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SUMMARY

Adult neurogenesis, theprocessof generatingmature
neurons from adult neural stem cells, proceeds
concurrently with ongoing neuronal circuit activity
and ismodulated by various physiological and patho-
logical stimuli. The niche mechanism underlying the
activity-dependent regulation of the sequential steps
of adult neurogenesis remains largely unknown.
Here, we report that neuronal activity decreases the
expression of secreted frizzled-related protein
3 (sFRP3), a naturally secreted Wnt inhibitor highly
expressed by adult dentate gyrus granule neurons.
Sfrp3 deletion activates quiescent radial neural stem
cells and promotes newborn neuron maturation,
dendritic growth, and dendritic spine formation in
the adult mouse hippocampus. Furthermore, sfrp3
reduction is essential for activity-induced adult neural
progenitor proliferation and the acceleration of new
neuron development. Our study identifies sFRP3 as
an inhibitory niche factor from local mature dentate
granule neurons that regulates multiple phases of
adult hippocampal neurogenesis and suggests an
interesting activity-dependent mechanism governing
adult neurogenesis via the acute release of tonic inhi-
bition.

INTRODUCTION

In the adult mammalian brain, active neurogenesis arises from

neural stem cells in the subgranular zone (SGZ) of the dentate

gyrus (Ming and Song, 2011). Radial glia-like precursors (RGLs)

within the SGZ serve as one type of quiescent neural stem cell
Ce
and continuously give rise to both dentate granule neurons and

astrocytes in the adult mouse dentate gyrus (Bonaguidi et al.,

2012). It is generally believed that the local neurogenic niche

both houses neural stem cells and regulates their development.

A number of niche components have been proposed, including

blood vessels, astrocytes, ependymal cells, and mature neurons

(Ming and Song, 2011). For example, hippocampal astrocytes

have been shown to instruct the neuronal fate of cultured adult

neural progenitors via Wnt signaling (Lie et al., 2005; Song

et al., 2002). Lentivirus-mediated blockade of Wnt signaling

reduces the number of immature new neurons in the adult den-

tate gyrus and impairs hippocampus-dependent spatial- and

object-recognition memory (Jessberger et al., 2009). Dysfunc-

tional Wnt signaling also has been implicated in the age-related

decline of hippocampal neurogenesis (Miranda et al., 2012).

The endogenous Wnt ligands and inhibitors that are responsible

for niche regulation of adult neurogenesis remain unclear.

Different from other somatic stem cell compartments, adult

hippocampal neurogenesis proceeds concurrently with the

ongoing activity of existing neuronal circuits and is regulated

by many physiological and pathological stimuli that affect

neuronal activity, such as an enriched environment, physical

exercise, specific learning tasks, and seizures (Ming and Song,

2011). For instance, seizures promote proliferation of adult den-

tate neural progenitors (Madsen et al., 2000; Parent et al., 1997)

and accelerate the maturation and integration of newborn

neurons (Overstreet-Wadiche et al., 2006). These studies

suggest the presence of stimulators and/or inhibitors that

balance the magnitude and rate of adult neurogenesis in

response to changes in existing neuronal-circuit activity. The

molecular identities of extrinsic factors, their niche sources,

and the cellular targets that link circuit activity to adult neurogen-

esis are largely unknown.

Searching for activity-dependent extrinsic regulators of adult

neurogenesis, we performed RNA-sequencing (RNA-seq) anal-

ysis of adult mouse dentate gyri with or without electroconvulsive
ll Stem Cell 12, 215–223, February 7, 2013 ª2013 Elsevier Inc. 215
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Figure 1. sfrp3 Expression and Regulation

of Neurogenesis in the Adult Hippocampus

(A) RNA-seq quantification of sfrp1–sfrp5 expres-

sion in microdissected dentate gyri of adult wild-

type (WT) mice 0 or 4 hr after a single ECS. Values

represent mean ± SEM (n = 3; *, p < 0.01; one-way

ANOVA). RPKM, reads per kilobase of exon per

million fragments mapped.

(B and C) sfrp3 expression in the adult mouse

hippocampus. Shown in (B) are sample in situ

images of sfrp3 expression in the whole hippo-

campus (top; scale bar represents 100 mm) and

dentate gyrus (bottom; scale bar represents

20 mm). Note sfrp3 expression in the granule cell

layer (GCL) but not in the SGZ (bottom). ML,

molecular layer. Shown in (C) are sample dual

sfrp3 in situ and GFP immunostaining of the den-

tate gyrus of adult nestin-GFP mice. Scale bars

represent 20 mm.

