

Linking Agents’ Activities and Communication Patterns in a Study of the Dissemination of an Effective Skin Cancer Prevention Program

Dawn Hall, M.P.H.
Program Coordinator, Emory University

Nicole Dubruiel, M.P.H.
Program Coordinator, Emory University

Tom Elliott, M.P.H.
Project Director, Emory University

Karen Glanz, Ph.D., M.P.H.
Professor and Director, Emory Prevention Research Center

All authors are affiliated with the Department of Behavioral Sciences and Health Education at Rollins School of Public at Emory University, located at 1518 Clifton Road, NE, Atlanta, GA 30322. The authors have no conflicts of interest to declare.

Acknowledgements: Funding for this study was provide through the National Cancer Institute (NCI Grant # CA 92505).
Abstract

Background: Linking agents connect program developers with end-users, enhancing implementation and sustainability of health promotion programs. However, little is known about how linkage systems work in practice and research settings.

Objective: This article describes the activities and communication patterns of Field Coordinators in a four-year, national study of the dissemination of an effective skin cancer prevention program.

Methods: Descriptive and content analyses were completed for all emails between Field Coordinators and program staff and for Field Coordinator activity logs.

Results: A total of 5,215 emails were sent to or from sixty-two Field Coordinators from 2003 to 2006. Emails most often concerned program administration, data collection, and management of program materials. The most common activities recorded in activity logs were communication with program staff and study sites, management of surveys, and delivery and management of program materials.

Conclusion: Field Coordinators carried out activities related to program administration and data collection across a large number of study sites. The high volume of emails and their emphasis on program administration issues demonstrate the importance of communication between program staff and Field Coordinators. It is recommended that public health researchers and practitioners implement similar linkage systems when taking effective programs to scale.

Key words: Public Health; Diffusion of Innovation; Qualitative Research
Introduction

Information on methods, processes and program features that enhance the successful diffusion of health promotion programs can help to accelerate the transfer of research to practice.\(^1\) In particular, the use of linkage systems and linking agents to connect program developers to users can enhance the implementation and sustainability of a program.\(^2\) Linking agents perform three types of functions: 1) improve individual or institutional performance with the program, 2) use knowledge and services to support these improvements, and 3) fulfill boundary-spanning roles.\(^3\) To be most effective, linking agents should be dedicated to their roles, be enthusiastic champions, and be consistent communicators.\(^3\) The presence of a linkage system and program champions can greatly enhance public health research utilization and diffusion.\(^4\)

Although effective linkage systems play an important role in the diffusion and sustainability of public health programs, there is little information in the literature describing how linkage systems work in either practice or research settings. Researchers often focus on main program outcomes while reporting limited information about program processes and linkage agents’ contributions to community-based intervention research. This article uses data from communications with Field Coordinators to describe their activities and communication patterns in a national study of the dissemination of an effective skin cancer prevention program.

Methods

Study Context

The Pool Cool skin cancer prevention program is a multi-component educational and environmental intervention. The program was evaluated in a cluster randomized trial and was
found to have significant positive effects on children’s sun protection behaviors and on sun safety environments at swimming pools.5 Process evaluation data during the efficacy trial and pilot studies of dissemination showed that the Pool Cool program was highly acceptable and feasible in ethnically and geographically diverse community aquatic settings.6

From 2003 to 2006, a diffusion study was conducted to evaluate the effects of two strategies (Basic vs. Enhanced) for dissemination of the Pool Cool program on implementation, maintenance, and sustainability; improvements in environmental supports for sun safety in swimming pools; and sun protection habits and sunburn among participating children.7 Pools in the Basic condition received a Leader’s Guide describing how to implement the program, laminated lesson sheets for eight sun safety lessons, a book of illustrations to make the lessons more interactive, materials for additional sun safety activities at the pool, a large dispenser of sunscreen, and aluminum sun safety signs to be posted in and around the pool area.7

Pools in the Enhanced condition received the standard intervention components plus extra sun safety signs and incentive items (hats, UV sensitive stickers, water bottles, etc.).7 Pools and Field Coordinators could also earn additional incentive items and prizes as a reward for increased sun safety efforts (e.g., installing new shade structures at their pool or adopting new sun safety policies). In the second and third years of the trial, pools were provided with a kit on how to make the Pool Cool program more effective. In the final two years of the study, Enhanced group pools were given a sustainability guide containing strategies for securing funding and support to continue the program after the research study ended.

