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Abstract 

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders on a dis-
ease spectrum that are characterized by the cytoplasmic mislocalization and aberrant phase transitions of prion-like 
RNA-binding proteins (RBPs). The common accumulation of TAR DNA-binding protein-43 (TDP-43), fused in sarcoma 
(FUS), and other nuclear RBPs in detergent-insoluble aggregates in the cytoplasm of degenerating neurons in ALS/
FTD is connected to nuclear pore dysfunction and other defects in the nucleocytoplasmic transport machinery. 
Recent advances suggest that beyond their canonical role in the nuclear import of protein cargoes, nuclear-import 
receptors (NIRs) can prevent and reverse aberrant phase transitions of TDP-43, FUS, and related prion-like RBPs 
and restore their nuclear localization and function. Here, we showcase the NIR family and how they recognize cargo, 
drive nuclear import, and chaperone prion-like RBPs linked to ALS/FTD. We also discuss the promise of enhancing NIR 
levels and developing potentiated NIR variants as therapeutic strategies for ALS/FTD and related neurodegenerative 
proteinopathies.
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Graphical Abstract

Introduction
Protein mislocalization and aberrant phase transitions 
are powerful drivers of pathology in late-onset neuro-
degenerative diseases [1, 2]. Two fatal neurodegenera-
tive disorders, amyotrophic lateral sclerosis (ALS) and 
frontotemporal dementia (FTD), reside at opposite ends 
of a continuum of disease states that share underlying 
genetics, clinical features, and the characteristic accu-
mulation of TAR DNA-binding protein-43 (TDP-43) or 
other nuclear RNA-binding proteins (RBPs) in detergent-
insoluble aggregates in the cytoplasm [3]. Disease-caus-
ing mutations in several genes encoding RBPs, including 
TDP-43, members of the FET protein family fused in 
sarcoma (FUS), Ewing’s sarcoma protein (EWSR1), and 
TATA-binding protein-associated factor 15 (TAF15), and 
heterogenous nuclear ribonucleoproteins hnRNPA1 and 
hnRNPA2, suggest a direct role for RBP mislocalization 

and aggregation in the disease process [4–7]. The rela-
tionship between the physiological phase separation of 
these RBPs into dynamic condensates, often mediated by 
their intrinsically disordered prion-like domains (PrLDs), 
and the pathological formation of stable and deleteri-
ous amyloids in neurodegenerative diseases is an area of 
intense investigation.

The pathological accumulation of nuclear RBPs in cyto-
plasmic aggregates suggests a connection between pro-
tein mislocalization and aberrant phase transitions that is 
further supported by the observation of nucleocytoplas-
mic transport defects in a growing number of neurode-
generative disorders [8–11]. Studies have converged on 
the finding that nuclear-import receptors (NIRs) act as 
gatekeepers that preserve the proper nuclear localization 
of disease-associated RBPs, while preventing and even 
reversing aberrant phase transitions into pathological 
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aggregates [2, 12–18]. This heretofore underappreciated 
chaperone and disaggregase activity of NIRs can reduce 
the cytoplasmic aggregation of prion-like RBPs. The 
canonical nuclear import activity of NIRs then enables 
restoration of prion-like RBPs to the nucleus, which rein-
states their nuclear function and mitigates neurodegen-
eration. In this review, we discuss the canonical transport 
functions of NIRs, evidence of their disruption in disease, 
and how they can be harnessed to therapeutically target 
pathological RBP aggregation.

Nuclear‑transport proteins associate with cargo 
proteins and FG‑rich Nucleoporins to regulate 
nucleocytoplasmic transport
The karyopherin family of nucleocytoplasmic transport 
receptors
Nucleocytoplasmic transport (NCT) of proteins and 
RNA is critical to maintain proper subcellular compart-
mentalization in eukaryotes. This efficient and highly 
regulated process depends on three components: 1) a 
selective gateway for large macromolecules formed by 
the assembly of large multi-protein nuclear pore com-
plexes (NPCs); 2) a family of nuclear-transport receptor 
proteins (NTRs) that facilitate the NCT of their respec-
tive cargo through the NPC; and 3) a concentration 
gradient of nuclear GTP-bound and cytoplasmic GDP-
bound Ras-related nuclear protein (Ran) that confers 
directionality to the transport processes by regulating 
compartment-specific cargo binding and release [19]. 
NPCs are eightfold symmetrical cylindrical assemblies 
that are embedded in the nuclear envelope and are com-
posed of multiple copies of ~ 30 different proteins called 
nucleoporins (Nups) [20]. There has been tremendous 
progress in understanding the architecture of the ver-
tebrate NPC and its subcomplexes based on cryo-EM 
and artificial intelligence-based structure modeling that 
inform aspects of NPC biogenesis, function, and regula-
tion [21–26]. Within the central channel of the NPC scaf-
fold, a family of Nups harboring intrinsically disordered 
phenylalanine-glycine repeats (FG-Nups) form a densely 
packed network, which may have properties akin to a 
hydrogel or viscoelastic network fluids [27–30]. It should 
be noted, however, that FG-domain hydrogels formed 
in solution may be an imperfect model of the NPC per-
meability barrier: anchoring of a distinct number of FG-
Nups with three-dimensional precision inside the NPC 
scaffold in  situ changes their properties as compared to 
phase-separated FG-Nups in  vitro [31]. Other studies 
propose that the permeability barrier of the NPC is bet-
ter described as a meshwork of polymer brushes that is 
organized by the NPC scaffold, and not a phase-sepa-
rated condensate [32]. This network of FG-Nups does 
not form a firm size threshold, but increasingly restricts 

macromolecules to enter or exit the nucleus via passive 
diffusion based on their size [33, 34]. Ions, nucleotides, 
salts, and proteins below ~ 40  kDa can passively transit 
through the nuclear pore, whereas the transport of larger 
macromolecular protein and RNA cargo depends on the 
diverse but structurally related karyopherin family of 
NTRs.