(D–F) Increased progenitor proliferation and

newborn neuron number in the dentate gyrus of

adult sfrp3 KO mice. In (D), animals were injected

with BrdU and analyzed 2 hr later. Shown are

sample projected confocal images of BrdU

immunostaining (arrows) in the dentate gyrus of

adult sfrp3 KO and WT littermates (top; scale bar

represents 50 mm) and the stereological quantifi-

cation of BrdU+ cells in the SGZ of adult WT, HET,

and KO littermates (bottom). The number associ-

ated with bar graphs indicates the number of

animals examined. Values represent mean ± SEM

(*, p < 0.01; n.s., p > 0.1; one-way ANOVA). Shown

in (E) are sample projected confocal images of

MCM2 immunostaining and DAPI staining in the

dentate gyrus (top; scale bar represents 100 mm)

and stereological quantification of MCM2+ cells.

Values represent mean ± SEM (*, p < 0.05;

Student’s t test). In (F), adult mice were injected

with BrdU once daily for 1 week and examined

4 weeks after the first BrdU injection. Shown are

sample projected confocal images of BrdU and

NeuN immunostaining (top). Orthogonal views are

shown to confirm colocalization of BrdU and

NeuN. Scale bar represents 50 mm. Also shown is

the stereological quantification of NeuN+BrdU+

mature newborn neurons (bottom). Values repre-

sent mean ± SEM (*, p < 0.01; Student’s t test).

See also Figure S1 and Table S1.
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stimulation (ECS), aparadigm that stimulatesdentate circuits and

promotes progenitor proliferation and new neuron development

during adult hippocampal neurogenesis (Ma et al., 2009;Madsen

et al., 2000; Zhao et al., 2012).We found that the level of secreted

frizzled-related protein 3 (sfrp3), a gene highly expressed in the

adult dentategyrus,wassignificantly reducedbyECS (Figure1A).

Members of the sFRP family (sFRP1–sFRP5) can bind extracel-

lular Wnt and thereby inhibit Wnt signaling (Jones and Jomary,

2002). Wnt signaling regulates diverse developmental processes

in the embryonic brain and controls the proliferation and differen-

tiation of progenitors in various adult tissues, including gut tissue,

hair follicles, bone, blood, and nervous systems (Clevers and

Nusse, 2012).ManyWnts retain their expression in the adult den-

tate gyrus (Shimogori et al., 2004). In this study,we identify sFRP3

as an important inhibitory niche factor arising from mature den-

tate granule neurons to regulate neural stem cell quiescence
216 Cell Stem Cell 12, 215–223, February 7, 2013 ª2013 Elsevier Inc
and control the tempo of new neuron maturation in the adult

hippocampus in an activity-dependent fashion.

RESULTS

sFRP3 Limits Dentate Neural Progenitor Proliferation
and New Neuron Production
To identify activity-dependent extrinsic regulators of adult neuro-

genesis, we examined the expression profiles of all known Wnt

inhibitors in microdissected adult dentate gyrus tissue, including

the sFRP family (Figure 1A), Dickkopf family (Dkk1–Dkk4), Wnt

inhibitor factor (Wif1), and Cerberus (Cer1; Figure S1A, available

online). Notably, RNA-seq showed high levels of sfrp3 and Dkk3

expression, but only sfrp3 expression was significantly altered

by ECS. In situ analysis revealed specific and high levels of

sfrp3 expression in the dentate granule cell layer, but not the
.
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SGZ, of adult mice (Figure 1B), whereas high levels of Dkk3

expression were limited to nearby CA3 neurons (Thompson

et al., 2008). In adult nestin-GFP transgenic mice, minimal

sfrp3 expression was detected in GFP+ neural progenitors and

their immature progeny in the adult dentate gyrus (Figure 1C),

a result consistent with recent expression profiling of purified

neural progenitors and immature neurons from adult mouse

dentate gyri (Bracko et al., 2012).

To assess the potential role of sFRP3 in adult hippocampal

neurogenesis, we obtained sfrp3 knockout (KO) mice (Fig-

ure S1B). Adult sfrp3 heterozygous (HET) and homozygous

KO mice were grossly normal without any detectable develop-

mental defects (data not shown). For the labeling of cells during

the S phase of the cell cycle, adult mice were intraperitoneally

(i.p.) injected once with BrdU (200 mg/kg body weight), and

they were sacrificed 2 hr later. Stereological quantification

showed a significant increase in the BrdU+ cell density in the

SGZ of adult sfrp3 KO mice compared to wild-type (WT) or

HET littermates (Figure 1D). Analysis with the endogenous cell

proliferation marker MCM2 showed similar results (Figure 1E).

