CFEOM

Keays et al., 2007; Poirier et al., 2007, 2010, 2013;

Jaglin et al., 2009; Abdollahi et al., 2009; Tischfield et al., 2010;

Chew et al., 2013

Neurofilaments NEFL CMT Mersiyanova et al., 2000

Spastin SPAST HSP (SPG4) Hazan et al., 1999

Tau MAPT FTD, Pick disease, AD Hutton et al., 1998; Murrell et al., 1999

Abbreviations are as follows: AD, Alzheimer’s disease; ARID, autosomal recessive intellectual disability; CDCBM3, complex cortical dysplasia with

other brain malformations-3; CFEOM, congenital fibrosis of the extraocular muscles; CMT, Charcot-Marie-Tooth disease; FTD, frontotemporal de-

mentia; HD, Huntington’s disease; HMN, hereditary motor neuropathy; HSN, hereditary sensory neuropathy; HSP, hereditary spastic paraplegia;

ID, intellectual disability; MCD,malformations of cortical development; MHAC,microhydranencephaly; MND,motor neuron disease; MR,mental retar-

dation; SMA, spinal muscular atrophy; SMA-LED, SMA-lower extremity dominant; and SPAX, spastic ataxia.
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stabilization; because of the high expression levels of MAPs in

neurons, microtubules are generally more stable in these cells

than in other cell types. MAPs may also function to regulate

transport, as in vitro studies indicate they modulate the interac-

tion of motors with the microtubule (Dixit et al., 2008b; Vershinin

et al., 2007). The discovery of a specific class of MAPs, known as

plus-end-interacting proteins or +TIPs, has shown that micro-

tubules in axons can be dynamic. Live-cell imaging with

GFP-labeled +TIPs that bind selectively to actively growing

microtubule plus ends has shown that axonal microtubules

exhibit the parameters of dynamic instability observed in non-

neuronal cells, including slow growth and rapid shortening,

punctuated by catastrophe and rescue events, respectively

(Stepanova et al., 2003, 2010). The +TIPS EB1 and EB3 recruit

additional binding partners to microtubule ends, many of which

have a role in the localized regulation of axonal transport

(Moughamian et al., 2013).

Direct posttranslational modification of tubulin is widespread

in neurons (Janke and Bulinski, 2011). Microtubule modifications

directly modulate the activities of motor proteins (Sirajuddin
et al., 2014), potentially contributing to the polarized trafficking

of motors into axons (Hammond et al., 2010; Jacobson et al.,

2006; Konishi and Setou, 2009). The nucleotide state of microtu-

bules can also affect motor activity and contribute to polarized

vesicle transport (Nakata et al., 2011).

Kinesin and Dynein Motors Drive Axonal Transport

The kinesin superfamily constitutes 45 genes in the human

genome, 38 of which are expressed in brain (Miki et al., 2001).

The neuronal motor proteome is more complex than that ex-

pressed in most other cell types, likely reflecting the enhanced

importance of regulated and specific intracellular transport in

neurons with their highly polarized morphology (Kuta et al.,

2010; Silverman et al., 2010). A standardized nomenclature

(Lawrence et al., 2004) groups kinesin genes into 14 subfamilies

that share structural and functional similarities; motors from the

kinesin-1, kinesin-2, and kinesin-3 families all contribute to

axonal transport dynamics.

Members of the kinesin-1 family drive the transport of a wide

range of cargos along the axon at velocities of �0.5–1 mm/s,

including vesicles, organelles, proteins, and RNA particles
Neuron 84, October 22, 2014 ª2014 Elsevier Inc. 293
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(Hirokawa et al., 2010) (Figure 1). Active kinesin-1 motors are

formed from a dimer of kinesin heavy chains (encoded by three

mammalian genes, KIF5A, KIF5B, and KIF5C); a dimer of kinesin

light chains (KLCs) is often but not always part of the complex

(Sun et al., 2011) and contributes to the autoinhibitory mecha-

nism of the motor.

Kinesin-2 and kinesin-3 motors are also critical for normal

axonal transport (Figure 1). Kinesin-2 members can assemble

into either homodimeric or heterotrimeric motors (Scholey,

2013), while kinesin-3 motors undergo cargo-mediated dimer-

ization resulting in the formation of highly processive motors

when bound to intracellular organelles (Soppina et al., 2014).

Kinesin-2motors drive the anterogrademotility of fodrin-positive

plasma membrane precursors (Takeda et al., 2000), N-cadherin

and b-catenin (Teng et al., 2005), and choline acetyltransferase

(Ray et al., 1999), and are also associated with Rab7-positive

late endosome-lysosome compartments in the neuron (Castle

et al., 2014; Hendricks et al., 2010). Kinesin-3 motors drive the

motility of synaptic vesicle precursors (SVPs) and dense core

vesicles (DCVs) (Hall and Hedgecock, 1991; Lo et al., 2011;

Okada et al., 1995).

Cytoplasmic dynein is the major motor driving retrograde

transport. In contrast to the diversity of the kinesin superfamily,

the motor subunit of cytoplasmic dynein is encoded by a single

gene (reviewed in Roberts et al., 2013). Two dynein heavy chains

(DHCs) dimerize by their N-terminal tail domains; additional in-

termediate chains, light intermediate chains, and light chains

associate with the tails of the heavy chains to form a cargo-bind-

ing domain. Together, these proteins serve as the binding site

for many of the proteins regulating dynein function in the cell.

While there is a single gene encoding the motor domain of cyto-

plasmic dynein, there is more diversity in the other subunits of

the dynein complex—for example, there are two genes encoding

dynein intermediate chains, one of which is neuron specific

(DYNC1I1), and two genes encoding dynein light intermediate

chains (DLICs) (Kuta et al., 2010). There is evidence that these

subunits can either coassemble (Zhang et al., 2013) or alterna-

tively assemble into distinct complexes with specialized func-

tions (Mitchell et al., 2012; Salata et al., 2001), which may allow

for organelle-specific recruitment or regulation.