Over 450 pools in twenty-five states across the United States participated in the diffusion trial, agreeing to adopt the program and participate in its evaluation. Drawing on Diffusion of Innovations Theory,8 the study methods emphasized the use of linking agents who live in the
participating communities. The linkage agents, called Field Coordinators, worked to link the centralized research staff with participating pools. Each Field Coordinator was an experienced aquatics/recreation professional who was responsible for delivering program materials, training lifeguards and aquatic staff on program implementation, and assisting with data collection for pools in his or her region (defined as a metropolitan area with at least 100,000 residents).

Field Coordinators were recruited through presentations and exhibits at aquatic professionals’ conferences, word of mouth, advertising on websites and in aquatic/recreation magazines and professional newsletters, and by targeted emails to organizational listservs. Some Field Coordinators helped recruit swimming pools in their regions for the study, while in other cases pools indicated their interest in the study and pool contacts helped find a suitable Field Coordinator. As part of their responsibilities, Field Coordinators were asked to: 1) complete a training workshop on the Pool Cool program and the research procedures, 2) commit to the program for at least three years, 3) deliver program materials to the pools in their regions each summer, 4) train the staff at the pools on Pool Cool, 5) collect surveys from pool staff at the time of training, 6) keep track of their program-related activities via activity logs that were to be submitted biweekly during the summer months, 7) maintain contact and communication with the Pool Cool research staff throughout the summer (via phone, email, etc.), and 8) participate in bi-weekly teleconference calls during the summer months. Field Coordinators were provided modest stipends each year ($80 per pool for full participation) to reimburse their effort and travel mileage.

Field Coordinator Emails
Data Collection. The central research office was located in Honolulu, Hawaii for the first year of the study and in Atlanta, Georgia for the next three years. Throughout the study, email was the most frequent means of communication between Field Coordinators and research staff. Email was considered the most convenient way for Field Coordinators and research staff to stay in touch, coordinate shipment of program materials and surveys, exchange administrative documents, and quickly address problems across many time zones. A “Pool Cool” email address was set up for program use, and Field Coordinators were advised to use this address when sending emails to research staff. Emails sent to and from Field Coordinators during this time were archived and later printed for analysis. Each email was given a unique 7-digit identification number.

Coding Email Content. A directed approach was used to analyze email content.9 With a directed approach, theory and relevant research findings guide the development of the initial coding categories. A text that cannot be categorized within the initial coding scheme is analyzed later to determine if there is a need for additional categories. This approach has been used successfully in other content analyses of online communication.10,11 Initial coding categories were developed by the research team with input from two staff members who were most responsible for maintaining contact with the Field Coordinators and responding to emails. The unit of analysis was an entire email message, and a code could apply to a single sentence or many sentences, depending on how extensively the sender addressed the topic. Initially, the coding scheme included the following main categories: 1) surveys/data, 2) recruiting, 3) training, 4) program materials, 5) administration, 6) updates/status reports, and 7) sustainability. There were between four and eight subcategories within each of these main categories.
The coding scheme was tested on a sample of emails, and text that did not fit into one of the initial categories was carefully examined to develop additional categories and subcategories as warranted. The “training” category was split into two categories: 1) pool staff trainings and 2) Field Coordinator trainings. A category labeled “other” was included for email content that did not fit into any of the main categories, and space was provided for a description of the content coded as “other.” A category labeled “personal communication” was also included to capture email content that was of a more personal nature (e.g., a birth announcement or other personal milestone). The category “updates/status reports” was eliminated, but an “updates/status reports” subcategory was added within each of the main categories.