To rule out potential developmental contributions from sfrp3

germ-line deletion, we developed lentiviruses and adeno-asso-

ciated viruses (AAVs) to acutely knock down endogenous

sFRP3 expression in adult WT mice (Figure S1C). Fourteen

days after stereotaxic injection of lentiviruses coexpressing

small hairpin RNA (shRNA)-sfrp3 and tdTomato fluorescent

protein into the dentate gyrus, stereological quantification

showed a significant increase of BrdU+ cells in the SGZ

compared to shRNA-control cells (Figure S1D). Consistent

with the notion that sFRP3 inhibits Wnt signaling (Jones and

Jomary, 2002), TOPGAL reporter mice, which express a

LacZ gene under the control of a LEF, also known as TCF (here-

after LEF/TCF) and b-catenin inducible promoter to report

canonical Wnt signaling (Figure S1E) (DasGupta and Fuchs,

1999), showed a significant increase in the number of b-galac-

tosidase-expressing cells within the adult dentate gyrus upon

sfrp3 knockdown (Figure S1E). Together, these results suggest

that sFRP3 functions to suppress neural progenitor proliferation

via the inhibition of Wnt signaling.

To determine whether differences in neural progenitor prolifer-

ation lead to a net change in the number of mature adult-born

neurons,we injectedadultmicewithBrdU (50mg/kgbodyweight,

i.p.) once daily for 7 days and examined the expression of mature

neuronal marker NeuN in BrdU+ cells 28 days after the first BrdU

injection (Figure 1F). The density of BrdU+NeuN+mature newborn

neurons in the dentate gyrus of adult KO mice was significantly

higher than that in WT littermates. Thus, sFRP3 limits neuronal

production during adult hippocampal neurogenesis.

sFRP3 Regulates Quiescence, but Not Lineage Choice,
of Dentate Radial Glia-like Neural Stem Cells
The BrdU and MCM2 results indicate that adult sfrp3 KO mice

have an increased number of intermediate precursor cells

(IPCs), which constitute the large majority of dividing cells in

the adult SGZ. This increase may result from changes in IPC

proliferation or IPC production from RGLs. To determine the

cellular target of sFRP3, we assessed RGL proliferation by iden-

tifying colocalization of MCM2 and SGZ nestin+ cells within the

adult SGZ with radial processes (Figure S2A). Stereological
Ce
quantification showed that sfrp3 KO mice exhibited a 45%

increase of activated RGLs at the population level (Figure S2B).

To directly determine whether sfrp3 deletion affects quiescent

neural stem cell activation and lineage choice in the adult SGZ,

we performed short-term in vivo clonal analysis (Bonaguidi

et al., 2011). We generated nestin-CreERT2::Z/EGf/+::sfrp3�/�

(KO) and nestin-CreERT2::Z/EGf/+::sfrp3+/+ mice (control; Fig-

ure S2C). We injected a single low dose of tamoxifen (62 mg/kg

body weight, i.p.) into adult mice for induction. As shown previ-

ously, this approach sparsely labeled quiescent RGLs in the adult

SGZ,andmost labeledcellswereMCM2�(FigureS2D) (Bonaguidi
et al., 2011). At 7 days postinjection (dpi), we quantified RGL

quiescence or activation status according to the absence (quies-

cent) or presence (active) of progeny adjacent to the RGL within

individual GFP+ clones (Figures 2A–2D). Adult KOmice exhibited

a significant decrease in the percentage of clones with a single

RGL (Figure 2E), suggesting that sFRP3suppresses theactivation

of quiescent RGLs in the adult SGZ. By 7 dpi, activated RGLs

could be observed generating IPCs, astroglia, or additional

RGLs (Figures 2B–2D). Interestingly, the percentage of each

type of activated clone was similar between WT and KO mice

(Figure 2F), suggesting that sfrp3 deletion does not alter RGL

lineage choice upon activation. These results support the model

that sFRP3 suppresses RGL activation in the adult dentate gyrus.

sFRP3 Suppresses the Tempo of Newborn Neuron
Maturation in the Adult Hippocampus
Wnt signaling is known to be active in immature neurons in the

adult hippocampus (Lie et al., 2005; Madsen et al., 2003); there-

fore, we examined whether sFRP3 also regulates newborn

neuron development. The maturation status of newborn neurons

can be defined by the sequential and partially overlapping

expression of the immature neuron marker doublecortin (DCX)

and the mature neuron marker NeuN (Figure S3A). Adult mice

were injected with BrdU (50 mg/kg body weight, i.p.) once daily

for 1 week and analyzed 2 weeks after the first BrdU injection.