Most dynein functions in the cell require the dynein activator,

dynactin. Dynactin is a highly conserved multiprotein complex

(Schroer, 2004) that is essential for normal neuronal function (La-

Monte et al., 2002; Moughamian and Holzbaur, 2012). The base

of dynactin is formed from a 37 nm-long actin-like polymer; both

the Arp1 subunit that forms this polymer and additional dynactin

subunits including p25 and p27 have been implicated in cargo

binding (Holleran et al., 1996; Yeh et al., 2012; Zhang et al.,

2011). Projecting from this base is a dimer of the subunit

p150Glued (Holzbaur et al., 1991). This subunit binds directly to

dynein intermediate chain (Karki and Holzbaur, 1995; Vaughan
Figure 1. Molecular Mechanisms of Axonal Transport
Microtubule motor proteins kinesin and dynein drive the movement of organelles
grade transport outward from the soma, and dynein drives retrograde transport
simultaneously. Cargo-bound motors are regulated by organelle-specific comple
or distal depletion of cellular components, anterograde and retrograde axonal tr
and Vallee, 1995), and also binds directly to microtubules via a

cytoskeletal associated protein-glycine-rich (CAP-Gly) domain

(Waterman-Storer et al., 1995) and a lower-affinity basic domain

found in neuronal isoforms of p150Glued (Culver-Hanlon et al.,

2006; Dixit et al., 2008a). In vitro assays demonstrate that these

independent microtubule-binding domains increase the proces-

sivity of the dynein-dynactin motor complex (King and Schroer,

2000; Ross et al., 2006) by enhancing the association of the

motor with the microtubule (Ayloo et al., 2014). In neurons, the

CAP-Gly domain of dynactin has a key role in the initiation of

retrograde transport in the distal axon (Lloyd et al., 2012;Mough-

amian and Holzbaur, 2012).

The properties of kinesin and dynein motors have been

explored in vitro at the single-molecule level. Kinesin-1 motors

move in a highly processive manner toward the plus end of the

microtubule, taking 8 nm steps in a straight path along a single

protofilament. A single kinesin-1 motor has a stall force of 5–6

pN (Svoboda and Block, 1994), sufficient to move an organelle

through the cytoplasm. Kinesin-2 motors also drive organelle

motility along axons, and have a stall force of similar magnitude

(5 pN). However, kinesin-2 exhibits force-dependent detach-

ment from the microtubule (Schroeder et al., 2012), indicating

that this motor may be less likely to win a tug-of-war interaction

with an opposing motor such as dynein. Stall forces of kinesin-3

motors have not yet been determined. However, recent work

has shown that kinesin-3 motors become superprocessive

following cargo-mediated dimerization (Soppina et al., 2014).

Studies with purifiedmammalian dynein indicate that dynein is

a fast motor, with velocities from 0.5 to 1 mm/s. Unlike the highly

processive unidirectional motility of kinesin-1, kinesin-2, and ki-

nesin-3 motors, single mammalian dynein motors take frequent

back and side steps during movement along the microtubule

(Mallik et al., 2005; Ross et al., 2006). However, either the coor-

dinated activities of multiple dynein motors (Mallik et al., 2005) or

the binding of activators such as BICD2 (McKenney et al., 2014;

Schlager et al., 2014) converts dynein to a unidirectional and

highly processive motor. Dynein is a much weaker motor than

kinesin-1 or kinesin-2; there is general although not complete

consensus that the stall force formammalian cytoplasmic dynein

is �1 pN (Mallik et al., 2004; Schroeder et al., 2010).

While these observations might suggest that dynein is a less

effective motor than kinesin, both the flexible nature of dynein

and its ability to move backward and sideways along a microtu-

bule may allow the motor to function effectively in teams (Mallik

et al., 2013), and to navigate around obstacles along its path

(Dixit et al., 2008b). In contrast, kinesin-1 motors are much less

capable of effectively working in teams (Mallik et al., 2013). Kine-

sin-1 motors are also more likely than dynein to detach from

the microtubule track upon encountering obstacles (Dixit et al.,

2008b; Vershinin et al., 2007), although recent work has shown

that kinesin-2 motors are more robust (Hoeprich et al., 2014).
, vesicles, RNA granules, and proteins along the axon. Kinesins drive antero-
back from distal axon. However, most cargos have both motor types bound
ments of scaffolding and adaptor proteins. To avoid either distal accumulation
ansport must be in balance.
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Opposing Motors Bind Simultaneously to Cargos

along the Axon

Many axonal cargos have multiple motor types bound simulta-

neously (Figure 1). For example, late endosomes/lysosomes

copurify with kinesin-1, kinesin-2, and dynein motors (Hendricks

et al., 2010). Similarly, kinesin-1 and dynein colocalize on single

prion-positive vesicles undergoing transport along the axon

(Encalada et al., 2011). Even cargos that move processively in

a single direction over long distances, such as autophagosomes,

copurify with opposing dynein and kinesin motors (Maday et al.,

2012). Quantitative analyses and live-cell trapping experiments

suggest that 1–2 kinesins and 6–12 dyneins may act together

to move a single organelle along the microtubule (Hendricks

et al., 2010, 2012; Rai et al., 2013).

Thus, it is essential to consider how multiple motors, and mul-

tiple types of motors, may interact either cooperatively or

competitively to yield effective motility. Multiple models have

been put forth (Fu and Holzbaur, 2014; Gross, 2004; Gross

et al., 2007; Müller et al., 2008; Welte, 2004). The simplest model

posits an unregulated tug-of-war between opposing kinesin and

dynein motors. In a contrasting model, motors are coordinately

regulated so that only a single motor type is active at any given

time. Intermediate models suggest that one motor, such as

kinesin, might be tightly regulated while the activity of dynein

might be less carefully controlled; as dynein is a weaker motor

than kinesin-1, it might simply be overpowered in situations

where both motors are active simultaneously.

The motility of some axonal cargos, such as late endosomes/

lysosomes, can be effectively modeled, at least to a first approx-

imation, as a tug-of-war between opposing kinesin and dynein

motors (Hendricks et al., 2010; Müller et al., 2008). In contrast,

the motility of other cargos in the degradative pathway such

as autophagosomes exhibit strongly unidirectional motility,

indicating that kinesin motor activity can be effectively downre-

gulated (Fu et al., 2014; Maday et al., 2012). Growing evidence

suggests that the activities of opposing motors bound to the

same cargo are regulated by scaffolding proteins (reviewed in

Fu and Holzbaur, 2014).

Theautoinhibitionof kinesin-1 is key to this regulation.Thebind-

ing of kinesin tail to themotor domainblocksmotor function (Kaan

et al., 2011); inhibition is relievedby specificbindingpartners such

as the scaffolding proteins JIP1 and JIP3 (Blasius et al., 2007;

Fu and Holzbaur, 2013; Sun et al., 2011). In the mechanisms

explored in detail to date, tight regulation of kinesin-1 activation

by scaffolding proteins allows for sustained axonal transport of

organelles in either the anterograde or retrograde directions.

The regulation of other kinesin subfamilies is less well studied.