Once final categories were established and refined, instructions for coding email content and descriptions of all categories were written and reviewed with all coders. The final main category codes were: 1) surveys/data, 2) recruiting, 3) pool staff training, 4) Field Coordinator training, 5) administration, 6) program materials, 7) sustainability, 8) other, and 9) personal communication. There were also four to six sub-categories within the main categories, excluding the “other” and “personal communication” categories. Other characteristics of each email [length (1-3, 4-10, or 11+ lines), identification number, and to/from status] were also recorded.

Email content was hand-coded by four research staff. Initially, all emails were double-coded. The data from the coding sheets were entered into a Microsoft Access 2000 database, and inter-rater reliability was computed using SPSS 15.0. Coders discussed and resolved discrepancies until satisfactory inter-rater reliability (Kappa ≥ 0.8) was achieved. The Project Director and Principal Investigator provided additional oversight and input, and inter-rater reliability was rechecked several times during the coding process.
Activity Logs

Data Collection. Each summer, Field Coordinators were given forms to use for recording their program-related activities and the amount of time spent on these activities. Information in the activity logs included date, pool name, type of activity, and time spent on the activity. There were eight response options on the worksheet for type of activity: phone call, phone message, sent fax, sent e-mail, deliver materials, conduct training, collect surveys, and other. Space also was provided on the worksheet for a description of the activities. Field Coordinators were asked to complete and return a copy of the log on the 1st and 15th of each month during the summer swimming pool season.

Coding Activity Log Content. A summative approach was used to analyze the content of the activity logs. A summative approach starts with the identification and quantification of certain words or content in the text, followed by interpretation of the content. After reviewing the activity descriptions in the logs that were submitted, program staff created a new set of categories to better capture Field Coordinator activities. Program-related phone calls, phone messages, emails, faxes, and conference calls were recoded into the category “Communication.” Activities involving delivery, collection, and shipment of surveys were recoded as “Management of Surveys.” All activities related to preparation for and conduction of pool staff training on the Pool Cool program were recoded as “Training.” Visits to pools sites and visits with pool staff for program purposes were coded as “Site Visits.” A category labeled “Administrative Tasks” was used to capture any Pool Cool-related administrative activities. Activities logged by Field Coordinators that did not fit into the main activity categories were coded as “Other.” Information from the logs was entered into an Access database, including a unique log
identification number, date of log submission, the recoded activities recorded in the log, the dates logged activities were carried out, the time spent on the logged activities, and descriptions of the activities provided by the Field Coordinator.

Protection of Participant Rights and Welfare

The protocol for the main diffusion trial received approval from the institutional review boards at University of Hawaii in 2003 and Emory University from 2004 through 2008. The collection of additional information from Field Coordinator emails and activity logs was considered exempt from further IRB approval because it involved the study of existing data documents in such a manner that subjects could not be identified [45 CFR 46.101(b)(4)].

Statistical Analysis

All data from emails and activity logs were analyzed using SPSS 15.0. Descriptive analyses of the emails were completed for all emails and then repeated within categories by year, treatment group (Basic or Enhanced), and to/from status. Distributions of email length, percent of emails containing each main content category and subcategory, and frequency with which emails were sent to and from Field Coordinators were calculated. Items coded as “other” were grouped by topic to identify content not captured by the main coding categories, and major themes in the “other” category were noted. Differences between email frequency and content by treatment group were computed using chi-square tests.

Activity log data were analyzed by year and by treatment group. Frequencies were computed for each type of activity, and descriptive statistics were calculated for number of logs submitted and amount of time spent on Pool Cool program activities each summer. Differences
between treatment groups regarding frequency of log submission, type of activities logged, and
time spent on Pool Cool program activities were examined using chi-squares and t-tests.

