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Protein misfolding is implicated in numerous neurodegenerative disorders including

amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, and Huntington’s

disease. A unifying feature of patients with these disorders is the accumulation of

deposits comprised of misfolded protein. Aberrant protein folding can cause toxicity

through a loss or gain of protein function, or both. An intriguing therapeutic approach to

counter these disorders is the application of protein-remodeling factors to resolve these

misfolded conformers and return the proteins to their native fold and function. Here,

we describe the application of protein-remodeling factors to alleviate protein misfolding

in neurodegenerative disease. We focus on Hsp104, Hsp110/Hsp70/Hsp40, NMNAT,

and HtrA1, which can prevent and reverse protein aggregation. While many of these

protein-remodeling systems are highly promising, their activity can be limited. Thus,

engineering protein-remodeling factors to enhance their activity could be therapeutically

valuable. Indeed, engineered Hsp104 variants suppress neurodegeneration in animal

models, which opens the way to novel therapeutics and mechanistic probes to help

understand neurodegenerative disease.

Keywords: protein-remodeling factors, protein-misfolding disease, neurodegeneration, Hsp104, Hsp70, Hsp110,

NMNAT, HtrA1

INTRODUCTION

There are numerous devastating, and incurable, neurodegenerative disorders that are increasing
in prevalence as our population ages (Dobson, 2003; Forman et al., 2004; Morimoto, 2006). These
disorders include: Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis
(ALS), and frontotemporal dementia (FTD) (Dobson, 2003; Forman et al., 2004; Morimoto, 2006;
Lagier-Tourenne et al., 2010; Robberecht and Philips, 2013). Treatments for these disorders remain
palliative, and no therapeutics are available that address their underlying cause (Forman et al., 2004;
Robberecht and Philips, 2013). Furthermore, each of these disorders manifests in different ways in
patients. For instance, AD patients have impaired memory yet their movement is preserved, while
ALS patients’ memory is preserved while their control of movement becomes impaired (Forman
et al., 2004; Lagier-Tourenne et al., 2010; Robberecht and Philips, 2013). Yet, at the fundamental
level, these neurodegenerative disorders are linked by the presence of insoluble proteinaceous
inclusions in the brain (Dobson, 2003; Forman et al., 2004; Lagier-Tourenne et al., 2010; Robberecht
and Philips, 2013).
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It is important to note that these neurodegenerative diseases
are not due to mass protein misfolding, but instead the
misfolding of specific proteins are implicated in each disease
(Dobson, 2003; Cushman et al., 2010). For instance, α-synuclein
misfolds into amyloid fibrils that accumulate in Lewy bodies
in the dopamine neurons of PD patients, while in ALS
patients TDP-43 or FUS misfold into cytoplasmic aggregates in
degenerating motor neurons and glia (Spillantini et al., 1997;
Neumann et al., 2006; Chen-Plotkin et al., 2010; Mackenzie
et al., 2010; Robberecht and Philips, 2013; Dehay et al., 2015).
These proteins, as well as many others that underpin diverse
neurodegenerative disorders, are expressed in nearly all cells. Yet
it remains perplexing what initiates and drives the misfolding
of specific proteins in specific neuronal subtypes, leading to
subtype-specific neurodegeneration (Saxena and Caroni, 2011).
Additionally, it remains unclear if neuronal degeneration is
always a direct consequence of aggregate accumulation. Indeed,
many of these proteins serve essential functions, and so a loss of
function due to aggregation could alternatively lead to toxicity
(Winklhofer et al., 2008; Yang et al., 2014; O’Rourke et al., 2016).