Karyopherins are subdivided into two subfamilies: 
importin-α and karyopherin-β proteins. Importin-α and 
karyopherin-β family members are highly flexible pro-
teins that are composed of tandem α-helical ARM (arma-
dillo) repeats or similar HEAT (Huntingtin, elongation 
factor 3, protein phosphatase 2A, and signaling kinase 
TOR1) repeats, respectively [35]. Importin-α proteins, 
also known as karyopherin-α proteins, are encoded by 
KPNA1-7 in humans, and act as adaptor proteins that 
directly bind classical monopartite or bipartite nuclear 
localization signals (NLSs) in cargoes [35]. The mem-
bers of the karyopherin-β protein family vary in their 
cargo specificity and directionality of transport, regulat-
ing cargo import (importins or nuclear-import receptors 
[NIRs]), export (exportins or nuclear-export receptors) 
or transport in both directions (biportins or bidirectional 
receptors) [36]. Among the 20 mammalian karyopherin-β 
family proteins, ten are classified as importins (KPNB1/
IPO1, TNPO1/KPNB2, TNPO2/IPO3, IPO4, IPO5, 
IPO7, IPO8, IPO9, IPO11 and TNPO3/IPO12), five as 
exportins (XPO1/CRM1, XPO2/CAS, XPOT, XPO5 and 
XPO6) and three as biportins (IPO13, XPO4 and XPO7), 
whereas the functions of RanBP6 and RanBP17 are yet to 
be determined (for a detailed nomenclature see Table 1). 
Heterodimers of importin-α family members with 
importin-β1/KPNB1 mediate the bulk import of cargo 
with a classical NLS, whereas importin-β2/transportin-1/
TNPO1 mediates the import of cargo with a proline-
tyrosine (PY)-type NLS (Fig.  1). The export of proteins 
with a nuclear export signal (NES) depends on expor-
tin-1/XPO1 [37]. Other modes of cargo binding via linear 
or folded protein domains or RNA structures recognized 
by karyopherin-β proteins are less well understood [36].

Cargo recognition by NIRs: NLS‑dependent 
and ‑independent mechanisms
To ensure nuclear import of the appropriate proteins, 
NIRs specifically recognize and engage cargo via either 
folded domains or short, often linear motifs termed 
NLSs [36] (Fig.  2). NLSs can be grouped into classical 
monopartite or bipartite NLSs, and non-classical NLSs. 
Monopartite classical NLSs consist of a single cluster of 
4–8 positively charged amino-acids with the consensus 
sequence K-K/R-X-K/R [64]. Conversely, bipartite classi-
cal NLSs are composed of two linker-connected clusters 
of 2–3 positively charged amino-acids with the consensus 
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Table 1 Summary of the NTR family members and their NLS-dependent and -independent chaperone activity

NTR Synonyms Full name Reported chaperone and/or disaggregase activity

Karyopherin-α family: α-importins

  KPNA1 NPI-1, RCH2 Importin-α5

  KPNA2 RCH1 Importin-α1 • Disrupt oligomerization of TDP-43 N-terminal domain [38]
• Prevent nuclear SENP2 association with cytoplasmic membranes 
[39]

  KPNA3 QIP2 Importin-α4

  KPNA4 QIP-1 Importin-α3

  KPNA5 Importin-α6

  KPNA6 Importin-α7

  KPNA7 Importin-α8

Karyopherin-β family: β-importins, exportins, biportins

 β-importins

  KPNB1 IPO1, Kapβ1, NTF97 Karyopherin-β1, Importin-β1 • Chaperone and disaggregate TDP-43: via its classical NLS in concert 
with importin-α [38, 40, 41], and its PrLD in concert with FG-Nups [42]
• Chaperone and disaggregate FUS via its RGG regions [43, 44]
• Suppress poly(GR) condensation in vitro [41]
• Reduce cytoplasmic aggregation of FG-Nups: Nup62 [42], Nup107, 
Nup153 and yeast Nup49 [45, 46]
• Suppress in vitro aggregation of basic proteins: rpL4, rpL6 and his-
tone H1 (together with IPO7), rpL18a [47]

  TNPO1 IPO2, Kapβ2, KPNB2, 
TRN, MIP1

Transportin-1, Karyopherin-β2 • Chaperone and disaggregate FUS: via its PY-NLS [40, 48–54] and its 
RGG regions [43, 44]
• Chaperone and disaggregate other RBPs with a PY-NLS: TAF15, 
EWSR1, hnRNPA1 and hnRNPA2 [40]
• Suppress poly(GR) condensation in vitro [41]
• Prevent nucleoporin Nup153 association with cytoplasmic mem-
branes [55]
• Suppress phase separation of CIRBP via its RG/RGG region [56]

  TNPO2 IPO3, KPNB2B Transportin-2, Karyopherin-β2b • Reduce cytoplasmic TDP-CTF aggregation [42]

  TNPO3 IPO12, TRN-SR Transportin-3, Transportin-SR • Reduce cytoplasmic TDP-CTF aggregation [42]
• Chaperone and disaggregate FUS via its RGG regions [43, 44]
• Suppress phase separation of CIRBP via its RSY region [56]

  IPO4 RanBP4 Importin-4 • Reduce cytoplasmic TDP-CTF aggregation [42]
• Prevent cytoplasmic accumulation of yeast nucleoporin Pom33 [57]
• Chaperone histone complex H3-H4-ASF1 [58]
• Suppress in vitro aggregation of basic ribosomal protein rpS3a [47]

  IPO5 KPNB3, Kapβ3, 
RanBP5

Importin-5 • Suppress in vitro aggregation of basic ribosomal protein rpL23a [47]

  IPO7 RanBP7 Importin7 • Chaperone and disaggregate FUS via its RGG regions [43, 44]
• Suppress in vitro aggregation of basic proteins: rpL4, rpL6 and his-
tone H1 (together with IPO7), rpL23a [47]

  IPO8 RanBP8 Importin-8

  IPO9 RanBP9 Importin-9 • Reduce cytoplasmic TDP-CTF aggregation [42]
• Chaperone histone complex H2A-H2B [59]
• Suppress in vitro aggregation of basic ribosomal proteins: rpL18a, 
rpS7 [47]

  IPO11 RanBP11 Importin-11

 Exportins

  XPO1 CRM1 Exportin-1 • Reduce formation of cytoplasmic FG-Nup condensates [60]

  XPO2 CAS, CSE1L Exportin-2

  XPOT XPO3 Exportin-t

  XPO5 RanBP21 Exportin-5

  XPO6 RanBP20 Exportin-6

 Biportins

  IPO13 RanBP13 Importin-13 • Reduce cytoplasmic aggregation of TDP-CTF and Nup62 [42]
• Prevent Ubc9 from interacting with its cytoplasmic partners dur-
ing nuclear import [61]
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sequence R/K-X10-12-KRXK [64]. Proteins bearing clas-
sical NLSs are recognized and bound by importin-α in 
the cytoplasm followed by recruitment of importin-β1/
KPNB1 [36]. This importin-β1/importin-α/cargo trimer 
can then be imported into the nucleus by temporarily 
breaking hydrophobic, intermolecular FG-Nup interac-
tions that comprise the hydrogel barrier within the NPC 
[36, 37, 65–67].