Results

Field Coordinator Involvement

A total of sixty-two individuals participated in the Pool Cool diffusion study as Field
Coordinators over the four years of the study, with thirty-one Field Coordinators from each
treatment group. Forty-three Field Coordinators participated in 2003, forty-seven participated in
2004, forty-three in 2005, and thirty-four in 2006. Thirty-nine Field Coordinators (62.9%)
participated for three years or more. Eighteen Field Coordinators (29.0%) participated for only
one year, and five (8.1%) participated for a two-year period. Some individuals who could not
fulfill Field Coordinator duties after their first year or two of participation were replaced by
another Field Coordinator in their region.

Emails Sent to Field Coordinators

A total of 2,811 emails were sent to Field Coordinators from 2003 to 2006, with an
average of 15.5 (± 7.7) emails sent to each Field Coordinator each year. Most commonly, emails
to Field Coordinators contained content regarding program administration and surveys/data
collection, followed by program materials (Table 1). The least common categories of emails
were those about program sustainability or personal communication. Among emails regarding
program administration, most discussed activity logs (19.3%) and Field Coordinator stipends
(18.8%). Emails regarding surveys/data collection most commonly contained updates and status
reports on data collection (49.1%).
Emails Received from Field Coordinators

A total of 2,404 emails were received from Field Coordinators from 2003 to 2006, with an average of 14.1 (+ 10.4) emails from each Field Coordinator each year. Emails from Field Coordinators most often contained content regarding program administration, surveys/data, and program materials (Table 1). Emails from Field Coordinators regarding administration most often provided administrative updates such as updating pool or Field Coordinator contact information. The other subcategories most commonly coded among emails regarding program administration were Field Coordinator activity logs (usually an attachment to the email), conference calls, and Field Coordinator stipends. Emails regarding surveys and data often involved updates on data collection (42.7%) but also frequently discussed the logistics of returning surveys to the central research office (27.7%). Fewer emails contained content regarding program sustainability (3.3%) or personal communication (4.3%).

Trends in Email Communication

Frequency of email communication per Field Coordinator was highest in 2004 and 2005. Although the frequency of email communication was lowest in 2006, the email frequency still remained relatively high with an average of 11.4 ± 9.9 emails received from each Field Coordinator. Over the four years, Field Coordinators in the Enhanced group sent more emails per summer (\(\bar{X} = 15.9 \pm 12.1 \)) than Field Coordinators in the Basic group (\(\bar{X} = 12.6 \pm 8.2; p < .05 \)). Field Coordinators in the Enhanced group also received more emails per summer (\(\bar{X} = 17.2 \pm 9.3 \)) than Field Coordinators in the Basic group (\(\bar{X} = 14.1 \pm 5.5; p < 0.01 \)). Figure 1 compares the Basic versus Enhanced group emails by content categories. Emails to and from
Field Coordinators in the Basic group were significantly more likely to contain content regarding program administration, surveys/data, recruiting, and Field Coordinator training. Emails to and from Field Coordinators in the Enhanced group were significantly more likely to contain content regarding program materials, pool staff training, personal communication, and sustainability.

Activity Logs

A total of 404 activity logs were received from 2003 to 2006, with an average of 3.4 (+2.0) logs received from each Field Coordinator each summer. Each summer, between 20 and 30% of the Field Coordinators did not return any logs, but some returned as many as nine logs in one summer. The median time Field Coordinators reported spending on logged activities each summer was 19.5 hours over the course of the summer (25th percentile = 12.2 hours; 75th percentile = 26.5 hours). The most frequently logged activities were communication (34.7%), management of surveys (25.8%), and management of program materials (19.0%) (Table 2). Site visits and administrative tasks were the least commonly logged activities.