In each of these neurodegenerative disorders, the protein
homeostasis (proteostasis) network ultimately fails to combat
the accumulation of misfolded conformers, consequently leading
to disease (Balch et al., 2008; Shorter, 2016). To address the
protein-misfolding problem, there are several avenues that
could be explored. First, degradation of the toxic, misfolded
conformers might be beneficial. For instance, in some PD
patients, an increase in α-synuclein levels is implicated, and
thus degradation of this excess α-synuclein might be beneficial
(Ebrahimi-Fakhari et al., 2012). A similar strategy might be
useful in Huntington’s disease patients (Yamamoto et al., 2000).
Alternatively, stalling the protein-misfolding process is an
effective means of therapeutically treating patients with familial
amyloid neuropathy (FAP) (Bulawa et al., 2012; Cho et al., 2015;
Ankarcrona et al., 2016). FAP is caused by the misfolding of
transthyretin, which forms amyloid fibrils that accumulate in
various tissues and organs, ultimately leading to organ failure.
To combat FAP, the drug Tafamidis was developed to stabilize
the native tetrameric form of transthyretin, thus blocking
further misfolding and stalling the amyloid cascade. Tafamidis is
approved for use by the European Medicines Agency, and is the
only therapeutic in use that mitigates neurodegenerative disease
by preventing protein misfolding (Ruberg and Berk, 2012).
Additionally the drug Tolcapone, which is FDA-approved for PD,
was found to also stabilize transthyretin and block aggregation
(Sant’Anna et al., 2016). A similar strategy to pharmacologically
stabilize α-crystallins may effectively block their misfolding and
aggregation and treat cataracts (Makley et al., 2015). The success
of Tafamidis provides strong proof of concept that targeting
protein misfolding can be therapeutically effective (Bulawa et al.,
2012; Cho et al., 2015; Ankarcrona et al., 2016). Additionally,
clinical trials are ongoing to assess the efficacy of antibodies
aimed at clearing plaques comprised of Aβ that accumulate in AD
patients (Sevigny et al., 2016), though notably one trial recently
failed. Indeed, an additional intriguing possibility would be to
remodel the misfolded species such that the protein regains its
functional, native conformation, which would simultaneously

mitigate toxicity due to loss-of-function or gain-of-function
(Jackrel and Shorter, 2014b, 2015; Mack and Shorter, 2016;
Shorter, 2016). However, many of the proteins that misfold in
these disorders adopt a cross-beta fibrillar form, termed amyloid,
which is a highly stable and self-templating structure (Dobson,
2003). Nonetheless, protein-remodeling factors that have evolved
to antagonize protein misfolding could be harnessed to reverse
deleterious protein misfolding in disease (Table 1).

The proteostasis network ultimately collapses in
neurodegenerative disease (Shorter, 2016). This network is
comprised of manymolecular chaperones that normally promote
the proper folding of disease-associated proteins, as well as the
entire proteome. Thus, an intriguing way to address the collapse
of the proteostasis network would be to remedy or rewire this
network (Jackrel et al., 2014a; Jackrel and Shorter, 2014b, 2015).
This approach could be pursued by either enhancing and tuning
the activity of endogenously expressed protein-remodeling
factors, or by introducing new protein-remodeling factors that
are not normally expressed (Warrick et al., 1999; Auluck et al.,
2002; Jackrel et al., 2014a). Many protein-remodeling factors
have been proposed to function in alleviating protein misfolding,
including: Hsp104, Hsp110/Hsp70/Hsp40, NMNAT, and HtrA1
(Zhai et al., 2008; Jackrel and Shorter, 2014b, 2015; Poepsel et al.,
2015; Ali et al., 2016; Mack and Shorter, 2016; Shorter, 2016).
Some of these proteins are capable of actively disaggregating and
restoring the solubility of the misfolded conformers (Warrick
et al., 1999; Auluck et al., 2002; Jackrel and Shorter, 2014a;
Jackrel et al., 2014a). Thus, the application of protein-remodeling
factors in a therapeutic setting is a highly promising avenue to
address neurodegenerative disease. In this review, we discuss
the potential application of these molecular chaperones and
protein disaggregases in the development of therapeutics for
neurodegenerative disorders. These agents might be harnessed
for therapeutic purposes through upregulation or through
the introduction of exogenous protein through either gene
therapy using adeno-associated viral vector technologies or
direct injection. Alternatively, protein-remodeling factors
could be therapeutically modulated using small molecules
or even potentiated via engineering. We focus on efforts to
reformulate a robust protein disaggregase from yeast, Hsp104,
which has several unique properties that make it a particularly
promising protein-remodeling factor for further exploration
and application to reverse the protein misfolding implicated in
numerous devastating neurodegenerative diseases (Lo Bianco
et al., 2008; DeSantis et al., 2012; Cushman-Nick et al., 2013;
Jackrel and Shorter, 2014a,b, 2015; Jackrel et al., 2014a). We also
discuss several other protein-remodeling factors that have been
recently assessed for their capacity to suppress or reverse protein
misfolding connected to neurodegenerative disease.