TDP-43 bears a bipartite classical NLS (82KRK-
MDETDASSAV-KVKR98), located between the TDP-
43 N-terminal domain (NTD) and RNA-recognition 
motif 1 (RRM1), and can therefore be recognized and 
imported into the nucleus by the importin-α/β1 heter-
odimer (Fig. 1). Importin-α interacts with classical NLSs 
via a minor and major binding groove [68]. Detailed 
investigation of the structure of the importin-α1/TDP-
43 complex has revealed that the interaction of arginine 
83 in the TDP-43 NLS with the minor binding groove of 
importin-α1 is crucial and can be modulated by phos-
phorylation of threonine 88 in the linker region of the 
NLS [38]. Intriguingly, the TDP-43 NLS also harbors a 
poly(ADP-ribose) (PAR)-binding motif, which engages 
PAR. Thus, PAR may compete with importin-α for bind-
ing to the TDP-43 NLS, which may promote cytoplasmic 
mislocalization of TDP-43 under conditions where cyto-
plasmic PAR concentrations become elevated [6, 69–71].

PY-NLSs are non-classical, 20–30 amino-acid stretches 
containing N-terminal hydrophobic (φ) or positively 
charged ( +) residues and typically contain a PY motif at 
their C-terminal end. The consensus sequence is + /φ-Xn-
R/H/K-X2-5-PY [72]. PY-NLS-containing proteins can be 
recognized by Transportin-1 (TNPO1, Karyopherin β2), 
which imports cargo directly into the nucleus without the 
need for importin-α as adaptor protein [72]. FUS, other 
members of the FET protein family, and several hnRNPs 
(e.g., hnRNPA1, hnRNPA2, hnRNPD, hnRNPF, hnRNPM) 
contain a PY-NLS. The FUS PY-NLS (501GDRGGFGPG-
KMDSRGEHRQDRRERPY526) can be subdivided into 
three epitopes involved in the recognition by TNPO1. 

Epitope 1 (residues 508–511) contains hydrophobic/basic 
amino-acids, epitope 2 (residues 514–522) is arginine-
rich and epitope 3 (residues 525–526) corresponds to the 
C-terminal PY motif [73]. TNPO1 interacts with the FUS 
PY-NLS at the C-terminal arch of the concave face of its 
super-helical structure by forming hydrophobic interac-
tions at the N- and C-terminal region of the PY-NLS, and 
electrostatic interactions with a central α-helix in the FUS 
PY-NLS epitope 2 [73]. This binding pattern is similar but 
nuanced across a variety of TNPO1 cargo [74].

Many proteins which localize and function in the 
nucleus contain neither a classical nor a PY-type NLS, 
raising the question how and by which importin(s) these 
proteins are recognized and guided through the NPC. In 
silico approaches have identified novel consensus NLSs for 
IPO4, IPO5 [75] and IPO7 [76] with the help of molecu-
lar docking simulations based on interactions with known 
and suspected cargo (IPO4: LPPRS(G/P)P; IPO5: KP(K/Y)
LV; IPO7: EKRKI(E/R)(K/L/R/S/T). These putative NLSs 
were validated in cells by measuring the subcellular locali-
zation of GFP-NLS fusion constructs upon siRNA-medi-
ated knock-down of the corresponding NIR [75, 76].

There is increasing evidence that select importins can 
bind proteins via less well-defined sequences. Specifi-
cally, arginine-glycine-rich domains (RG/RGG) and ser-
ine-arginine-rich domains (SR) can be recognized and 
bound by different NIRs. Likewise, arginine-rich dipep-
tide repeats (R-DPRs, poly-GR and poly-PR) that are gen-
erated via repeat-associated non-ATG (RAN) translation 
from a disease-causing intronic hexanucleotide repeat 
expansion in the C9orf72 locus in C9ALS/FTD [77], can 
also engage diverse NIRs [41, 78, 79]. Thus, there may 
be other undescribed features which enable selective 
nuclear import of specific cargo.

NIR binding to classical or PY-NLSs is characterized 
by high-affinity interactions with specific sequences. By 
contrast, RG/RGG- and RSY-based NIR-cargo interac-
tions are of multivalent nature, often involving multi-
ple, weak interaction sites [48, 56]. Interestingly, many 

Table 1 (continued)

NTR Synonyms Full name Reported chaperone and/or disaggregase activity

  XPO4 Exportin-4 • Prevent nucleolar aggregation of cytoplasmic eIF5A [62]

  XPO7 RanBP16 Exportin-7

 Unknown transport function

  RanBP6 Ran-binding protein 6

  RanBP17 Ran-binding protein 17

Abbreviations: ASF1 Anti-silencing function 1, CAS Cellular apoptosis susceptibility protein, CIRBP Cold-inducible RNA-binding protein, CRM1 Chromosome region 
maintenance 1 protein, CSE1L Chromosome segregation 1-like protein, eIF5A Eukaryotic translation initiation factor 5A, FG-Nup phenylalanine and glycine-rich 
nucleoporin, MIP1 M9 region interaction protein 1, NLS nuclear localization signal, NPI-1 Nucleoprotein interactor 1, NTF97 Nuclear transport factor p97, NTR nuclear 
transport receptor, PrLD prion-like domain, QIP-1 Importin alpha Q1, RBP RNA-binding protein, RCH1 RAG cohort protein 1, RSY arginine-serine-tyrosine, SENP2 
Sentrin-specific protease 2, TDP-CTF TDP-43 C-terminal fragment, Ubc9 Ubiquitin conjugating enzyme 9
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disordered regions of phase-separating and amyloid-
forming proteins contain RG/RGG-rich stretches, RS(Y)-
rich stretches, or both, indicating that their localization 
and self-assembly could be regulated by NIRs. This con-
jecture is in line with the finding that several NIRs recog-
nize and bind R-rich DPRs. In particular, KPNB1, IPO7 
and importin-α3 interact with poly-GR and poly-PR, 
whereas TNPO1 and TNPO3 exhibit high-affinity bind-
ing with poly-GR [41, 79].