Regulation of dynein motors is also important to maintain

axonal transport, but the mechanisms involved are not as well

understood. Lis1 is a critical and conserved effector of dynein

function. Structural studies indicate that Lis1 binds directly to

the dynein motor domain and uncouples ATP hydrolysis from

force production, leading to sustained attachment of the motor

to the microtubule (Huang et al., 2012). While induction of tight

binding might be expected to block effective transport, instead

it has been found that depletion of Lis1 inhibits the dynein-driven

transport of late endosomes and lysosomes along the axon

(Moughamian et al., 2013; Pandey and Smith, 2011), as well as
296 Neuron 84, October 22, 2014 ª2014 Elsevier Inc.
mitochondrial motility in axons (Shao et al., 2013). Nde1 (also

known as NudE) and Ndel1 (also known as NudE-like or NudEL)

form a complex with Lis1 and are similarly required for normal

axonal transport of at least some dynein cargos (Pandey and

Smith, 2011; Shao et al., 2013).

TheBicaudalDhomolog (BICD)proteins arealso keydynein ef-

fectors. BICD1 and BICD2 recruit dynein-dynactin to Rab6-pos-

itive Golgi and cytoplasmic vesicles (Matanis et al., 2002) as well

as mRNAs including Fragile X mental retardation protein (FMRP;

Bianco et al., 2010). Recently BICD1 was shown to control the

trafficking of activated neurotrophin receptors to degradation

routes in order to balance the neuronal response to neurotrophin

stimulation (Terenzio et al., 2014). In vitro studies have shown that

an N-terminal fragment of BICD2 induces highly processive

dynein motility (McKenney et al., 2014; Schlager et al., 2014).

Multiple additional mechanisms have been proposed to regu-

late motor activity on cargos moving along the axon. Rab

GTPases have been shown to regulate motor recruitment to

several cargos (reviewed in Akhmanova and Hammer, 2010).

Scaffolding proteins are also key: huntingtin is involved in the

regulation of BDNF-positive vesicles (Gauthier et al., 2004) and

autophagosomes (Wong and Holzbaur, 2014); JIP1 is involved

in the regulation of APP-positive vesicles and autophagosomes

(Fu and Holzbaur, 2013; Fu et al., 2014); JIP3 regulates the

injury-signaling pathway in mammalian cells (Cavalli et al.,

2005) and lysosomal motility in zebrafish (Drerup and Nechi-

poruk, 2013); and the Miro/TRAK complex regulates motors

bound to mitochondria (Macaskill et al., 2009b; Wang and

Schwarz, 2009). Finally, there is clear evidence implicating up-

stream kinases in the regulation of transport including Cdk5,

JNK, and p38MAPK (Fu and Holzbaur, 2013; Horiuchi et al.,

2007; Morfini et al., 2013; Pandey and Smith, 2011), but the

mechanisms involved have not yet been fully elucidated.

Both Common Themes and Cargo-Specific Mechanisms

Operate in the Axonal Transport of Diverse Axonal

Cargos

Live-cell and in vivo imaging of fluorescently tagged organelles

moving along axons has revealed a surprising diversity in the

movement of specific populations, indicating that the regulation

of the motors that drive transport likely occurs primarily at the

level of the organelle, rather than reflecting an overall regulatory

environment within the axon. While the observed patterns of

motility are diverse, some common themes are emerging:

(1) Motors remain stably associated with a cargo during

transport along the axon, even when they are inactive.

(2) Only a small complement of motors is necessary to effec-

tivelymove even large (>1 mm) organelles along themicro-

tubule. These motors function in groups that usually

include opposing motor activities.

(3) Motors are regulated by mechanisms that may include

Rab-specific recruitment, upstream regulation by kinases

and phosphatases, and scaffolding proteins that control

motor activity.

(4) Mutations in motors, their adaptors, or their regulators

can lead to neurodegeneration or neuronal cell death

(Table 1), consistent with an essential role for axonal

transport in maintaining neuronal homeostasis.
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Despite these common themes, accumulating evidence sug-

gests that the motility of each cargo actively transported along

the axon is regulated by a distinct mechanism.

Fast Anterograde Transport: Axonal Proteins and
Synaptic Components
APP-Positive Vesicles

APP-positive vesicles are a canonical cargo of kinesin-1 motors

(Kamal et al., 2000). APP-positive vesicles are transported in a

highly processive manner at rapid speeds (�1 mm/s), primarily

in the anterograde direction, although rapid retrograde motility

is also observed (Falzone et al., 2009; Kaether et al., 2000).

APP binds to the scaffolding protein JIP1 (Matsuda et al.,

2001; Scheinfeld et al., 2002). JIP1 is a JNK-binding scaffolding

protein implicated in the regulation of constitutive axonal trans-

port in Drosophila (Horiuchi et al., 2005). The C terminus of

JIP1 binds to KLC (Verhey et al., 2001), and this binding contrib-

utes to the regulation of the kinesin-1 motor in concert with FEZ1

(Blasius et al., 2007). JIP1 also binds directly to kinesin-1 heavy

chain (KHC) and the p150Glued subunit of dynactin (Fu and Holz-

baur, 2013). JIP1 binding to KHC activates the motor by relieving

autoinhibition, while the binding of JIP1 to dynactin competitively

blocks this activation (Fu and Holzbaur, 2013).

In the neuron, the relative affinity of JIP1 for kinesin-1 or dy-

nactin is controlled by a JNK-dependent phosphorylation site,

which acts as a molecular switch to control the directionality of

APP transport—when S421 in JIP1 is phosphorylated, antero-

grade transport of APP is favored, while dephosphorylation of

S421 favors the retrograde motility of JIP1 (Fu and Holzbaur,

2013). Regulation of this activation is likely to involve JNK, and

possibly upstream kinases such as Wallenda/DLK (Horiuchi

et al., 2007).

Synaptic Vesicle Precursors and Dense Core Vesicles

A large fraction of vesicular organelles in the axon are compo-

nents destined for the presynapse, namely SVPs and DCVs

packed with neuropeptides and neurotrophins.

Anterograde transport of SVPs is driven by motors from the

kinesin-3 family, Unc-104 in C. elegans and KIF1A in mammals

(Hall and Hedgecock, 1991; Okada et al., 1995). Neurons from

unc-104 mutants and KIF1A knockout mice (Yonekawa et al.,

1998) fail to develop normal synapses; synaptic precursors

accumulate in the soma, consistent with a transport defect.

Conversely, overexpression of KIF1A promotes the formation

of presynaptic boutons (Kondo et al., 2012). Kinesin-3 motors

undergo cargo-mediated dimerization, which leads to the forma-

tion of highly processive anterograde motors to drive efficient

delivery of synaptic components (Klopfenstein and Vale, 2004;

Soppina et al., 2014).