Hsp70 BLOCKS PROTEIN MISFOLDING

One of the first molecular chaperones to be explored as a possible
therapeutic for combating neurodegenerative disease was Hsp70.
The Hsp70 family of proteins serves diverse functions in protein
folding. Hsp70 promotes the refolding of aggregated ormisfolded
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TABLE 1 | Protein-remodeling factors can remodel diverse substrates.

Protein remodeling factor Activity Substrates remodeled

Hsp70 Blocks misfolding Polyglutamine, α-syn, Aβ

Hsp110/Hsp70/Hsp40 Dissolves preformed aggregates SOD1, α-syn

NMNAT Dissolves preformed aggregates Tau

Htra1 Dissolves and degrades preformed aggregates Aβ and tau

Hsp104 Dissolves preformed aggregates, amyloid, and pre-amyloid oligomers α-syn, TDP-43, FUS, Aβ, tau, polyglutamine

proteins (Mayer and Bukau, 2005; Mack and Shorter, 2016). It
also serves to ensure the proper folding of newly synthesized
proteins (Mayer and Bukau, 2005). To do so, Hsp70 functions
cooperatively with its co-chaperone, Hsp40, to bind and thus
protect hydrophobic stretches harbored by its clients (Mayer and
Bukau, 2005; Mashaghi et al., 2016). This function is crucial
during protein synthesis, but is also important following cellular
stresses that partially denature mature proteins, because by
binding exposed stretches on these partially denatured proteins,
Hsp70 can block protein aggregation (Mayer and Bukau, 2005;
Mack and Shorter, 2016). Thus, in disease, upregulation of Hsp70
might prevent protein aggregation and promote the restoration
of proteostasis. A Drosophilamodel of polyglutamine misfolding
has been established in which overexpression of polyglutamine
leads to neurodegeneration (Warrick et al., 1998). In this
model, overexpression of Hsp70 suppressed polyglutamine-
induced neurodegeneration (Warrick et al., 1999). Similarly, in
a Drosophilamodel of α-synuclein misfolding, Hsp70 suppressed
neurodegeneration (Auluck et al., 2002). However, it is important
to note that while Hsp70 inhibited neurodegeneration in these
models, it was not found to solubilize aggregates (Warrick
et al., 1999; Auluck et al., 2002; Cushman-Nick et al., 2013).
Nonetheless, in a mouse model of ALS, intraperitoneal injection
of human Hsp70 increased lifespan, delayed the onset of
symptoms, arrested denervation, preserved axonal function, and
prolonged motor neuron viability (Gifondorwa et al., 2007,
2012).

Elevating Hsp70 expression can slow neurodegeneration in
fly and mouse models (Warrick et al., 1999; Auluck et al.,
2002; Gifondorwa et al., 2007, 2012). Hsp70 likely becomes
overwhelmed in neurodegenerative disease. Thus, it may be
important to enhance Hsp70 activity via potentiating mutations
or small molecules (Mack and Shorter, 2016; Shorter, 2016).
Indeed, using protein-engineering techniques the activity of
the bacterial homolog of Hsp70, DnaK, has been enhanced
and these variants demonstrate elevated luciferase refolding
activity (Aponte et al., 2010; Schweizer et al., 2011). Recently,
Hsp70 engineering has been extended to human Hsp70 and
neurodegenerative disease-associated substrates (Aprile et al.,
2015). Here, Hsp70 was tuned through rational design to more
potently bind α-synuclein and Aβ42. Peptides complementary
to target epitopes in α-synuclein and Aβ42 were developed, and
these peptides were introduced into the C-terminal region of
Hsp70 (Aprile et al., 2015). While introduction of these peptides
enhanced the binding affinity of Hsp70 to α-synuclein and Aβ42,
binding to other client proteins was unaffected (Aprile et al.,

2015). Thus, tuning Hsp70 to broaden its substrate specificity
does not come at the cost of restricted capacity to regulate
its diverse client pool (Aprile et al., 2015). Additionally, small
molecules have been identified that can enhance specific aspects
of Hsp70 activity. For instance, four small molecules: MKT-077,
JG-98, YM-1, and YM-8 bind the nucleotide-binding domain
of Hsp70 in the ADP, but not ATP-bound state. This binding
stabilizes the ADP-bound state resulting in increased affinity of
Hsp70 for its clients, which can under some circumstances lead to
their enhanced folding (Rousaki et al., 2011; Miyata et al., 2013;
Wang et al., 2013; Shorter, 2016). In the cellular environment,
YM-1 promotes clearance of polyglutamine oligomers and
aggregates (Wang et al., 2013). All four of these molecules
promote the clearance of tau and are therapeutically beneficial
in tauopathy models (Abisambra et al., 2013; Miyata et al., 2013;
Fontaine et al., 2015).