In addition to binding PY-NLSs, TNPO1 (Kapβ2) 
weakly recognizes RG/RGG-rich domains of cold-induc-
ible RNA-binding protein (CIRBP) and FUS [40, 43, 48, 
50, 56], as well as mutated (e.g., P525L) and truncated 
(e.g., R495X) FUS variants which lack the PY-NLS [44]. 
Arginine methylation in the RGG-rich domain adjacent 
to the FUS PY-NLS modulates TNPO1 binding: hypo-
methylated FUS permits TNPO1 binding and nuclear 
import, whereas arginine methylation weakens the 

Fig. 1 Schematic of TDP-43, FET proteins, hnRNPA1 and hnRNPA2 domains and their interaction with importins. To regulate nuclear import 
and phase transition of RBPs, TNPO1 binds the PY-NLS of FUS and, with a lower affinity, its RGG domains, while KPNB1 interacts with both the NLS 
(via KPNA or importin-α) and PrLD of TDP-43. Of note, most ALS disease-causing mutations are located in the PY-NLS and PrLD of FUS and TDP-43, 
respectively. Lysine acetylation sites that regulate phase separation of these prion-like RBPs are also highlighted. Other importins also bind the RGG 
domains of FUS and PrLD of TDP-43. Thus far, only TNPO1 has been shown to bind the PY-NLS of EWSR1, TAF15, hnRNPA1 and hnRNPA2. The *A90V 
mutation in TARDBP is also found in the healthy population. Brackets indicate prion-like domains (PrLDs) as defined by their amino acid composition 
[63]. NLS = nuclear localization signal; NTD = N-terminal domain; P/Y = Pro-Tyr nuclear localization signal; PrLD = prion-like domain; QSYG-rich = Gln, 
Ser, Tyr, and Gly-rich domain; RGG = Arg-Gly-Gly repeat domain; RRM = RNA-recognition motif; ZnF = zinc finger domain. Created with BioRender.
com
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TNPO1-FUS interaction [80]. This finding indicates that 
nuclear import of FUS can be finely tuned by post-trans-
lational modifications, representing a further layer of reg-
ulation of this process.

Another NIR which recognizes sequences alternative 
to classical or PY-NLSs is TNPO3, which exhibits high 
affinity for proteins with SR- and/or R(E/D)-rich regions 
[56, 81]. Typical cargo bearing such sequences are RBPs 
involved in RNA splicing, which are enriched in nuclear 

speckles and paraspeckles [82–85]. For instance, TNPO3 
binds to an arginine-serine-tyrosine (RSY) rich region of 
CIRBP with nanomolar affinity. In synergy with TNPO1, 
this interaction is crucial to ensure the nuclear localiza-
tion of CIRBP but also regulates CIRBP phase separation 
and recruitment to stress granules (SGs) [56].

In addition to NLSs defined by a consensus sequence, 
there is increasing evidence for cargo recognition based 
on folded motifs or a combination of both sequence and 

Fig. 2 NLS-dependent and -independent binding and chaperoning of cargo by nuclear import receptors (NIRs). NIRs recognize their cargo 
by binding to linear and non-linear motifs. Linear motifs include classical or non-classical NLSs, disordered protein regions, and folded, 
three-dimensional motifs. This versatility of binding motifs allows NIRs to co- and post-translationally stabilize a plethora of monomeric proteins 
and dissolve condensates or disaggregate amyloid aggregates. Subsequently, monomeric cargo is guided across the NPC back into the nucleus. 
PDB-IDs: 7N9H, 2H4M, 2XWU
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structure, as reviewed elsewhere [36]. Three-dimensional 
binding motifs are less well-defined and often involve 
larger globular domains. To identify and characterize 
such complex NIR-cargo interactions, rigorous structural 
analysis by X-ray crystallography or cryo-EM is impor-
tant. Multiple NIRs recognize structured motifs, includ-
ing importin-α3, importin-α6, KPNB1, IPO4, IPO5, 
IPO7, IPO8, IPO9, IPO11, IPO13, XPO4 and XPO7 [36]. 
However, detailed information of NIR-cargo interaction 
has been revealed for only a few examples. For instance, 
IPO4 binds the H3-H4-ASF1 histone-histone chaper-
one complex via three distinct binding interfaces. The 
N-terminal part of IPO4 recognizes the globular H3-H4 
domain and an α-helical motif of H3, the C-terminal half 
of IPO4 binds the H3 N-terminal tail via multiple inter-
actions across HEAT repeats 11–22 [58]. Importin-α3 
interacts with Ran exchange factor RCC1 (regulator of 
chromosome condensation 1) via a different approach, 
by recognizing a combination of two short linear NLSs 
in addition to a large structured β-propeller domain. 
The latter not only contributes directly to the interac-
tion with importin-α3, but also ensures cargo specificity 
by creating a distinct structural environment [86]. IPO13 
is another example of a NIR recognizing folded domains, 
including those of Ubc9 and MAGO-Y14. Interestingly, 
these two cargoes interact with entirely different regions 
of IPO13. Ubc9 interacts mainly with the N-terminal 
arch of IPO13 (HEAT repeats 1–9), whereas MAGO-Y14 
binds HEAT repeats 5–20 [61]. These examples high-
light different binding modes that are exploited by NIRs 
to ensure cargo specificity in a manner which can extend 
beyond NLS recognition.

Despite these advances, there is still much to learn, as 
for many NIRs the corresponding NLS or folded recog-
nition domain(s) remain unknown, and their respective 
cargoes are yet to be discovered. Recent studies have 
attempted to identify these cargoes and pinpoint their 
NLSs or common motifs that the respective NIR may 
bind. In affinity-based approaches, the NIR of interest is 
immobilized on a functionalized, stationary matrix fol-
lowed by incubation with cell extracts. Bound substrates 
are then eluted and analyzed by immunoblotting, mass 
spectrometry (MS), or both. For instance, stable iso-
tope labeling using amino-acids in cell culture (SILAC)-
labeled cell extracts were used to identify import and 
export cargo that interact with immobilized IPO13 [87]. 
Unspecific binding was minimized by pre-incubation 
with Ubc9, a known IPO13 cargo, thereby only allowing 
the binding of putative cargo that can compete with the 
Ubc9-IPO13 interaction. Substrates that were found to 
bind only in presence of GTP-bound Ran were consid-
ered potential IPO13 export cargoes [87]. Similar experi-
ments have identified cargoes of KPNB1, TNPO1, IPO5, 

IPO7 [88], TNPO2 [89], XPO1, XPO5 [90], XPO6 [91], 
and XPO7 [92]. As an elegant alternative to affinity-puri-
fication, a proximity proteomics method based on tag-
ging 16 NTRs with the engineered promiscuous biotin 
ligase BirA* (BioID) was used to determine cargo speci-
ficity and systematically map cargo-NTR interactions 
in situ [93].