Two adaptors have been proposed to couple kinesin-3motors

to SVPs, liprin-a and DENN/MADD. Liprin-a is a multifunctional

scaffolding protein that binds directly to KIF1A and many other

neuronal scaffolding proteins (Shin et al., 2003); mutations in

liprin-a perturb SVP transport (Miller et al., 2005). The protein

DENN/MADD is required for the transport of SVPs and binds

directly to the stalk domain of kinesin-3 motors (Niwa et al.,

2008). DENN/MADD can differentiate between GTP and GDP

forms of Rab3, a marker for SVPs, suggesting a mechanism for

regulation of motor recruitment.
Once delivered to the presynaptic site, SVPs can be recycled

locally. However, DCVs can only be packaged in the soma and

must be continuously supplied, targeted to axons and/or den-

drites depending on their content. DCV transport is also depen-

dent on Unc-104/KIF1A motors, suggesting the mechanisms

involved are similar to those driving SVP transport (Lo et al.,

2011). Upstream regulation of kinesin-3 transport is regulated

by Cdk5, which promotes the Unc-104-dependent transport of

DCVs into axons and inhibits the dynein-dependent transport

of these vesicles into dendrites (Goodwin et al., 2012).

The current exception to the paradigm of kinesin-3-dependent

transport of DCVs is BDNF transport. The neurotrophin BDNF is

stored in DCVs and trafficked within axons to the presynaptic

site (Altar et al., 1997; Dieni et al., 2012). However, the axonal

transport of BDNF is regulated by huntingtin (Gauthier et al.,

2004), which scaffolds both kinesin-1 and dynein motors (Cavis-

ton and Holzbaur, 2009). The phosphorylation of huntingtin

through the IGF-1/Akt pathway acts as a molecular switch to

regulate the transport of BDNF-containing vesicles in axons

(Colin et al., 2008; Zala et al., 2008). Phosphorylation of hunting-

tin at S421 promotes anterograde transport, while dephosphor-

ylation of huntingtin promotes retrograde transport (Colin et al.,

2008). Biochemical studies indicate that phosphorylation of

S421 enhances the recruitment of kinesin-1 to BDNF transport

vesicles and enhances the association of kinesin-1 motors with

microtubules, leading to increased anterograde flux and BDNF

release (Colin et al., 2008).

Fast Retrograde Transport: Signaling Endosomes and
Autophagosomes
Signaling Endosomes

The balance between neuronal survival and death is regulated by

neurotrophin secretion from target tissues to modulate the

connectionwith innervating neurons (Chowdary et al., 2012; Har-

rington and Ginty, 2013). Neurotrophins bind to receptors on the

presynaptic membrane and are transported from the distal

axon toward the cell soma to effect changes in gene expression.

Since these signals must be relayed over distances of up to 1 m,

robust mechanisms must exist to preserve the fidelity of infor-

mation being carried.

Neurotrophins (NGF, BDNF, NT3/4) bind to and activate neu-

rotrophin receptors (TrkA, TrkB, TrkC, p75NTR). Following recep-

tor-mediated endocytosis, these receptor-ligand complexes

are sorted into compartments called signaling endosomes for

transport toward the cell soma (Chowdary et al., 2012; Harring-

ton and Ginty, 2013). There is evidence for an early endosomal

lineage for signaling endosomes, since these organelles are pos-

itive for EEA1 and Rab5B (Cui et al., 2007; Deinhardt et al., 2006;

Delcroix et al., 2003), but they may mature to Rab7-positive

compartments (Deinhardt et al., 2006; Sandow et al., 2000).

Ligand-receptor complexes can be sustained during transport,

resulting in activated Trk receptors (pTrks) and downstream

signaling molecules (e.g., pERK1/2, B-Raf, and p-p38) in both

the axon and cell body (Bhattacharyya et al., 2002; Cui et al.,

2007; Delcroix et al., 2003; Grimes et al., 1997).

To relay information from the distal axon to the cell soma,

signaling endosomes undergo robust retrograde transport. Liga-

tion of the sciatic nerve results in the accumulation of activated
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neurotrophin receptors and signaling molecules distal to the

ligation site, demonstrating a robust retrograde flux of signaling

endosomes along the axon (Bhattacharyya et al., 2002; Delcroix

et al., 2003; Ehlers et al., 1995). Precise spatial and temporal

resolution of signaling endosome dynamics was revealed with

NGF-coated quantum dots, which exhibited pronounced unidi-

rectional motility toward the cell soma interspersed with frequent

pauses; average speeds ranged from 0.2 mm/s to 3 mm/s (Cui

et al., 2007). This retrograde transport depends on dynein-

dynactin, as inhibition of this motor complex prevents activated

neurotrophin receptors from exiting the distal axon, thereby

decreasing neuron viability (Heerssen et al., 2004).

Autophagosomes

Maintaining protein and organelle quality across the extended

distance of the axon poses a unique challenge to the neuronal

degradation machinery. Autophagy is an essential lysosomal

degradation pathway in neurons (Hara et al., 2006; Komatsu

et al., 2006, 2007), required to maintain cellular homeostasis.

Autophagosomes are preferentially generated in the distal

axon (Hollenbeck, 1993; Maday and Holzbaur, 2014; Maday

et al., 2012). For a short period after the compartment is

formed, autophagosomes exhibit bidirectional motility, likely

driven by both kinesin-1 and dynein motors, but they soon

switch to robust retrograde transport along the length of the

axon (Maday et al., 2012). Both live imaging and biochemical

analysis have shown that dynein and kinesin-1 motors remain

tightly bound to autophagosomes during retrograde movement

along the axon, despite primarily unidirectional movement with

few reversals and pauses (Maday et al., 2012). Two scaffolding

proteins, JIP1 and huntingtin, regulate autophagosome motility

by interacting with both kinesin-1 and the retrograde dynein-

dynactin motor complex (Fu et al., 2014; Wong and Holzbaur,

2014). JIP1 binding to LC3 is required to effectively block the

activation of kinesin-1 on these organelles, leading to the

robust retrograde motility of autophagosomes along the axon

(Fu et al., 2014).

As autophagosomes transit along the axon, they undergo

maturation to form autolysosomes (Lee et al., 2011; Maday

et al., 2012). Initial fusion with late endosomes occurs upon

exit from the distal region of the axon, but full acidification occurs

as they approach the soma (Maday et al., 2012), consistent with

a gradient of degradative function along the axon (Lee et al.,

2011). Transport along the axon likely facilitates additional fusion

events with lysosomes encountered en route to the cell soma,

as inhibition of transport leads to defective acidification and

accumulation of undigested contents within the lumen of the

autolysosome (Fu et al., 2014; Wong and Holzbaur, 2014).