THE METAZOAN
PROTEIN-DISAGGREGASE SYSTEM:
Hsp110/Hsp70/Hsp40

It has long been hypothesized that humans might possess a
protein disaggregase similar to those in the Hsp100 family of
proteins that are highly conserved in bacteria, fungi, and plants
(Shorter, 2008, 2011; Torrente and Shorter, 2013). However,
the discovery of such a protein disaggregase has been elusive
until it was discovered that Hsp110 in collaboration with Hsp70
and Hsp40 can disaggregate and reactivate protein (Shorter,
2011; Mattoo et al., 2013; Torrente and Shorter, 2013; Finka
et al., 2015; Gao et al., 2015; Nillegoda and Bukau, 2015;
Nillegoda et al., 2015). Hsp110 is an Hsp70 family member
that in collaboration with Hsp70 and Hsp40 can disaggregate
preformed aggregates and amyloid (Shorter, 2011; Duennwald
et al., 2012; Gao et al., 2015; Nillegoda et al., 2015). Hsp110
collaborates and synergizes with Hsp70 and two classes of Hsp40
cochaperones to resolve large protein aggregates (Nillegoda
and Bukau, 2015; Nillegoda et al., 2015). It is hypothesized that
due to the large number of possible complexes that could form
between different Hsp70s and Hsp40s, distinct and specific
complexes might be harnessed to dissolve different protein
aggregates (Nillegoda and Bukau, 2015; Nillegoda et al., 2015).
Perhaps one specific combination might be employed in specific
neuronal subtypes, or a given combination might specifically
disaggregate α-synuclein while another might specifically
disaggregate tau.
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Ultimately, failure of the Hsp110/Hsp70/Hsp40 system
might underpin numerous protein-misfolding disorders,
and restoration or specific activation of this system might
be therapeutically useful (Nillegoda and Bukau, 2015;
Shorter, 2016). Indeed, overexpression of Hsp110 with
Hsp40 suppressed the toxicity induced by polyglutamine
overexpression in Drosophila, though it is not apparent if
Hsp110 modulates polyglutamine aggregation (Kuo et al.,
2013). Additionally, transgenic overexpression of Hsp110
in neurons enhanced survival in ALS model mice, but
again, the effects of Hsp110 on SOD1 aggregation were not
assessed in these experiments (Nagy et al., 2016). It remains
unclear if upregulation of Hsp110 levels will be sufficient to
restore normal functionality in animal models, and ultimately
in humans. It may be useful to tune the activity of the
Hsp110/Hsp70/Hsp40 system using protein-engineering
techniques, or alternatively, small-molecule modulators could
be developed to enhance the activity of this system. Small
heat-shock proteins can also enhance the disaggregase activity
of this system (Duennwald et al., 2012), and might also
be targeted therapeutically (Makley et al., 2015). However,
determining precisely how to therapeutically boost the activity
of this system comprised of several components may prove
challenging.