Quantitative analysis showed a significant decrease in the

percentage of DCX+NeuN� immature neurons, with a concurrent

increase in the percentage of more developed DCX+NeuN+

neurons among all BrdU+ cells in KOmice compared toWT litter-

mates (Figures 3A–3B). Thus, sfrp3 deletion leads to the acceler-

ated maturation of newborn neurons in the adult dentate gyrus.

To further characterize the role of sFRP3 in neuronal develop-

ment, we examined the dendritic outgrowth of newborn neurons

in adult mice by using a GFP-expressing retrovirus for birth

dating and genetic labeling of proliferating progenitors and their

progeny (Ge et al., 2006). Quantitative analysis showed signifi-

cant increases in both the total dendritic length and the branch

number of GFP+ newborn neurons in adult KO mice compared

to WT littermates at 14 dpi (Figures 3C–3D). Interestingly, GFP+

newborn neurons in the HET and KO mice exhibited similarly

accelerated dendritic growth compared to WT littermates

(Figures 3C–3D), suggesting that dendritic development of

newborn neurons is particularly sensitive to sFRP3 levels. At

21 dpi, GFP+ neurons in KO mice still exhibited significantly

increased total dendritic length and branch number compared

to WT littermates, although the differences were smaller

compared to those at 14 dpi (Figures 3E–3F). Interestingly,

GFP+ neurons in KO mice also displayed significantly increased
ll Stem Cell 12, 215–223, February 7, 2013 ª2013 Elsevier Inc. 217
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Figure 2. Increased Activation of Quiescent Radial Glia-like Neural Stem Cells in the Dentate Gyrus of Adult sfrp3 Knockout Mice

(A–D) Sample confocal images of the different types of GFP+ clones at 7 dpi. Adult nestin-CreERT2+/�::Z/EGf/+::sfrp3�/� KO mice and nestin-CreERT2+/�::Z/
EGf/+::sfrp3+/+ control mice were injected with a single low dose of tamoxifen (62 mg/kg body weight, i.p.) and examined 7 days later. Shown are sample confocal

images of immunostaining of GFP andGFAP for a quiescent clone with a single radial glia-like neural stem cell (RGL; A) and for activated cloneswith twoRGLs (B),

one RGL and one GFAP- intermediate precursor cell (IPC; C), and one RGL and one GFAP+ astrocyte with bushy morphology (A) in (D). Scale bars represent

10 mm.

(E) Decreased RGL quiescence in the dentate gyrus of adult sfrp3KOmice examined at 7 dpi. Values represent mean ± SEM (n = 6WT and 7 KOmice; *, p < 0.01;

Student’s t test).

(F) There was no difference in percentages of different types of activated clones in adult sfrp3 KO mice examined at 7 dpi. Values represent mean ± SEM. The

same sets of animals as in (E) were used.

See also Figure S2 and Table S1.
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dendritic spine density compared to those in WT littermates at

21 dpi (Figures 3G–3H). Thus, sfrp3 deletion leads to the

increased tempo of multiple processes of neuronal maturation

during adult hippocampal neurogenesis, ranging from dendritic

outgrowth to dendritic spine formation of newborn neurons.

To examine whether an acute decrease in sFRP3 level also

regulates newborn neurons, we stereotaxically injected lentivi-

ruses coexpressing tdTomato and shRNA-sfrp3 or shRNA-

control and then injected retroviruses expressing GFP into the

dentate gyrus of adult WT mice (Figure S3B). Analysis of GFP+

newborn neurons at 14 dpi showed an increase in the total

dendritic length and branch number upon shRNA-sfrp3 expres-

sion compared to shRNA-control (Figures S3B–S3D). Few GFP+

neurons were tdTomato+, further supporting a non-cell-autono-

mous effect of sFRP3. Together, these results suggest an inhib-

itory role of sFRP3 in regulating newborn neuron maturation in

the adult dentate gyrus.

sFRP3 Regulates Neuronal Activity-Induced Adult
Hippocampal Neurogenesis
The activity-dependent expression profile of sFRP3 and its role

in adult neurogenesis prompted us to assess whether it serves
218 Cell Stem Cell 12, 215–223, February 7, 2013 ª2013 Elsevier Inc
as a substrate for activity-dependent modulation of adult neuro-

genesis. We examined the magnitude and time course of sfrp3

expression in response to dentate gyrus activation by using

in situ hybridization and quantitative real-time PCR analyses.