While some degradation may occur locally within the axon

(Ashrafi et al., 2014), >80% of axonal autophagosomes formed

by constitutive autophagy travel toward the cell soma (Maday

et al., 2012), indicating a dependence on long-range axonal

transport for clearance pathways. Delivery of autophagosomes

to the cell soma may ensure efficient recycling of amino acids

to primary sites of protein synthesis. The pronounced retrograde

motility characteristic of constitutive autophagy in neurons could

also balance the net outward flow of organelles and proteins via

fast and slow anterograde transport (Maday and Holzbaur,

2014).
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Bidirectional Transport: Mitochondria and Lysosomes
Mitochondria

Localized regions within the neuron such as growth cones

and synapses experience significant energetic demands. This

requirement for ATP cannot be sustained by diffusion from the

cell soma and must be handled locally within the neuron. Mito-

chondria, the organelles responsible for ATP production and

intracellular calcium buffering, are actively shuttled and posi-

tioned within the neuron to meet the localized needs of the

cell. Thus mitochondrial motility facilitates a dynamic response

to balance environmental demands. In axons of hippocampal

neurons grown in vitro, �20%–30% of mitochondria are motile,

moving equally in both anterograde and retrograde directions;

the remaining �70%–80% are stationary (reviewed in Hollen-

beck and Saxton, 2005). In vivo, axonal mitochondria are

�10%motile and exhibit a greater bias in flux in the anterograde

direction as compared to in vitro studies;�70% are anterograde

and �30% are retrograde (Misgeld et al., 2007; Pilling et al.,

2006).

Mitochondrial transport is regulated by neuronal activity (Sajic

et al., 2013). Elevated intracellular calcium levels resulting from

enhanced synaptic activity arrestmitochondrial motility in a high-

ly localized fashion, since mitochondria as little as 15 mm away

from the stimulation site remain motile (Li et al., 2004; Macaskill

et al., 2009b; Wang and Schwarz, 2009). Passing mitochondria

become immobilized in areas of locally high [Ca2+] at active

synapses where demands for energy and calcium buffering

are high. The distribution of mitochondria at synapses in turn

affects synaptic transmission and strength. Stable positioning

of mitochondria at presynaptic boutons maintains a steady

release of synaptic vesicles (SVs), resulting in steady amplitudes

of excitatory postsynaptic currents (EPSCs) (Sun et al., 2013).

Mitochondrial distribution is also coupled to the balance be-

tween mitochondrial fission and fusion. Mutations in the mito-

chondrial fission protein dynamin-related protein (DRP1) result

in the accumulation of mitochondria in the soma of both

Drosophila motor neurons (Verstreken et al., 2005) and cultured

hippocampal neurons (Li et al., 2004). The resulting decrease in

mitochondrial density at presynaptic terminals of the neuromus-

cular junction impairs SV release, a defect rescued with exoge-

nous ATP (Verstreken et al., 2005).

The calcium-dependent arrest of mitochondrial motility is

mediated by Mitochondrial Rho GTPase (Miro) (Fransson et al.,

2003; Guo et al., 2005). Miro has two Ca2+-binding EF-hand do-

mains and two GTPase domains and binds the kinesin-1 adap-

tors, TRAK1 and TRAK2, also known as Milton in Drosophila

(Fransson et al., 2006; MacAskill et al., 2009a). Ca2+ binding to

Miro induces mitochondrial arrest; however, controversy still

surrounds the mechanism. One model proposes that high levels

of calcium promote binding of Miro1 to the motor domain of

kinesin-1, thereby sterically inhibiting access to the microtubule

(Wang and Schwarz, 2009). A second model posits that elevated

calcium levels cause the dissociation of kinesin-1 from mito-

chondria and the Miro/TRAK complex (Macaskill et al., 2009b).

Differences between axonal versus dendritic modes of regula-

tion may underlie some of these observations. Syntaphilin is

enriched on stationary mitochondria in the axon, and knockout

mice show enhanced axonal mitochondrial motility, with no
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effect observed on the motility of dendritic mitochondria (Kang

et al., 2008). Calcium promotes binding of syntaphilin to both

microtubules and kinesin-1, thereby decreasing the ATPase

rate of kinesin-1 and acting as a brake on motility (Chen and

Sheng, 2013), but only in the axon. Thus, the differing models

may reflect cell-compartment-specific regulatory mechanisms

for mitochondrial movement.

In addition to the Miro/TRAK complex, syntabulin (Cai et al.,

2005), FEZ1 (Fujita et al., 2007; Ikuta et al., 2007), and RanBP2

(Cho et al., 2007; Patil et al., 2013) have all been shown to recruit

kinesin-1 to mitochondria to regulate mitochondrial motility.

Whether these proteins can interact with the Miro1 complex or

act independently remains to be established. However, in the

absence of kinesin-1, a small population of mitochondria are still

motile (Pilling et al., 2006), indicating that other kinesins also

drive mitochondrial motility. There is evidence that both KIF1Ba

(Nangaku et al., 1994) and KLP6 (Tanaka et al., 2011) contribute

to the intracellular transport of mitochondria.

The role of dynein in mitochondrial trafficking is less well stud-

ied. Mutations in kinesin-1 and the Ca2+-dependent inactivation

of kinesin-1 arrest mitochondrial motion in both anterograde and

retrograde directions (Chen and Sheng, 2013; Macaskill et al.,

2009b; Pilling et al., 2006; Wang and Schwarz, 2009), suggesting

that the activity of oppositely directed motors is coordinated

(Pilling et al., 2006). The TRAK proteins interact with the

dynein/dynactin complex and may modulate this coordination

(van Spronsen et al., 2013). Loss of Miro affects both antero-

grade and retrograde transport (Russo et al., 2009), also consis-

tent with an integrated regulatory mechanism.

Late Endosomes and Lysosomes

Approximately half of the late endosomes/lysosomes in the

axon undergo bidirectional motility characterized by frequent

directional changes and pauseswhile the remaining half undergo

either anterograde or retrograde directed transport in approxi-

mately equal proportion (Hendricks et al., 2010; Moughamian

and Holzbaur, 2012).

Dynein is necessary for the proper positioning of both late

endosomes and lysosomes (Harada et al., 1998). Dynein is re-

cruited to late endosomes and lysosomes via the Rab7 effector

RILP (Rab7-interacting lysosomal protein), which interacts

directly with the C terminus of the p150Glued subunit of dynactin

(Johansson et al., 2007; Jordens et al., 2001). ORP1L, another

Rab7 effector, then facilitates transport by recruiting the RILP-

Rab7-dynactin-dynein complex onto bIII spectrin-associated

membranes via an interaction with the Arp1 subunit of dynactin

(Holleran et al., 2001; Johansson et al., 2007). DLIC may also

function, independently of RILP, to recruit dynein to late endo-

somes and lysosomes (Tan et al., 2011). Snapin has also been

proposed to regulate the recruitment of dynein to late endo-

somes through a direct interaction with the dynein-intermediate

chain (DIC); this interaction may facilitate the fusion of late endo-

somes and lysosomes (Cai et al., 2010).