In a different approach (SILAC-Tp), non-labeled HeLa 
cell nuclear extracts, depleted of β-importins, were 
added to SILAC-labeled permeabilized HeLa cells. Cargo 
present in the non-labeled nuclear extract was then 
imported by NIRs into the nuclei of the isotope-labeled 
cells followed by analysis of the nuclear fraction by LC–
MS/MS [94]. This approach did not require affinity-based 
isolation of cargo and led to the identification of cargoes 
of all ten importins and two biportins, including many 
that were previously unknown [82].

NIR-cargo binding can be validated using a spectrum 
of in  vitro assays that quantify protein–protein interac-
tions, including bead-halo assays, isothermal titration 
calorimetry (ITC), surface plasmon resonance (SPR), or 
nuclear magnetic resonance (NMR) experiments [56, 73, 
95, 96]. In cells, NIR-cargo binding can be analyzed by 
measuring the efficiency of nuclear import of the cargo of 
interest by assessing its nucleocytoplasmic ratio by fluo-
rescence microscopy, or by compartmental fractionation 
followed by western blotting [51, 87].

Karyopherins dissolve the FG‑Nup hydrogel to facilitate 
NCT
The formation of a selective size filter and the assem-
bly and stability of the NPC may be facilitated by phase 
separation, the process of macromolecules de-mixing to 
form concentration-dependent phases with distinct com-
positions [27, 97–102]. This process is driven by multi-
valent interactions, including hydrophobic contacts, 
aromatic π-π contacts, and other types of contacts. Such 
interactions occur between patches enriched for cer-
tain amino-acids (such as phenylalanines and glycines) 
that are separated by linkers in the intrinsically disor-
dered regions (IDRs) of FG-Nups [97]. Several specific 
sequence patterns of FG-repeats are known, including 
FxFG, GLFG, xxFG, PSFG, SAFG and VFG [97]. At high 
concentrations, Nup98 and other FG-Nups can sponta-
neously phase separate into liquid droplets and hydrogels 
with NPC-like permeability properties [19] and can tran-
sition into amyloid fibrils over time [45, 103, 104]. Aside 
from their canonical role in forming the permeability 
barrier for selective NCT, FG-Nups are highly mobile and 
can be found outside the NPC, where they may contrib-
ute to the formation of phase-separated membraneless 
organelles, such as SGs and processing bodies (P-bodies) 
[60, 105].
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To transport cargo across the NPC, NTRs must navi-
gate through the permeability barrier formed via hydro-
phobic interactions of FG-repeats in a hydrogel-like 
meshwork in the central channel of the NPC [97]. This 
activity requires dynamic and flexible conformational 
changes which allow NTRs to form rapid transient mul-
tivalent interactions with FG-Nups and disengage the 
hydrophobic interactions between FG-repeats, thus 
locally destabilizing the hydrogel to facilitate the trans-
port of bulky cargo [66, 67]. Whereas the overall 
sequence similarity among β-karyopherins is low, they 
share a similar and evolutionary conserved architecture, 
where ~ 20 consecutive HEAT repeats are arranged in a 
flexible α-solenoidal structure [106]. Each HEAT repeat 
is a ~ 30–40 amino  acid-long motif composed of two 
amphiphilic α-helices A and B linked by a short loop 
[107]. These A- and B-helices are arranged in an anti-par-
allel fashion, with the hydrophobic residues facing each 
other to stabilize their orientation. A-helices form the 
outer convex surface and B-helices form the inner con-
cave surface of the NTRs [107]. The amphiphilic nature 
of NTRs allows them to rapidly adapt to both hydro-
phobic and hydrophilic environments. Indeed, when the 
NTR reaches the permeability barrier of the NPC, it con-
tacts the FG-Nups at its convex surface, while holding 
its cargo at its concave core [65, 67, 108]. NTRs simul-
taneously bind to multiple FG motifs which allows them 
to temporarily disengage hydrophobic Nup-Nup inter-
actions and permeate the meshwork [66]. The surface 
properties of NTRs grant them the ability to transiently 
engage FG-Nups with rapid binding and unbinding 
kinetics, thus ensuring a high transport rate across the 
NPC while maintaining the solubility of their cargo [66]. 
Adaptively positioned hydrophobic residues, cysteines, 
histidines and arginines on the surface of NTRs facilitate 
passage across the NPC, whereas surface lysine, glutamic 
acid and aspartic acid residues impede passage across the 
NPC [109].

Karyopherins act as chaperones that prevent 
and disaggregases that reverse cytoplasmic protein 
aggregation
Beyond their canonical role as transport receptors, sev-
eral studies have described a novel molecular chaperone 
function of NTRs in preventing abnormal aggrega-
tion of their cargo in the nucleus and cytoplasm. Early 
studies proposed that some NIRs chaperone positively 
charged proteins in the cytoplasm [47], and subse-
quently were found to function as histone chaperones 
[58, 59]. Yeast NIRs Srp1/Kap95, Kap121 and Kap123 
function as co-translational chaperones, shielding posi-
tively charged patches of nascent, partially unfolded, 
aggregation prone RBPs from non-specific and 

inappropriate interactions thereby preventing aggrega-
tion [110]. Thus, NTRs can maintain the structural and 
functional integrity of cargo before delivery to their 
final destination. In this way, NIRs may resemble signal-
recognition particles that chaperone nascent polypep-
tides bearing a signal sequence [111, 112].

Several importins maintain the solubility, structural 
and functional integrity of aggregation-prone basic cargo 
proteins such as ribosomal proteins and histones by 
shielding them from unspecific binding and cytoplasmic 
aggregation with RNA before delivery into the nucleus 
[47]. For example, IPO4 and IPO9 act as chaperones by 
wrapping around H2A-H2B and H3-H4-ASF1, to protect 
these histone complexes from inappropriate non-nucleo-
somal interactions while escorting them into the nucleus 
[58, 59]. Importin-α1 prevents nuclear SUMO-specific 
isopeptidase SENP2 from binding to intracellular mem-
branes in the cytoplasm [39], and IPO13 shields SUMO-
E2 conjugating enzyme Ubc9 from binding to its partners 
during its nuclear import to prevent off-target SUMOyla-
tion [61].