The level of dentate sfrp3 expression was reduced to about

50% of that in sham controls 1 day after ECS and gradually re-

turned to basal levels within 7 days (Figure 4A). Exercise, a phys-

iological stimulation that activates dentate granule neurons as

indicated by immediate early gene Arc expression, also led to

significantly decreased sfrp3 expression (Figure 4B) and

increased Wnt signaling (Figure S4A). To examine whether

direct neuronal activation is sufficient to affect sfrp3 expression,

we stereotaxically injected engineered AAVs expressing ChR2-

YFP into the adult dentate gyrus, followed by light stimulations

3 weeks later. Indeed, direct and strong activation of dentate

granule neurons, as indicated by Arc expression, led to a signif-

icant decrease of sfrp3 expression in the dentate granule

neurons (Figure S4B). Furthermore, pathological stimulation

with pilocarpine-induced seizures resulted in a prolonged

decrease of sfrp3 expression (Figure S4C). These results indi-

cate that sfrp3 expression in the adult dentate gyrus is regulated

by multiple forms of neuronal activity in vivo.
.
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Figure 3. Regulation of Maturation, Dendritic Development, and Spine Formation of Newborn Neurons in the Adult Hippocampus by sFRP3

(A and B) Accelerated new neuron maturation in the dentate gyrus of adult sfrp3 KOmice. Adult mice were injected with BrdU once daily for 1 week and analyzed

2 weeks after the first BrdU injection. Shown in (A) are sample confocal images of BrdU, DCX, and NeuN immunostaining. Arrows point to BrdU+DCX+NeuN�

immature newborn neurons, arrowheads point to BrdU+DCX+NeuN+ more developed newborn neurons, and asterisks point to BrdU+DCX�NeuN+ mature new

neurons. Scale bar represents 20 mm. Shown in (B) is a summary of the distribution of newborn neurons at different maturation stages. Values represent mean ±

SEM (n = 9 animals in each group; *, p < 0.01; one-way ANOVA).

(C–H) Accelerated dendritic growth and spine formation of newborn neurons in the dentate gyrus of adult sfrp3 KO mice. Retroviruses expressing GFP were

stereotaxically injected into the dentate gyrus of adult sfrp3KO, HET, andWT littermates. GFP+ neurons were examined at 14 dpi (C and D) or 21 dpi (E–H). Shown

are sample projected confocal images of GFP+ newborn neurons at 14 dpi (C) and 21 dpi (E) and dendritic spines at 21 dpi (G). Scale bars represent 20 mm. Also

shown are cumulative distribution plots of total dendritic length, branch number, and spine density of newborn neurons under different conditions (D, F, and H).

Each symbol represents data from a single GFP+ neuron (*, p < 0.01, Kolmogorov-Smirnov test; n = 3 animals each).

See also Figure S3 and Table S1.
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ECS (left; scale bar represents 200 mm) and quantification by quantitative real-time PCR. Values are normalized to that of sham-treated WT animals at each time
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bar represents 20 mm) and quantification by quantitative real-time PCR (right). Values are normalized to that of sham-treated WT animals and represent mean ±

SEM (n R 3 animals for each time point; *, p < 0.01; Student’s t test).

(C) sfrp3-deletion-induced increase of progenitor proliferation significantly occludes the ECS effect in the adult SGZ. Shown are schematic diagrams of

experimental designs and a stereological quantification of BrdU+ cells in the adult SGZ after a single ECS. Values represent mean ± SEM (*, p < 0.05; one-way

ANOVA).

(D) Exogenous sFRP3 blocks ECS-induced neural progenitor proliferation in adult WT mice. Shown are schematic diagrams of experimental designs and

a stereological quantification of BrdU+ cells in the adult SGZ under different conditions. Values represent mean ± SEM (*, p < 0.05; n.s., p > 0.1; one-way ANOVA).

(E) Running-induced increase of cell proliferation is attenuated in the adult sfrp3 KO mice. Similar to (C), except mice were subjected to voluntary running.

(F) sfrp3-deletion-induced dendritic growth of newborn neurons completely occludes the ECS effect. Similar to (C), except the dendritic growth of retrovirally

labeled new neurons was analyzed at 14 dpi.