NMNAT

Nicotinamide mononucleotide adenylyl transferases (NMNATs)
are nicotinamide adenine dinucleotide (NAD)-synthesizing
enzymes. NAD is an important cofactor that mediates numerous
cellular processes. NMNATs are important in neuronal
maintenance, thus NMNAT knockdown leads to axonal
degeneration, while NMNAT overexpression is neuroprotective
in several animal models of neurodegeneration (Zhai et al., 2008;
Gilley and Coleman, 2010; Ali et al., 2016). NMNAT2 is highly
expressed in the mammalian brain, and NMNAT2 mRNA levels
are reduced in PD, HD, AD, and tauopathy patients (Ali et al.,
2016). Furthermore, elevating NMNAT2 levels in tauopathy
model mice suppressed neurodegeneration (Ljungberg et al.,
2012). Additionally, NMNAT2 mRNA levels correlate positively
with cognitive function and negatively with the pathological
features of AD (Ali et al., 2016). In AD brains, NMNAT2 mRNA
and protein levels are greatly reduced relative to controls,
and NMNAT2 co-localizes with aggregated tau (Ali et al.,
2016). NMNAT2 overexpression can reduce the pathological
accumulation of hyperphosphorylated tau without altering total
tau levels (Ljungberg et al., 2012; Ali et al., 2016). NMNAT2 can
prevent protein denaturation and promote protein refolding
with similar activity to Hsp70 (Ali et al., 2016). Surprisingly,
this activity is maintained even in enzymatically-dead NMNAT2
mutants that lack NAD synthetic activity (Ali et al., 2016).
These enzymatically-dead NMNAT2 mutants also reduced
hyperphosphorylated tau levels (Ali et al., 2016).

NMNAT2 has been demonstrated to form a complex with
Hsp90 to solubilize and refold aggregated substrates (Ali
et al., 2016). Moreover, deletion of NMNAT2 increases the

vulnerability of cortical neurons to proteotoxic stress (Ali et al.,
2016). Thus, therapeutically upregulating NMNAT or enhancing
NMNAT activity via small-molecule modulation might be
effective in regulating tau levels. It will be interesting to assess the
protein-remodeling activity of NMNATs against the many other
substrates implicated in protein-misfolding disorders. Given the
fundamental role NMNATs play in neuronal maintenance, failure
of NMNATs to combat protein misfolding might be common to
many other disease-associated substrates in addition to tau.

HtrA1 CAN DISAGGREGATE AND
DEGRADE TOXIC CONFORMERS

HtrA1 is a PDZ serine protease that disassembles tau and Aβ

fibrils, which are linked to AD, and then degrades them (Poepsel
et al., 2015). Intriguingly, HtrA1 is found in the cytoplasm
and is also secreted (Poepsel et al., 2015). Correlating with
this pattern, Aβ42 fibrils are found in the extracellular space
while tau fibrils are found in the cytoplasm. Thus, it has been
hypothesized that HtrA1 might be a system that naturally
disaggregates and degrades Aβ42 and tau (Poepsel et al., 2015;
Shorter, 2016). Indeed, HtrA1 activity might be insufficient
in AD patients (Shorter, 2016). Therefore, boosting and fine-
tuning the activity of HtrA1 might be valuable in combating
AD. It has been demonstrated that HtrA1 activity can be tuned
through protein engineering. The disassembly and degradation
activities of HtrA1 can be separated, as protease-defective HtrA1
variants dissolve but do not degrade Aβ fibrils, providing HtrA1
variants that can either dissolve the aggregates or dissolve and
degrade the aggregates (Poepsel et al., 2015). The ability to
separate or combine disassembly and degradation activities in a
single protein is very valuable, and might find utility in certain
situations. Therefore, it will be very interesting to engineer
substrate-specific HtrA1 variants that can target substrates
beyond Aβ and tau. These substrate-specific variants could
be constructed in both the disaggregate-only or disaggregate-
and-degrade backgrounds. This advance would allow for the
flexibility to reactivate proteins that serve beneficial functions.
Alternatively, subsets of PD patients show increased α-synuclein
levels (Ebrahimi-Fakhari et al., 2012), and thus for these patients
it may be beneficial to not just solubilize α-synuclein, but also
to degrade it. Additionally, small-molecule enhancers of HtrA1
have been identified, and so it will be important to test the effects
of these compounds in various models of protein-misfolding
disorders (Jo et al., 2014). It will also be important to assess if
HtrA1 can clear highly toxic pre-amyloid oligomeric forms of Aβ

and tau, or only the fibrils.

Hsp104 VARIANTS SUPPRESS PROTEIN
MISFOLDING, MISLOCALIZATION, AND
TOXICITY IN YEAST AND ANIMAL
MODELS

Hsp104 is a ring-shaped hexameric AAA+ protein from yeast
that serves two distinct functions (Sweeny and Shorter, 2016;
Yokom et al., 2016). First, it solubilizes proteins that aggregate
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following cellular stress to promote yeast survival (Parsell et al.,
1991, 1994; Glover and Lindquist, 1998; Glover and Tkach, 2001;
Wallace et al., 2015). Second, it regulates yeast prion formation
and dissolution (Chernoff et al., 1995; Shorter and Lindquist,
2004, 2005, 2006; Sweeny and Shorter, 2008, 2016; Sweeny
et al., 2015). In serving these two roles, Hsp104 recognizes and
regulates a diverse milieu of substrates, comprised of the entire
yeast proteome, as well as yeast prions (Newby and Lindquist,
2013). While Hsp104 is highly conserved in bacteria, fungi, and
plants, Hsp104 has no metazoan homolog (Erives and Fassler,
2015).

