Penn Medicine
   
 

Yale Goldman, M.D., Ph.D.

Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle.

Taylor KA, Schmitz H, Reedy MC, Goldman YE, Franzini-Armstrong C, Sasaki H, Tregear RT, Poole K, Lucaveche C, Edwards RJ, Chen LF, Winkler H, Reedy MK

Cell 1999 Nov 12;99(4):421-31

Motor actions of myosin were directly visualized by electron tomography of insect flight muscle quick-frozen during contraction. In 3D images, active cross-bridges are usually single myosin heads, bound preferentially to actin target zones sited midway between troponins. Active attached bridges (approximately 30% of all heads) depart markedly in axial and azimuthal angles from Rayment's rigor acto-S1 model, one-third requiring motor domain (MD) tilting on actin, and two-thirds keeping rigor contact with actin while the light chain domain (LCD) tilts axially from approximately 105 degrees to approximately 70 degrees. The results suggest the MD tilts and slews on actin from weak to strong binding, followed by swinging of the LCD through an approximately 35 degrees axial angle, giving an approximately 13 nm interaction distance and an approximately 4-6 nm working stroke.

< Back

 

 
Pennsylvania Muscle Institute
Perelman School of Medicine University of Pennsylvania
Director: E. Michael Ostap, Ph.D.

700A Clinical Research Building Philadelphia, PA 19104-6085 Phone: (215) 573-9758 Fax: (215) 898-2653