See also Figure S4 and Table S1.
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Next, we examined the impact of sfrp3 deletion on the sequen-

tial steps of adult neurogenesis in response to dentate gyrus

activation. We subjected adult sfrp3 KOmice and their WT litter-

mates to a single ECS and analyzed progenitor proliferation with

BrdU injection 3 days later (Figure 4C). Interestingly, the ECS-

induced increase of progenitor proliferation was attenuated

from 87% in WT mice to 28% in sfrp3 KO littermates (Figures

4C and S4D), suggesting significant occlusion of the ECS-

induced increase of progenitor proliferation by sfrp3 deletion.

Notably, the lack of further increase by ECS in adult sfrp3 KO

mice was not due to a ceiling effect on progenitor proliferation,

because WT mice exhibited an even higher number of BrdU+

cells after running (Figure 4E). Importantly, infusion of recombi-

nant sFRP3 protein into the dentate gyrus of adult WTmice abol-

ished the ECS-induced increase of neural progenitor prolifera-

tion (Figure 4D), suggesting that a reduction of sFRP3 levels is

required for the ECS-induced increase of progenitor prolifera-

tion. In addition to the results from ECS, we also observed that

the voluntary-running-induced increase of progenitor prolifera-

tion was attenuated from 188% in WT mice to 47% in KO litter-

mates (Figures 4E and S4E). Together, these results suggest that
220 Cell Stem Cell 12, 215–223, February 7, 2013 ª2013 Elsevier Inc
sFRP3, at least in part, mediates activity-induced neural progen-

itor proliferation in the adult dentate gyrus.

To address whether sfrp3 is also involved in ECS-induced

acceleration of new neuron development during adult neurogen-

esis, we subjected WT mice to a single ECS either 3 or 6 days

after retroviral injection. Morphological assessment at 14 dpi

demonstrated that ECS at both time points increased the total

dendrite length and branch number of GFP+ newborn neurons

(Figures S4F–S4G). In contrast, ECS had no effect on dendritic

growth of GFP+ newborn neurons in adult sfrp3KOmice (Figures

4F and S4H). Thus, sfrp3 deletion also occludes activity-induced

acceleration of new neuron dendritic development in the adult

dentate gyrus.

DISCUSSION

Two fundamental questions in stem cell biology are whether

niche signals couple changing tissue demands with somatic

stem cell activity to promote functional homeostasis and how

they might do it. Unique among adult somatic tissues, neural

stem cells reside within an active neuronal network where the
.
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local neuronal activity could serve as an effective readout of

current tissue demands and provide signals to tune the magni-

tude and tempo of neurogenesis. Our study identifies sFRP3

as a neuronal-activity-regulated niche factor from mature den-

tate granule neurons that exhibits control over multiple steps of

adult hippocampal neurogenesis, including the activation of

quiescent adult neural stem cells, maturation, dendritic develop-

ment, and spine formation of newborn dentate granule neurons.

Our results suggest a significant mode of dynamic regulation of

adult neurogenesis via the acute release of tonic inhibition.

Little is known about niche mechanisms regulating quiescent

neural stem cells, largely because of a lack of effective

approaches for examining this population of precursors. Using

a genetic sparse-labeling approach for clonal analysis of stem

cell division and lineage choice (Bonaguidi et al., 2011), we

show that sFRP3 deletion increases quiescent neural stem cell

activation in the adult hippocampus and, surprisingly, has no

effect on the frequency of symmetric and asymmetric neuro-

genic or gliogenic cell division. Thus, in contrast to a prominent

role of Wnt signaling in promoting neuronal fate commitment of

proliferating multipotent adult neural progenitors in vitro (Lie

et al., 2005), sFRP3 does not affect the lineage choice of quies-

cent RGLs within the adult hippocampus in vivo. Interestingly,

sFRP3 inhibits both quiescent neural stem cell activation and

the maturation of their neuronal progeny. This activity-driven,

coordinated regulation of sequential processes suggests that

sFRP3may be both a sensor and an effector for the homeostatic

regulation of adult neurogenesis.