NIRs also play an important role in modulating the 
properties of FG-Nups in the hydrogel-like permeabil-
ity barrier in the central channel of the NPC [113–115]. 
NIRs inhibit the aberrant aggregation and amyloid for-
mation of FG-Nups under crowded conditions [45], and 
also prevent inappropriate association of FG-Nups with 
cytoplasmic membranes prior to their delivery to the 
nuclear membrane [55, 57].

Exportins also exhibit chaperone activity. For example, 
XPO4 antagonizes undesired interactions of elongation 
factor eIF5A inside the nucleoli and carries it to the cyto-
plasm [62]. Moreover, functional XPO1/CRM1 deple-
tion via RNAi or pharmacological inhibition leads to an 
increase in cytoplasmic Nup foci in C. elegans oocytes, 
suggesting a role in promoting Nup solubility [60].

Cytoplasmic mislocalization and aberrant phase 
transition of karyopherin cargoes in ALS/FTD
Phase separation, often driven by low-complexity 
PrLDs, allows RBPs to rapidly self-associate into rib-
onucleoprotein granules such as SGs to exert their 
physiological functions in RNA processing [116–120]. 
However, aberrant phase transition of RBPs into solid 
aggregates has been hypothesized to play a central role 
in disease [6, 116, 121, 122]. The distinctive composi-
tion of low-complexity PrLDs enriched in uncharged 
polar amino-acids and glycines [123] renders these 
RBPs highly interactive and prone to undergo aberrant 
phase transition, during which dynamic condensates 
mature into hydrogels or stable solid-like fibrils [124, 
125]. Moreover, disease-causing mutations in PrLDs 
can accelerate this transition [122, 126–129]. Thus, 
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dysregulated phase separation can be the initial step in 
the formation of pathological aggregates, which are the 
hallmark of several devastating neurodegenerative dis-
eases [1, 129]. However, in other contexts, cytoplasmic 
liquid condensates of TDP-43 can be toxic [130, 131], 
and solid phases of TDP-43 confer beneficial outcomes, 
such as the amyloid-like oligomeric TDP-43 assemblies 
or “myo-granules” that are formed during skeletal mus-
cle regeneration [132]. Hence, context must be consid-
ered when defining a phase transition as aberrant or 
deleterious [6].

NTRs play an important role in maintaining the 
soluble state of their cargo prior to and during their 
passage across the NPC. This NTR activity seems to 
be reduced in neurodegenerative diseases where the 
NTR cargo can become vulnerable to changes in the 
surrounding milieu and eventually undergo a deleteri-
ous phase transition [1]. This process can result from 
reduced NCT efficiency, as occurs in aging, which 
causes an accumulation of deteriorated and misassem-
bled NPCs and expression changes in certain factors 
regulating NCT [133–135]. In addition, pathological 
sequestration of cargo may drive a deleterious phase 
transition [136, 137]. ALS and FTD are characterized 
by the abnormal cytoplasmic accumulation and phase 
transition of nuclear RBPs into pathological inclusions 
[138–141]. These PrLD-containing RBPs, including 
FUS, TAF15, EWSR1, hnRNPA1, hnRNPA2, and TDP-
43, are all NIR cargoes and can readily undergo phase 
separation [7, 142].

FET proteins, hnRNPA1, and hnRNPA2
Heterogeneous nuclear ribonucleoproteins (hnRNPs), 
including FET proteins (FUS, EWSR1 and TAF15), 
hnRNPA1 and hnRNPA2, are RBPs that are primarily 
located in the nucleus where they are involved in different 
steps of RNA metabolism, including transcription, pre-
mRNA splicing, and RNA transport [7, 143, 144]. FUS has 
mainly been linked to ALS/FTD through genetics, pathol-
ogy, or both. FUS pathology is observed in ~ 4% of familial 
and ~ 1% of sporadic ALS (sALS) cases, and ~ 9% of FTD 
cases [7, 145]. TAF15 and EWSR1 are connected to FTD-
FUS and rare ALS cases [7, 146–148]. hnRNPA1 occurs as 
two isoforms, the more abundant isoform A and the less 
abundant isoform B which contains 52 additional amino 
acids in its PrLD [149, 150]. hnRNPA2 is the most abundant 
splicing isoform expressed from the HNRNPA2B1 gene and 
best studied in the context of ALS. Other isoforms include 
hnRNPB1, A2b and B1b [127, 151]. Less than 1% of famil-
ial and sporadic ALS cases are associated with hnRNPA1 
and hnRNPA2 pathology [127, 144, 152]. However, dif-
ferent members of the hnRNP family are associated with 
a variety of degenerative diseases including multisystem 

proteinopathy (MSP, hnRNPA1/A2), hereditary motor neu-
ropathy (hnRNPA1), oculopharyngeal muscular dystrophy 
(hnRNPA2), spinal muscular atrophy (hnRNPG/Q/M/
A1/R), Alzheimer’s disease (AD) (hnRNPA1/C/Q), ALS/
FTD (hnRNPH/F/A1/A2/A3/E2/D/G/I/L/Q/R), multiple 
sclerosis (hnRNPA1/H), congenital myasthenic syndrome 
(hnRNPH/L), and fragile X-associated tremor/ataxia syn-
drome (hnRNPA2) [7, 143, 152, 153].

FET proteins, hnRNPA1, and hnRNPA2 are depleted 
from the nucleus and mislocalized to the cytoplasm in sta-
ble inclusions in postmortem brain tissue of patients with 
some forms of familial and sporadic ALS/FTD [127, 146–
148, 154, 155]. Thus, pathogenicity has been linked to a 
combination of nuclear loss-of function, often manifesting 
in defects in transcription, splicing, and non-coding RNA 
turn-over [118, 156–158], and toxic gain-of-function, rep-
resented by cytoplasmic aggregates that are deleterious to 
neurons [126, 146, 147, 150, 159–161]. In vitro, these RBPs 
form amyloid-like fibrils, likely driven by steric zipper and 
low-complexity aromatic-rich kinked segment (LARK) 
interactions [146, 147, 160–166]. Due to inherent limita-
tions of immunohistochemistry studies in autopsy tissue 
discussed in more detail below, additional confirmatory 
studies based on validated antibodies and antibody-inde-
pendent spatial proteomic approaches are necessary to 
determine the scope of RBP mislocalization beyond TDP-
43 in sporadic ALS/FTD.