The amyloid fold is a highly conserved protein structure,
thus it was hypothesized that the natural capacity of Hsp104
to recognize and solubilize yeast prions might translate to a
capacity to recognize and solubilize diverse amyloid species
associated with human disease (DeSantis et al., 2012; Jackrel
and Shorter, 2014b, 2015; Jackrel et al., 2014a). Indeed, using
purified proteins, Hsp104 has been shown to solubilize diverse
amyloid species implicated in human disease including: Aβ, α-
synuclein, polyglutamine expansions, prion protein, tau, and
amylin (Liu et al., 2011; DeSantis et al., 2012; Jackrel and Shorter,
2014a; Jackrel et al., 2014a). Additionally, Hsp104 suppresses
proteotoxicity in animal models (Satyal et al., 2000; Vacher
et al., 2005; Lo Bianco et al., 2008; Cushman-Nick et al., 2013;
Jackrel et al., 2014a). In a transgenic mouse model of HD,
Hsp104 extended lifespan and decreased aggregate load (Vacher
et al., 2005). Furthermore, Hsp104 has been demonstrated to be
neuroprotective in a rat model of PD (Lo Bianco et al., 2008).
Here, lentiviral vectors coding for α-synuclein were injected into
the substantia nigra of rats, and following 6 weeks of expression,
brain slices were stained for dopaminergic markers. In this
system, Hsp104 co-expression was neuroprotective and no off-
target effects were observed (Lo Bianco et al., 2008). Additionally,
Hsp104 has been shown to directly clear preformed oligomeric
forms of α-synuclein as well as eliminate self-templating α-
synuclein conformers. These experiments have provided strong
evidence that Hsp104 may have therapeutic value. However, the
activity of Hsp104 in suppressing degeneration in these animal
models is limited as complete neuroprotection is not achieved
(Vacher et al., 2005; Lo Bianco et al., 2008).

We have enhanced the activity of Hsp104 via engineering
(Jackrel et al., 2014a,b, 2015; Jackrel and Shorter, 2014a). We
have constructed large libraries of randomized Hsp104 variants
and developed screening techniques to isolate enhanced variants.
When overexpressed in yeast, the proteins TDP-43, FUS, and
α-synuclein all form cytoplasmic foci and are toxic (Outeiro
and Lindquist, 2003; Johnson et al., 2008; Sun et al., 2011).
These yeast models have also empowered the identification
of genetic risk factors for these disorders (Elden et al., 2010;
Ju et al., 2011; Sun et al., 2011). Deletion or overexpression
of Hsp104 does not suppress the toxicity or aggregation of
these proteins in yeast (Jackrel et al., 2014a). Thus, these yeast
models provide an ideal screening platform to isolate Hsp104
variants with a gain of therapeutic function (Jackrel et al.,
2014a,b, 2015). Using these yeast assays, we have identified
numerous Hsp104 variants that potently suppress TDP-43, FUS,
and α-synuclein toxicity (Jackrel and Shorter, 2014a,b, 2015;

Jackrel et al., 2014a,b, 2015). In addition to their suppression
of toxicity, these variants also dissolved cytoplasmic foci of
TDP-43, FUS, and α-synuclein (Jackrel and Shorter, 2014a;
Jackrel et al., 2014a, 2015). Furthermore, the potentiated variants
restored alpha-synuclein to the plasma membrance and TDP-
43 to the nucleus (Jackrel et al., 2014a). These results are very
promising. TDP-43 must shuttle to the nucleus to fulfill its
roles in RNA homeostasis, and restoration of nuclear TDP-43
suggests that solubilization of TDP-43 can restore natively folded
and functional TDP-43 (Jackrel et al., 2014a). These potentiated
Hsp104 variants clear preformed TDP-43, FUS, and α-synuclein
fibrils at concentrations where Hsp104 is ineffective (Jackrel et al.,
2014a).