While Wnt signaling has been shown to control the prolifera-

tion and differentiation of progenitors in many adult tissues

(Clevers and Nusse, 2012), little is known about the in vivo

functions of the various naturally secreted Wnt inhibitors in

adult stem cell biology. Consistent with a role as a broad Wnt

signaling inhibitor in the adult brain, sFRP3 reduction leads to

increased canonical Wnt signaling in the adult dentate gyrus,

as indicated by TOPGAL reporter activation. Interestingly,

endogenous sfrp3 expression in the dentate gyrus is reduced

by therapeutic (ECS), physiological (voluntary running), and

pathological (seizures) stimuli as well as direct neuronal activa-

tion, suggesting that sFPR3 is a key sensor of various external

stimuli within the dentate granule neurons in vivo. Similar to our

findings on sfrp3, an independent study showed that the loss of

Dkk1 in neural progenitors in the adult dentate gyrus leads to

increased cell proliferation and the acceleration of newborn

neuron development (Seib et al. 2013, this issue), suggesting

a common role among different Wnt inhibitors in adult neuro-

genesis. The presence of potent negative regulators, such as

sFRP3 and Dkk1, may also be of significant physiological

importance in keeping the process of adult neurogenesis in

balance. For example, pathological activation of neuronal

circuitry by chronic seizures, which leads to a sustained

decrease in sfrp3 expression, causes the aberrant outgrowth

of newborn neurons and the formation of recurrent connections

that may contribute to epileptogenesis (Jessberger et al., 2007;

Parent et al., 1997). Recent studies have also suggested signif-

icant depletion of neural stem cells upon their activation in the

adult dentate gyrus (Bonaguidi et al., 2012). For example, the

deletion of BMPR1A or SMAD4, PTEN, RBPJk, or REST (also

known as NRSF) in adult neural stem cells leads to the initial
Ce
activation and subsequent depletion of the stem cell pool and

reduced levels of continuous adult hippocampal neurogenesis.

Therefore, a tightly controlled dynamic range of Wnt signaling

via inhibitor levels may fine tune adult neural stem cell behavior

to meet changing local tissue demands while globally maintain-

ing the stem cell pool over the long term—a mechanism that

may be generalizable to the regulation of other stem cells.

In summary, our study suggests a model in which physiolog-

ical experience and pathological stimuli, via neuronal activity,

modulate sfrp3 expression in dentate granule neurons to regu-

late quiescent neural stem cell activation and the development

of their progeny by fine tuning Wnt signaling. Given the critical

contribution of adult neurogenesis to brain plasticity, learning

and memory, and brain disorders, the identification of sFRP3

as an activity-dependent inhibitory niche factor has significant

and broad implications.

EXPERIMENTAL PROCEDURES

RNA-Seq, Quantitative Real-Time PCR, and In Situ Hybridization

Total poly-A-containing messenger RNA was immediately isolated after the

dissection of the dentate gyrus from hippocampi to create the complementary

DNA (cDNA) library for HiSeq2000 sequencing (Illumina). Paired-end reads

(97 bp) of cDNA sequences were aligned to the mouse reference genome

mm9 by TopHat47 with reference gene annotations. The relative abundances

of each transcript were estimated by Cufflinks48 with Ensembl gene annota-

tion (build NCBIM37).

Quantitative real-time PCR was performed in triplicate with the follow-

ing primers: GAPDH: 50- GTATTGGGCGCCTGGTCACC-30 (forward), 50- CGC

TCCTGGAAGATGGTGATGG-30 (reverse); sFRP3: 50- CAAGGGACACCGTCAA

TCTT-30 (forward), 50- CATATCCCAGCGCTTGACTT-30 (reverse).
In situ hybridization analysis was performed with the use of the digoxygenin-

labeled antisense RNA corresponding to the full-length coding sequence of

sfrp3, as previously described (Ma et al., 2009). All experiments were pro-

cessed in parallel for the direct comparison of labeling.

Electroconvulsive Stimulation, Voluntary Running, Pilocarpine

Treatment, and Optogenetic Manipulation

Animals were administered ECS as previously described (Ma et al., 2009).

Sham control animals received the same treatment, except no current was

passed. For voluntary-running experiments, animals were randomly separated

into two groups in standard home cages with free access to a functional or

locked running wheel mounted in the cage as described previously (Guo

et al., 2011a; Ma et al., 2009). For pilocarpine-induced seizure, adult female

WT mice were i.p. administered methylscopolamine (2 mg/kg body weight),

followed by pilocarpine (320 mg/kg body weight) 30 min later. Control mice

were administered a comparable volume of vehicle after the initial methylsco-

polamine treatment. Only mice that had multiple level III–V seizures within 2 hr

of pilocarpine injection were used (Shibley and Smith, 2002). For optogenetic

manipulation, fiber optic cannulae (Doric Lenses) were implanted at the same

sites right after AAV injection with a dorsal-ventral depth of 1.6 mm from the

skull and mice were left to recover for three weeks, as previously described

(Song et al., 2012). A light-stimulation protocol (472 nm; 15 ms at 20 Hz for

3 min) (Liu et al., 2012) was applied via the DPSSL Laser System (Laser

Century) two times 4 days apart, similarly as previously described (Song

et al., 2012). Animals were processed for dual sfrp3 in situ and Arc immuno-

staining 2 hr after the second light stimulation. All animal procedures were

approved by the Institutional Animal Care and Use Committee.