The anterograde transport of lysosomes is mediated by SifA

and kinesin-interacting protein (SKIP), which links Arl8, a mature

lysosome Arf-like G protein, directly to the light chain of kinesin-1

(Rosa-Ferreira and Munro, 2011). Kinesin-2 motors are also

associated with late endosomes and lysosomes (Brown et al.,

2005; Castle et al., 2014; Hendricks et al., 2010), but the regula-
tory mechanisms that may control kinesin-2 activity, or that

coordinate kinesin-2 function with the other lysosome-bound

motors, remain to be determined.

Slow Axonal Transport of Cytoskeletal Polymers
and Soluble Proteins
While organelles and vesicles are transported relatively rapidly

along the axon, the delivery of hundreds of different types of

newly synthesized cytosolic proteins and cytoskeletal polymers

occurs more slowly. The slow anterograde axonal transport

of protein is subdivided into two speed categories: slow compo-

nent a (SCa, mainly tubulin and neurofilaments) at rates of

0.2–1 mm/day and slow component b (SCb, cytosolic proteins),

which is around 10-fold faster at 1–10 mm/day (reviewed in Roy,

2014). Due in large part to the difficulty in visualizing slow axonal

transport in real time, it has remained the enigmatic cousin of

fast axonal transport. Advances in imaging technologies

and fluorescent probes, as well as computational modeling

(Li et al., 2012; Scott et al., 2011), have allowed significant

conceptual advances in understanding the processes at work,

although specific molecular mechanisms and often the motor

proteins involved are not yet understood.

Movement of neurofilaments by slow axonal transport has

been well characterized. The vast majority of neurofilament pro-

tein is transported as assembled units of oligomers (Brown,

2000; Wang et al., 2000; Yan and Brown, 2005), moving in

both the forward and reverse direction by engaging kinesin-1

and dynein motors (Shah et al., 2000; Uchida et al., 2009; Wag-

ner et al., 2004; Yabe et al., 1999). Neurofilament subunit M

binds directly to dynein (Wagner et al., 2004); KIF5A appears

to be the primary kinesin-1 isoform for neurofilament transport

(Wang and Brown, 2010), but the mechanisms regulating the

recruitment of this motor remain unknown. In a breakthrough

study, Brown and colleagues determined that the overall slow

net rate of transport of neurofilaments along the axon is a result

of short-lived motor-driven movements punctuated by extended

pauses (Wang et al., 2000). How the activities of dynein and

kinesin-1 are regulated in the context of neurofilament transport

to result in such a disparate rate of transport compared to vesic-

ular motility is unknown.

The slow axonal transport of the two other key cytoskeletal

families, actin and tubulin, is more ambiguous. Analysis is

complicated by the rapid polymerization and depolymerization

rates of the polymers. Analogous to neurofilament transport,

the movement of short microtubule fragments may be driven

by motor proteins (Wang and Brown, 2002), although there is

also evidence for the transport of soluble tubulin dimers in a

kinesin-dependent manner (Terada et al., 2000). In contrast,

the slow transport of actin occurs in growth-cone like waves

that support neurite growth during development (Flynn et al.,

2009), but how actin is replenished in mature neurons is un-

known.

Slow axonal transport also carries a large and diverse pool of

cytosolic proteins, with more than 200 distinct components,

although the complete proteome is unknown (Roy, 2014). A

handful of examples have been studied so far. Current models

suggest that proteins in this pool, such as synapsin, form

spontaneously aggregated complexes (Scott et al., 2011)
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that undergo ‘‘dynamic recruitment’’ to allow short bursts of

anterograde transport by hitching a ride on passing vesicles

(Tang et al., 2013).

Both the dynamic recruitment model for soluble proteins and

the stop-and-go model for neurofilament transport (Brown and

Jung, 2013; Roy, 2014) rely on the same microtubule motors

that power fast axonal transport. The major differences in trans-

port rates observed arise from differences in the time spent

actively engaged in transport. Thus, slow axonal transport is a

balance between long pauses and short bouts of motility.

Despite the apparent inefficiency of this mechanism, it is worth

stating that the amount of protein delivered to the presynapse

by slow axonal transport outweighs that of fast axonal transport

by at least 3 to 1 (Garner and Mahler, 1987; McEwen and Graf-

stein, 1968; Roy, 2014). The persistent and constitutive delivery

of new material to the axon terminal by slow transport is critical

to synapse survival.

An important outcome of slow axonal transport as it relates to

neuronal function is the age of proteins conveyed by this

method. Proteins that reach the axon terminus of a 1 m axon

could be anywhere from 4 to 12 months old and might persist

for as long as another 100 days (Garner and Mahler, 1987).

Recent work suggests that mitochondria are also aged in distal

neurites (Ferree et al., 2013). This fact highlights the specific

axonal requirement for distal quality control (Maday and Holz-

baur, 2014) and for chaperones (Song et al., 2013; Terada

et al., 2010) that maintain the integrity of the proteome in the

distal axon.

Regional Specificity of Axonal Transport
Axonal transport is not uniform along the axon, as cargos exhibit

different motility patterns within distinct regions of the axon.

Both the axon initial segment and the distal axon are key sites

for regulatory control. Site-specific organization of the microtu-

bule cytoskeleton may provide a structural basis for the motility

differences observed.

The Axon Initial Segment

The AIS has a highly specialized cytoskeletal architecture.

Microtubules are stabilized at the AIS by +TIPS EB1 and EB3 in-

teracting with ankyrin G (Leterrier et al., 2011). The AIS has been

proposed to act as a selective filter to exclude somatodendritic

vesicular cargos from entering the axon. Live imaging studies

indicate that axonal cargos move from cell body to axon with

no change in velocity, while dendritic cargos that enter the

base of the axon are specifically arrested at the start of the AIS

(Petersen et al., 2014). Multiple mechanisms have been pro-

posed to explain the underlying mechanism. One model posits

that a dense actin meshwork at the AIS is key (Song et al.,

2009; Watanabe et al., 2012), although neither polarized actin

arrays nor dense actin meshworks were seen in recent platinum

replica EM analysis (Jones et al., 2014) or by superresolution

imaging (Xu et al., 2013). Alternatively, differences in the micro-

tubule cytoskeleton may be critical in mediating axonal/dendritic

sorting. It has been proposed that themixedmicrotubule polarity

of dendrites may be sufficient to allow dynein motors to selec-

tively steer dendritic cargos to this compartment (Kapitein

et al., 2010). Or, posttranslational modifications to the microtu-

bule cytoskeleton may contribute to the regulation of axonal
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versus dendritic cargo sorting (Hammond et al., 2010; Nakata

and Hirokawa, 2003; Setou et al., 2002). The recent observation

that axo-dendritic selectivity precedes the establishment of

both the AIS and mixed microtubule polarity in dendrites (Pe-

tersen et al., 2014) favors the interpretation that kinesin motors

driving axonal cargos are responding to microtubule-based

cues (Jacobson et al., 2006), but more work is required to fully

establish this model.