FUS, TAF15, and EWSR1 consist of an N-termi-
nally disordered PrLD including a QSYG-rich and an 
RGG-rich region, as well as a C-terminal structured 
domain including an RRM, zinc finger domain, two or 
three RGG-rich domains and the PY-NLS [7] (Fig.  1). 
Disease-associated mutations are found throughout 
FUS, although pathogenicity has been mainly associ-
ated with those located at the C-terminal end [7, 167]. 
In particular, the substitution of FUS proline 525 with 
leucine (P525L) or tyrosine 526 with cysteine (Y526C), 
both of which disrupt the PY-NLS, cause a particularly 
aggressive form of juvenile ALS [168–170].

hnRNPA1 and hnRNPA2 share a similar domain 
architecture, containing two N-terminal RRMs and a 
C-terminal PrLD which includes the PY-NLS [7, 144]. 
Several mutations in HNRNPA1 and HNRNPA2B1 
are connected to ALS and MSP [7, 127, 152, 153]. 
For example, the substitution of an aspartic acid with 
valine (D262V in hnRNPA1, D290V in hnRNPA2) 
leads to the loss of a repulsive negative charge in the 
fibril backbone combined with the gain of a hydropho-
bic amino-acid which in turn promotes fibrillization 
[7, 127, 162, 171]. The hnRNPA1 mutations P340A/S 
(P288A/S in the shorter isoform) substituting the criti-
cal proline residue in the PY-NLS are likely to weaken 
binding to TNPO1 and are equivalent to P525L in 
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FUS [152, 172, 173]. Similarly, frameshift mutations in 
hnRNPA2 causing early-onset oculopharyngeal mus-
cular dystrophy have been shown to disrupt binding to 
TNPO1 [153].

FET proteins, hnRNPA1, and hnRNPA2 are recruited 
to membraneless organelles in the nucleus (e.g. nucleo-
lus, paraspeckles) and in the cytoplasm (e.g., SGs, RNA 
transport granules), but can also form amyloid-like 
fibrils [118, 142]. In addition, these RBPs phase sepa-
rate in  vitro and undergo a liquid-to-solid transition 
over time, modulated by ALS-associated mutations 
and post-translational modifications [49, 116, 122, 174, 
175]. Several disease-associated amino-acid substitu-
tions in hnRNPA1 and hnRNPA2 significantly alter SG 
formation and enhance phase separation and fibrilliza-
tion in vitro and in vivo [116, 127, 152]. Likewise, dis-
ease-linked mutations in TAF15 and EWSR1 accelerate 
protein aggregation [116, 127, 146, 147, 152].

TDP‑43
TDP-43 is also an RBP that plays a critical role in regu-
lating RNA metabolism [6, 120, 176]. TDP-43 predom-
inantly resides in the nucleus but can shuttle to the 
cytoplasm to regulate RNA stability and SG assembly 
and dynamics [177, 178]. Mobile TDP-43-containing 
granules are also present in axons, with a potential 
role in regulating mRNA localization and local trans-
lation [179–183]. TDP-43 proteinopathy is character-
ized by the abnormal redistribution of TDP-43 from 
the nucleus into the cytoplasm, leading to both loss 
and toxic gain-of-function phenotypes: loss of nuclear 
TDP-43 causes mis-splicing events and cryptic exon 
inclusion in key neuronal genes such as STMN2 and 
UNC13A [184–187], whereas accumulated cytoplas-
mic TDP-43 forms detergent-insoluble aggregates that 
sequester proteins involved in various cellular path-
ways [10, 188–191]. Pathologically aggregated TDP-43 
is ubiquitinated, hyperphosphorylated, acetylated, and 
partially cleaved, with several C-terminal fragments 
(CTFs) with molecular weights of ~ 18–27  kDa form-
ing a major component of phosphorylated TDP-43 
(pTDP-43) inclusions in the brain of ALS/FTD patients 
[138–140, 192]. ALS and FTD are considered primary 
TDP-43 proteinopathies, where ~ 97% and ~ 45% of 
ALS and FTD cases, respectively, are characterized 
by TDP-43 pathology [145]. Mutations in the gene 
encoding TDP-43 (TARDBP) can directly cause disease 
[193–195]. Another age-related neurodegenerative dis-
ease defined by TDP-43 proteinopathy is limbic-pre-
dominant age-related TDP-43 encephalopathy (LATE) 
[196]. Pathological TDP-43 inclusions also frequently 
occur as a comorbid pathology in several neurodegen-
erative diseases defined by other distinct pathological 

protein aggregates, such as Alzheimer’s disease, Hun-
tington’s disease, Lewy body disease, and progressive 
supranuclear palsy [197–199].

TDP-43 is comprised of a well-folded NTD, a classi-
cal bipartite NLS, two RNA-recognition motifs (RRM1 
and 2) and a C-terminal intrinsically disordered PrLD 
[7] (Fig. 1). TDP-43 phase separation is largely driven by 
its PrLD and by the oligomerization of its NTD, which 
can be modulated by post-translational modifications 
and different biomolecules [120, 128, 129, 200–203]. 
Phosphorylation of the NTD inhibits not only phase 
separation of TDP-43, but also its pre-mRNA splicing 
activity as a functional consequence [201]. By contrast, 
RNA binding to TDP-43 can promote phase separation, 
while maintaining the liquid-like properties and solubil-
ity of TDP-43 condensates [204, 205]. The nuclear abun-
dance of RNAs, specifically GU-rich transcripts, dictates 
nuclear TDP-43 localization and solubility [204, 206]. 
RNA can also prevent pathological TDP-43 oligomeriza-
tion, phase separation, and aggregation [129, 207]. TDP-
43 phase separation is also promoted by PAR binding to 
the TDP-43 NLS [69].