BrdU Labeling, Immunostaining, Confocal Imaging, and Analysis

Adult littermates of adult female sfrp3WTandKOmice (7–8weeksold)were i.p.

injected once with BrdU (200 mg/kg body weight) and analyzed 2 hr later. For

neuronal differentiation andmaturation analysis, adult littermateswere injected

with BrdU (50 mg/kg body weight, once daily at 10 a.m.) for 1 week and sacri-

ficed 2 or 4 weeks after the first BrdU injection. Coronal brain sections (40 mm

thick) were prepared from injected mice and processed for immunostaining
ll Stem Cell 12, 215–223, February 7, 2013 ª2013 Elsevier Inc. 221
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and confocal imaging as previously described (Bonaguidi et al., 2011; Ge et al.,

2006). Antibodies used in this study are listed in Table S1. Stereological quan-

tification within the SGZ and granule cell layer was carried out as previously

described (Kempermann et al., 1997). All assessments were performed by an

observer blind to genotypes or treatments. Statistical significance (p < 0.01)

was assessed with a one-way ANOVA or Student’s t test, as indicated.

Production and Stereotaxic Injection of Engineered Viruses,

and Osmotic Pump Infusion

Engineered self-inactivating murine oncoretroviruses were used to express

GFP specifically in proliferating cells and their progeny after stereological

injection and were processed at 14 or 21 dpi for morphological analysis as

previously described (Ge et al., 2006). Summaries of the total dendritic length,

branch number, and spine density of each individual neuron under different

conditions are shown in cumulative distribution plots. Statistical significance

(p < 0.01) was assessed with the Kolmogorov-Smirnov test.

Lentiviruses that coexpress shRNA under the U6 promoter and tdTomato

under the EF1a promoter were stereotaxically injected into the dentate gyrus

of adult WT mice. The short hairpin sequences used are as follows: shRNA-

sfrp3, 50-GCTAGCGATTCCACTCAGAAT-30; shRNA-control, 50-AGTTCCAGT

ACGGCTCCAA-30. For cell-proliferation analysis, BrdU (200 mg/kg body

weight) was injected 14 days after lentiviral infection and examined 2 hr later.

Stereological quantification of BrdU+ cells in the SGZ was carried out only in

tdTomato+ coronal sections. For dendritic-development analysis, retrovi-

ruses expressing GFP were injected into the same sites 14 days after lenti-

viral injection, and mice were examined 14 days later for morphological

analysis. An AAV vector coexpressing the same shRNA under the U6

promoter and GFP under the EF1a promoter (Guo et al., 2011b) was used

in adult TOPGAL reporter mice for the examination of the role of sFRP3 in

Wnt signaling.

For optogenetic manipulation, engineered AAVs that express ChR2-YFP

under the EF1a promoter were obtained from the Viral Core of University of

Pennsylvania and stereotaxically injected into the dentate gyrus of adult WT

mice with the following coordinates: posterior = �2 mm from Bregma;

lateral = ± 1.5 mm; ventral = 2.2 mm.

For sFRP0-infusion experiments, adult WT animals were infused with re-

combinant sFRP3 (120 ng/day; R&D Systems) into the right ventricle by

osmotic minipumps (Alzet) for 7 days with the following coordinates: poste-

rior = 0.34 mm from Bregma, lateral = 1 mm, ventral = 3 mm (Guo et al.,

2011a). Animals were subjected to a single ECS on day 4, injected with

BrdU (200 mg/kg body weight) on day 7, then analyzed 2 hr after BrdU

injection.

Animals, Tamoxifen Administration, and Clonal Analysis

TOPGAL reporter mice (DasGupta and Fuchs, 1999) were used for the

monitoring of canonical Wnt signaling. Nestin-GFP mice (Song et al., 2012)

were used for the dual sfrp3 in situ and GFP immunohistology analysis.

For clonal analysis, nestin-CreERT2+/�::Z/EGf/+::sfrp3�/� mice and nestin-

CreERT2+/1::Z/EGf/+::sfrp3+/+ control mice were used. A single low dose of

tamoxifen injection (62 mg/kg body weight, i.p.; Sigma) into 2-month-old

mice resulted in sparse labeling at the clonal level for analysis at 7 dpi in both

control and sfrp3 KO mice, as previously described (Bonaguidi et al., 2011).

SUPPLEMENTAL INFORMATION

Supplemental Information contains Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at http://
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