Intriguingly, there is some evidence that the AIS also affects

retrograde transport, as DCVs in Drosophila circulating through

the axon reverse at both the distal and the proximal axon, further

implicating these regions of the axon as specialized zones for

transport regulation (Wong et al., 2012).

Distal Initiation of Retrograde Transport

Cargos undergoing retrograde transport often initiate motility

very far from the soma, in the distal axon. Microtubules in the

distal axon display enhanced dynamicity, with an enriched pop-

ulation of actively growing microtubule plus ends (Moughamian

et al., 2013). Efficient initiation of retrograde transport from the

distal axon requires a set of microtubule plus-end-interacting

proteins, or +TIPs (Lloyd et al., 2012;Moughamian andHolzbaur,

2012; Moughamian et al., 2013). The CAP-Gly domain of the

p150Glued subunit of dynactin interacts with additional +TIP

proteins, CLIP-170 and the end-binding proteins EB1 and EB3.

Ordered recruitment of these plus-end binding proteins has

been proposed to facilitate the active loading of the dynein-

dynactin motor complex onto dynamic microtubule ends

(Moughamian et al., 2013). This mechanism enhances retro-

grade transport initiation for multiple cargos, including early

endosomes, late endosomes and lysosomes, and mitochondria

(Moughamian et al., 2013).

The dynein-binding protein Lis1 is also a +TIP, and has been

proposed to act as an initiation factor for dynein-mediated trans-

port in fungi (Lenz et al., 2006). In neurons, however, Lis1 is

required for transport all along the axon, not just in regions of

increased microtubule dynamicity (Moughamian et al., 2013;

Pandey and Smith, 2011). Lis1 likely acts directly on dynein,

priming the motor for transport (Huang et al., 2012) and/or

recruiting the dynein/dynactin complex onto certain cargos

(Dix et al., 2013). In sensory neurons, the spectraplakin

BPAG1n4 and the endosomal protein retrolinkin have also

been reported to be required for sustained retrograde transport

along the axon, in a mechanism that also depends on dynamic

microtubule plus ends (Kapur et al., 2014).

mRNA Transport, Local Protein Synthesis,
and Injury Signaling
To carry out domain-specific tasks, neurons can locally regulate

the proteome in response to dynamic changes in the environ-

ment. Local translation of mRNAs has been well characterized

in dendrites (Holt and Schuman, 2013), but local translation in

the axon is less well understood. Some direct evidence for this

process comes from metabolic labeling studies to measure

newly synthesized protein from severed axons (Merianda et al.,

2009; Willis et al., 2005).

Sequences within the 50 and 30 UTR of mRNAs are recognized

by RNA-binding proteins and direct transport to either dendrites

or the axon (Holt and Schuman, 2013; Merianda et al., 2013).
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mRNA is transported as translationally repressed RNA granules

along with RNA-binding proteins and ribosomes (Kanai et al.,

2004; Knowles et al., 1996; Krichevsky and Kosik, 2001). These

RNA granules exhibit bidirectional as well as confined oscillatory

movement dependent on plus- and minus-end-directed micro-

tubule-based motors (Alami et al., 2014; Davidovic et al., 2007;

Gumy et al., 2014; Kanai et al., 2004; Ling et al., 2004; Zhang

et al., 2001). While mechanistic details are lacking, motor recruit-

ment may be regulated by 30 UTR localization signals (Amrute-

Nayak and Bullock, 2012; Serano and Cohen, 1995).

Two prominent mechanisms initiate mRNA transport and local

translation in the axon: axonal injury and chemotrophic signals.

Injury in the distal axon induces local translation of importin-b,

which heterodimerizes with importin-a to bind dynein (Hanz

et al., 2003). These a/b dimers have high affinity for binding to

the nuclear localization signals of transcription factors (e.g.,

STAT3; also translated locally upon injury). Thus, injury-induced

local translation of importin-b assembles a retrograde signaling

complex that delivers transcription factors to the nucleus to

initiate a proregenerative transcriptional program (Hanz et al.,

2003; Perry et al., 2012; Rishal and Fainzilber, 2014). Conditional

disruption of the axon targeting sequence within the 30 UTR of

importin-b depletes importin-b mRNA and protein from the

axon, causing delayed axon regeneration in vivo (Perry et al.,

2012). Local translation of vimentin links pERK to importin-

b-mediated retrograde signaling to further modulate the tran-

scriptional program (Perlson et al., 2005).

Axonal injury also induces formation of the retrograde signal-

ing complex DLK-pJNK3-JIP3-dynein/dynactin. Injury-induced

calcium influx activates the mitogen-activated protein kinase

kinase kinase dual leucine zipper kinase (DLK), which in turn

activates c-Jun NH2-terminal kinase (JNK3) (Rishal and Fain-

zilber, 2014). JNK3 is linked to axonal transport vesicles via the

JNK-interacting protein JIP3 (Cavalli et al., 2005). While JIP3

can interact with both kinesin and dynactin, injury induces pref-

erential association with dynactin (Cavalli et al., 2005). Thus,

upon injury, a complex is assembled of DLK-pJNK3-JIP3-

dynein/dynactin that transports activated transcription factors

(e.g., pSTAT3) to the nucleus to initiate axonal regeneration

(Cavalli et al., 2005; Rishal and Fainzilber, 2014; Shin et al.,

2012). In the absence of DLK, retrograde transport of pSTAT3

and JIP3 is blocked, resulting in delayed axonal regeneration

(Shin et al., 2012).

Enhanced calcium influx at the injury site also back-propo-

gates along the axon toward the cell soma to elicit changes in

gene expression (Cho et al., 2013). Elevated intracellular calcium

in the soma induces PKCm-dependent export of HDAC5 from

the nucleus, resulting in enhanced histone acetylation and acti-

vation of a proregenerative transcriptional program (Cho et al.,

2013). Export of HDAC5 from the nucleus serves a dual function,

as subsequent anterograde transport of HDAC5 to the injury

site increases tubulin deacetylation, promoting growth cone

dynamics and axon regeneration (Cho and Cavalli, 2012).