To assess the therapeutic utility of potentiated Hsp104
variants, they have been tested in a C. elegans model of PD
(Jackrel et al., 2014a). Here, the potentiated Hsp104 variants were
robustly neuroprotective, while Hsp104 and an ATPase-dead
negative control showed no activity (Jackrel et al., 2014a). To
further demonstrate the therapeutic possibilities of potentiated
Hsp104 variants, it will be essential to demonstrate their activity
in additional neuronal models including mammalian neurons. It
will also be important to develop additional potentiated Hsp104
variants with improved properties. To do so, it will be crucial
to apply additional protein engineering techniques to enhance
the activity and substrate specificity of the potentiated variants.
There are numerous examples of proteins that are believed to
have evolved from roles as generalists to specialists. Thus, it will
be very interesting to see if laboratory techniques can accelerate
this process for Hsp104 and produce finely-tuned variants.
Additionally, perhaps Hsp104 variants can be produced to target
pre-amyloid oligomers vs. fibrils and vice versa. In addition
to being potentially of direct therapeutic benefit, these variants
may hold great value in unraveling the key contributors and
drivers of neurodegenerative disease. For instance, engineered
disaggregases that can solubilize and reactivate oligomers but
not fibrils may be employed as precise mechanistic probes
to investigate the effects of resolving specific protein species.
Also, the discovery that very subtle modification of natural
protein-remodeling factors can confer dramatic alterations in
chaperone activity (Jackrel et al., 2014a, 2015) suggests that subtle
modification of other protein-remodeling factors, including
Hsp110/Hsp70/Hsp40, NMNAT, and HtrA1 might also be
amenable to potentiation.

CONCLUSIONS AND FUTURE
DIRECTIONS

Protein misfolding is an enormously challenging issue that
underpins many of the most devastating diseases facing society.
As the population continues to age, the toll of neurodegenerative
disease will continue to rise. Unfortunately, while substantial
efforts have been mounted to counter these disorders, there
are no treatments available for any of these diseases (with the
exception of Tafamidis for FAP). Thus, in the development
of new therapeutics to combat these disorders, it will be
important to employ innovative approaches.While it is unknown
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what specifically causes proteins to misfold and cause disease,
the accumulation of misfolded aggregates, amyloid, and pre-
amyloid species are key contributors to pathogenesis. Therefore,
if protein-misfolding trajectories could be reversed, perhaps so
could these diseases. Protein-remodeling factors, which have the
capacity to block and even reverse protein misfolding might
be uniquely positioned as potential therapeutics. Many protein-
remodeling factors have been assessed and demonstrated to be
potentially useful in combating these disorders. For instance,
increased levels or activity of the protein HtrA1 might be
employed to dissolve and degrade both tau and Aβ aggregates
in AD patients. However, as HtrA1, as well as NMNAT and
Hsp110/Hsp70/Hsp40, are all present in humans, it appears that
these systems are either insufficient to prevent pathogenesis
or are compromised in certain individuals. Thus, it will be
important to continue to focus not just on the application of
these chaperones directly in disease models, but also to continue
to develop approaches to boost and nuance these protein-
remodeling systems.

While highly promising, the idea of modulating the
proteostasis network is not without caveats. For instance,
upregulation of protein-remodeling factors might be beneficial
to enhance protein folding and combat neurodegenerative
disorders, yet enhanced protein folding might also enable
cell proliferation which could promote cancers. Nonetheless,
protein-remodeling factors present a unique opportunity to
restore proteins to their native fold and function, thus
simultaneously alleviating both a loss or gain of function.
As with all therapeutics, it will be important to assess for

possible off-target effects. For instance, in developing new
disaggregase technologies, it will be important to harness protein
disaggregation to avoid the unfolding of functional protein
complexes. However, it is important to note that Hsp104 does not
unfold natively folded proteins. Regardless, it will be important
to continue to engineer protein-remodeling factors with desired
traits, such as enhanced substrate specificity. New approaches
to develop small-molecule modulators of protein-remodeling
systems, as well as the engineering of tailored protein-remodeling
systems, will prove invaluable in our efforts to rewire and restore
the proteostasis network and thus combat neurodegenerative
disease.
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