The Design of Lil'Flo, an Affordable Socially Assistive Robot for Telepresence

Lil'Flo is a social robot which can assist care teams in classifying patients, tracking progression, and per:
extremity impairments. The system is being designed to work via assisted telepresence, with autonomy
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‘orming therapy for cognitive and upper
vlanned. Work is being done to develop

computer vision-based diagnostics and define the utility of adding a social robot to tele-rehabilitation interactions.

Need for Robotic System

e Cerebral Palsy (CP) occurs in 2 to 3 per every 1000 live

births, making it the most common motor disorder in

young children [1]. This is one example of the class of

impairments which we are targeting.

e [here are a growing number of patients needing therapy

without a commensurate increase in clinicians.

e [ here is a geographic gap between clinicians, located in

urban centers, and many patients, located in rural areas.

e [ here is the potential for robots to make different kinds

of connections than those made by clinicians.

e Socially Assistive Robot [2]
consisting of a humanoid
robot on a mobile base.

e Designed for telepresence
now and autonomy in the
future.

e Provides a new social agent
in rehab interactions.

e Designed to facilitate both
diagnostics and therapy.

e Carries on board computer,
screen, microphone, and
camera.
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Need for Perception System

poor repeatability.

e Many currently used measures are subjective with

e Measures which are objective are generally high

cost, ex: those relying on human motion capture.

e Availability of highly trained clinicians to perform

testing is limited in many low-resource settings.

patient observation to chart records.

e | here is information lost in the transfer from

e Assessment during therapy could allow better

tailoring of interventions to patient progress.

Design Requirements

e L ow cost — to maximize impact

e Expressive face — to promote social
connectivity

e Easily modifiable hardware — to allow
testing of different configurations

e Mobile — to enable remote deployments

e Removable humanoid — to test the
effect of the humanoid on interactions

e Various sensors — to facilitate
development of the perception system

Perception Pipeline
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1. We can leverage tools such as
stacked hourglass networks [3] and
part affinity fields [4] for 2D pose
detection from video.

2. We can use various techniques [5, 6]
to extract 3D pose from 2D pose.

3. We can then use measures known
from the literature, for example
trajectories on point to point
motions [7], to measure function.

4. We can also train algorithms to
recognize function by gathering data
from disabled and healthy subjects.
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Data from a video, captured with a low-cost camera, of
a healthy person moving their hand to their head.
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