Trends in Activity Logs

The number of activity logs Field Coordinators submitted each summer increased as the study progressed. The mean number of logs submitted per Field Coordinator in 2003 was 2.7 (+1.4), and increased each year to a high of 4.1 (+2.2) by 2006. The amount of time Field Coordinators reported spending on activities peaked in 2004 with a median of 21.8 hours spent on logged program activities over the summer and then dropped to a median of just over 17 hours per summer in 2005 and 2006. Data from the activity logs were also analyzed to assess differences between groups. There was no difference between the Basic and Enhanced groups.
with regard to the amount of time Field Coordinators reported spending on Pool Cool activities each summer. Field Coordinators in the Basic group more frequently recorded management of surveys and pool staff training in their activity logs than Field Coordinators in the Enhanced group (p’s < 0.01), but no other significant differences were found.

Discussion

When taking any public health program “to scale,” it is important to have a sufficient number of skilled and receptive program implementers. The study results show Field Coordinators carried out many important duties related to program implementation and management during the Pool Cool Diffusion study. Delivering program materials, training lifeguard participants, and collecting survey data would have been difficult within such a large-scale program without the efforts of the Field Coordinators. Before the summer season began, Field Coordinators helped to identify and recruit regional pools to participate in the program, as well as garner support from higher-level organizations. After recruitment, Field Coordinators were responsible for distributing program materials to individual pools, including surveys, educational materials, and incentive items and also coordinated data collection at their pools. Field Coordinators served as liaisons between individual pools and program staff throughout the year. If an individual pool had questions, concerns or difficulties regarding program implementation or data collection, it was usually the Field Coordinator who would discuss these issues with program staff to determine the best course of action. Information about important dates and deadlines (i.e., survey return, pool training, etc) was passed along to pool managers through the Field Coordinators.
Trends in both email communication and activity log submission indicate Field Coordinator involvement remained high across the four years of the diffusion study. Email communication peaked during the middle two years of the study but still remained high the final year, and the number of activity logs each Field Coordinator submitted tended to increase each year. Although the activities Field Coordinators recorded in their logs did not differ significantly by group, differences in email frequency and content between the two groups suggest the Field Coordinators’ activities in the study varied according to their group assignment. Field Coordinators in the Enhanced group sent emails to the research staff more frequently than those in the Basic group. The additional incentives provided to the Enhanced group may have motivated these Field Coordinators to increase their efforts within the program. The more frequent discussion of program materials in emails to and from Field Coordinators in the Enhanced group was also expected, as pools in the Enhanced group were provided with more program materials, incentive items and sun safety supports. The higher frequency of emails about program sustainability in the Enhanced group is notable because sustainability is typically an important final phase of program diffusion and was emphasized in the Enhanced intervention.14

As experienced aquatics/recreation professionals, Field Coordinators were able span the boundaries between the research team and pool staff. They completed training on skin cancer prevention and the Pool Cool program and were most aware of how to fit the program into the local pools’ current programs and policies. Similarly, linking agents should be able to fill the gap that may exist between program developers and program users. It is difficult for program developers to be completely aware and in touch with user needs, especially in a national program, and they must rely on an “inside” source to better understand how the program can best
be tailored to its audience. The case studies of seven community-based practices, programs and policies found that agents linking research resources to the community help to move the research-utilization process forward. Working with linking agents allows researchers to take into account the context and needs of the community, resulting in more advanced stages of research utilization. When chosen wisely, linking agents can enhance the success and effectiveness of the program.

The high frequency of email communication speaks to the importance of communication between linking agents and program and research staff, especially in the areas of program administration and data collection. Furthermore, communication was the most frequently recorded program-related activity in the activity logs. Field Coordinators in the Enhanced group sent and received more emails than those in the Basic group, indicating higher levels of involvement in the program. Studies of other prevention programs have also found that the two-way communication exchange and active involvement of both the research and user groups depend on strong communication channels and that a lack of communication can be a barrier to successful linking systems. Field Coordinators who regularly stayed in communication with program staff often became program champions, promoting and enhancing program implementation in their regions and playing a vital role in dissemination at the community level.