Chemotrophic signals can also induce mRNA transport and

local translation in the distal axon and growth cone (reviewed

in Rishal and Fainzilber, 2014). Treatment with neurotrophins

localizes b-actin mRNA to the distal axon and growth cone;

increased b-actin mRNA is concomitant with increased b-actin
protein and forward protrusion of the growth cone (Bassell

et al., 1998; Zhang et al., 2001). Interference with the 30 UTR
axonal targeting signal prevents distal accumulation of b-actin

mRNA and protein, resulting in growth cone retraction (Zhang

et al., 2001). Transport and translation of b-actin mRNA in the

axon can be induced by NGF added exclusively to the axonal

compartment, indicating an efficient relay of information from

the distal axon to the cell soma and back (Willis et al., 2005).

Translocation of b-actin mRNA into axons has also been

observed upon axonal injury in vivo (Willis et al., 2011).

The Energy Requirements of Axonal Transport
Axonal transport is an energetically costly process as molecular

motors hydrolyze ATP to carry out the work of stepping along

microtubules. The conventional kinesin-1 motor consumes one

molecule of ATP for every 8 nm step taken (Hackney, 1994).

Measurements to date indicate a typical vesicle has one to two

kinesins bound and exerting force at any one time (Encalada

et al., 2011; Hendricks et al., 2010, 2012; Rai et al., 2013; Sop-

pina et al., 2009). Taking the example of an average axon in

the rat cortex, 40 mm in length, a single vesicle traversing this

axon in the anterograde direction would require �5 3 106 ATP

molecules to do so, assuming no tug-of-war or switch events

occur, which can be frequent in vivo (Hendricks et al., 2010; Sop-

pina et al., 2009). In the 1m-long axons of humanmotor neurons,

the minimum ATP consumed per anterograde transport event

reaches �1.25 3 108 ATP molecules.

Unlike the consistent unidirectional stepping of kinesin-1 mo-

tors, the step size of single cytoplasmic dynein motors purified

from mammalian brain ranges from 8 to 32 nm in length and

can include backsteps (Mallik et al., 2004; Ross et al., 2006).

However, recent in vitro and in vivo measurements show that

dynein acts in teams of 6–12 motors per vesicle to produce

persistent retrograde motility, and under these conditions

motor teams show a step size of 8 nm (Hendricks et al., 2010;

Rai et al., 2013; Soppina et al., 2009). Thus, a single vesicle

traversing a human motor neuron from neuromuscular junction

back to the soma would require a minimum of �7.5 3 108 ATP

molecules.

Strikingly, however, the amount of ATP hydrolyzed during

axonal transport is relatively inconsequential compared to the

amount of ATP consumed by those same neurons to fire action

potentials and maintain resting potentials. A single action poten-

tial propagated along a 40 mm-long axon would require �1 3

108 ATP molecules, and thus axonal transport likely amounts

to a fraction of the 25% of energy allocated to the housekeeping

budget of the gray matter (Harris and Attwell, 2012).

One mechanism proposed to specifically address the energy

demands of axonal transport is based on the finding that glyco-

lytic enzymes are bound to the surface of vesicles moving

along the axon, and can serve as an independent source of

ATP for the motors driving transport of these vesicles (Zala

et al., 2013). The identification of an energy source independent

of mitochondria that can power vesicular transport is intriguing,

and may allow cargos to transit any gaps in ATP gradients

between unevenly dispersed mitochondria along the axon

(MacAskill and Kittler, 2010; Zala et al., 2013). However,

it remains unclear whether on-board energy production by
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glycolysis is required for axonal transport in vivo, as the ener-

getic lives of glia and neurons are intimately linked (Saab

et al., 2013). Glia supply neurons with lactate under conditions

of glucose shortage, bypassing glycolysis in the axon. Indeed,

myelinated axons can survive for extended periods with only

lactate, while fast axonal transport would be predicted to stop

under these conditions if solely dependent on glycolysis.

Further, there are several forms of axonal transport not associ-

ated with vesicular membranes, including slow axonal transport

and the movement of RNA granules. Without an onboard ATP

supplier, these transport processes would experience regions

of slow to no motility in the hypothesized low ATP regions. Alter-

natively, diffusion may be sufficient to maintain consistent levels

of ATP along the axon. In either case, an onboard mechanism

of glycolysis might become more relevant in situations of fast

action potential firing—a high-energy task that increases local

ATP demands, potentially restricting the ATP available for

housekeeping tasks.

Common Themes and Outstanding Questions
The compartmentalized nature of neurons requires active mech-

anisms of transport to distribute organelles to localized regions

of demand. The differing patterns of motility observed for distinct

organelles may reflect underlying functional differences. For

example, mitochondrial motility facilitates distribution to sites

of need, where these organelles become tethered to supply local

needs for energy production and calcium buffering. Similarly, the

bidirectional movement of mRNA granules may effectively

distribute these particles to sites of local synthesis. Upon arrival,

mRNA granules remain poised in a translationally repressed

state to rapidly respond to stimuli such as axonal injury. Other

organelles, such as signaling endosomes,must relay information

across the extended distance of the axon and thus undergo

long journeys with highly processive, unidirectional motility to

efficiently move from distal axon to cell soma. And degradative

organelles such as autophagosomes must efficiently clear

damaged organelles and aggregated proteins, recycling compo-

nents back to the cell body for reuse.

Many major outstanding questions remain unanswered. How

is organelle movement in the axon choreographed? How is the

complement of motors associated with each organelle regu-

lated? Since most organelles may have opposing motors

bound simultaneously, future work will determine how oppo-

sitely directed motors are coordinated to achieve organelle-

specific differences in motility patterns. Further work is also

required to uncover regional-specific differences in organelle

transport within the neuron. Advances in imaging technology

will continue to facilitate the study of these pathways both in

cells and in vivo and will provide insights into the alteration of

these pathways in stress and disease. A growing number of

human diseases, both neurodevelopmental and neurodegener-

ative, are caused by mutations in the axonal transport machin-

ery (Table 1). Further, axonal transport is misregulated in many

of the major neurodegenerative diseases affecting human

populations, including ALS and Alzheimer’s, Huntington’s,

and Parkinson’s diseases (Millecamps and Julien, 2013).

Thus, continued research into the molecular mechanisms

involved in axonal transport and its regulation should provide
302 Neuron 84, October 22, 2014 ª2014 Elsevier Inc.
new insights pointing toward development of novel therapeutic

approaches in the future.
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