Strengths and Limitations

This report helps to fill a gap in public health literature by describing the activities and communication patterns of linking agents in the delivery of a widely disseminated cancer prevention program. This content analysis of such extensive email communication (over 5,200 emails) between program staff and Field Coordinators is unique. Limitations include the
inability to distinguish how much time Field Coordinators spent on specific program activities, as the data only provide information about the relative frequencies of activities logged and the overall amount of time Field Coordinators report spending on the program each summer. Also, the present analysis does not link communication and activity processes to program implementation or outcomes at specific pool locations. Because this report occurred in the context of a national research program, patterns of practice-based activity without formal evaluation would likely be somewhat different.

Conclusion

This study describes the activities and communication patterns of Field Coordinators in the implementation, maintenance, and sustainability of a skin cancer prevention program. By providing a clear picture of the many program activities, duties, and responsibilities carried out by Field Coordinators, the study clarifies how active linking agents contribute to the successful diffusion of public health programs. Linking agents can improve individual and institutional performance within a program and bridge gaps between program developers and program users. Researchers should consider using a structured linkage system to improve program implementation and management when disseminating effective public health programs and tracking the performance of the linkage systems across the phases of program implementation and maintenance.
References

10. Hoffman-Goetz, L., & Donelle, L. Chat room computer-mediated support on health issues

 provide support on cancer-related internet mailing lists. *Journal of Medical

 Part 46, 2005.

 transporting prevention interventions from research to real-world settings. *Eval Health
 Prof*. 2006;29(3):302-333

 Designing Theory and Evidence-Based Health Promotion Programs*. Mountain View,

15. Peterson, J.C., Rogers, E.M., Cunningham-Sabo, L., & Davis, S.M. A framework for
 research utilization applied to seven case studies. *American Journal of Preventive
 Medicine*. 2007;33(1)S1:S21-S34.

 linking systems to build capacity and enhance dissemination in heart health promotion: A

17. Thompson, G.N., Estabrooks, C.A., & Degner, L.F. Clarifying the concepts in knowledge
Table 1. Percentage of emails to or from Field Coordinators containing different categories of content

<table>
<thead>
<tr>
<th>Category</th>
<th>To Field Coordinators (N = 2811)</th>
<th>From Field Coordinators (N = 2404)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>47.3</td>
<td>46.0</td>
</tr>
<tr>
<td>Surveys / Data</td>
<td>43.5</td>
<td>34.8</td>
</tr>
<tr>
<td>Program Materials</td>
<td>17.8</td>
<td>19.5</td>
</tr>
<tr>
<td>Recruiting</td>
<td>12.6</td>
<td>13.1</td>
</tr>
<tr>
<td>FC Training</td>
<td>8.4</td>
<td>10.9</td>
</tr>
<tr>
<td>Other*</td>
<td>7.6</td>
<td>11.6</td>
</tr>
<tr>
<td>Pool Staff Training</td>
<td>5.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Personal Communication</td>
<td>2.1</td>
<td>4.3</td>
</tr>
<tr>
<td>Sustainability</td>
<td>1.4</td>
<td>3.3</td>
</tr>
</tbody>
</table>

* Major themes within the “other” category included positive responses to previous emails (i.e., “great,” “sounds good,” and “thank you”), general inquiries such as “how are things going?”, and auto-reply email messages.
Table 2. Percentage of activities logged by Field Coordinators from 2003 to 2006

<table>
<thead>
<tr>
<th>Activity</th>
<th>% distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>34.7</td>
</tr>
<tr>
<td>Management of surveys</td>
<td>25.8</td>
</tr>
<tr>
<td>Management of program materials</td>
<td>19.0</td>
</tr>
<tr>
<td>Training</td>
<td>13.4</td>
</tr>
<tr>
<td>Site visits</td>
<td>4.5</td>
</tr>
<tr>
<td>Administrative Tasks</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Figure 1. Number of emails per FC by group (Basic vs. Enhanced) containing the given content

Note: Emails sent to all Field Coordinators (N = 25 emails) were not included in this analysis.

*Group differences are statistically significant ($p < .01$)