In the nucleus, TDP-43 localizes to membraneless orga-
nelles such as paraspeckles and Cajal bodies [117, 208, 209], 
and phase separates into droplets with symmetrical liquid 
spherical shells and liquid cores, termed anisosomes [210]. 
Anisosome formation can be triggered by ALS/FTD dis-
ease-causing mutations or post-translational acetylation of 
lysine residues in the RRMs of TDP-43 (K145 and K192), 
which impair RNA interaction with TDP-43. Also present 
in these nuclear foci are Hsp70 chaperones, which pre-
vent TDP-43 conversion into pathological gel-like TDP-43 
aggregates [210, 211].

Nuclear import of TDP-43 is driven the importin-α/
β1 complex, where the NLS of TDP-43 is recognized 
and bound by several importin-α family members [212]. 
Importin-α1 preferentially associates with the minor 
site of the NLS, and post-translational modifications in 
proximity of that site abrogate this interaction and lead 
to cytoplasmic accumulation of TDP-43 [38]. By regulat-
ing its subcellular localization, the importin-α/β1 import 
complex also governs TDP-43 splicing function, phase 
separation and solubility [38, 40, 41].

TDP-43 was initially thought to harbor an NES that 
regulates its nuclear egress [213], but further mechanis-
tic studies found that this NES is not functional and that 
TDP-43 can passively exit the nucleus independently of 
exportin XPO1 [214, 215] and when it is not bound by 
nuclear GU-rich RNAs [206]. Selective inhibitors of 
nuclear export (SINE) that target XPO1 have a protective 
effect in cellular and animal models of ALS [216–218]. 
However, these SINEs do not restore TDP-43 nuclear 
localization; instead, they might inhibit the export of 
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other nuclear proteins, thus reestablishing the nucleo-
cytoplasmic balance by counteracting impaired nuclear 
import.

The pathomechanisms underlying the cytoplas-
mic mislocalization and pathological phase transition 
of TDP-43, as well as the order in which these events 
occur, are still poorly understood. Reduced RNA bind-
ing can cause mislocalization and aberrant phase 
transitions of TDP-43 [129, 205, 206, 219]. ALS/FTD-
causing mutations within or adjacent to the RRMs 
(P112H, D169G, K181E, K263E) reduce RNA binding 
and increase aggregation propensity of TDP-43 [220–
222], similar to introducing lysine acetylation mimics in 
RRM1 (K136, K145) and RRM2 (K192) [210, 219, 223, 
224]. Likewise, ALS-linked mutations in the PrLD of 
TDP-43 accelerate aberrant phase transitions [129, 225]. 
Another possible initiating factor is that during aging 
and repeated periods of environmental stress or dis-
ease, TDP-43 condenses in cytoplasmic SGs, which over 
time may transition into pathological gel- or solid-like 
irreversible inclusions, providing a potential mecha-
nism that integrates environmental with genetic factors 
[69, 116]. Indeed, chronic optogenetic induction of SGs 
causes them to evolve into pathological TDP-43 inclu-
sions [226].

Nevertheless, there appear to be additional SG-inde-
pendent routes to the formation of cytoplasmic, pathologi-
cal TDP-43 inclusions [69, 70, 117, 129, 130, 227, 228]. For 
example, early TDP-43 aggregates induced by seeding of 
preformed fibrils or overexpression of TDP-43 CTFs appear 
highly enriched in Nups but not SG components [130, 216]. 
SGs also contain numerous Nups and NTRs, potentially dis-
rupting NCT [136]. However, stress-induced NCT deficits 
can occur independently of SG formation [229]. Thus, the 
relationship between SGs and Nup-enriched cytoplasmic 
foci and their role in recruiting TDP-43 in the ALS/FTD 
disease process are still unclear. Together with studies on 
C9ALS/FTD pathology, these findings suggest an important 
role for NCT defects in the disease process [78, 230–235].

NPC and karyopherin abnormalities in ALS/FTD
The identification of multiple NCT factors as disease sup-
pressors in yeast and fly models of C9ALS/FTD pathol-
ogy [232–234, 236, 237] led to the investigation of these 
pathways in ALS/FTD. Indeed, accumulating evidence 
implicates NCT defects in the pathogenesis of ALS/FTD 
and other late-onset neurodegenerative diseases [8–11, 
238, 239]. This evidence raises an important question 
about causality: do NCT defects cause proteinopathies, 
or are NCT defects the consequence of cytoplasmic pro-
tein aggregates? The discovery that TDP-43 mislocaliza-
tion into cytoplasmic aggregates can itself trigger NCT 
defects suggests the existence of a positive feedback loop, 

whereby cytoplasmic aggregation pathology and NCT 
defects feed into each other, potentially becoming self-
sufficient of the initiating trigger [216, 240]. Loss of TDP-
43 nuclear function leads to altered processing of KPNB1 
mRNA, which could also exacerbate cytoplasmic mislo-
calization and aggregation of TDP-43 [120]. This model is 
supported by the identification of rare missense variants 
and frameshift mutations in the NUP50 gene encoding 
nucleoporin 50 as a risk factor for ALS [241]. Nup50 has 
functions beyond NCT, including chromatin biology and 
gene expression [242]. The downstream implications of 
these polymorphisms are unclear, and it will be interest-
ing to see whether NUP50 variants are linked to TDP-43 
pathology in ALS/FTD.

The mislocalization and aggregation of NTR and Nup 
components of the NCT machinery in various ALS/
FTD mouse models and in human postmortem central 
nervous system (CNS) tissue suggests that defects in 
these pathways are potential causes and consequences 
of disease (summarized in Table  2). It should be noted 
that immunohistochemistry studies in postmortem 
human tissue can differ widely with regard to unambigu-
ous staining results, the specificity of antibodies used, 
whether lipofuscin autofluorescence has been quenched, 
the number of cases analyzed, and whether blinded quan-
tification was performed, making it difficult to interpret 
these data. To account for these disparities, information 
on the cases and relevant analysis parameters of each ref-
erence are included in Table 2. Additional thorough and 
quantitative neuropathological studies are necessary to 
confirm the extent of NTR and Nup mislocalization in 
ALS/FTD.

NTR irregularities were discovered in the G93A SOD1-
Tg-mouse line where KPNB1 was found to co-aggregate 
with ubiquitin in anterior horn cells (AHCs) of the lum-
bar spinal cords, with decreasing nuclear-to-cytoplasmic 
ratios of KPNB1 and importin-α1, which worsened with 
the disease course [254]. Nup62, Nup88, and Nup153 
staining irregularities were also described in SOD1-
Tg-mice, with KPNB1 nuclear clearance and irregular 
Nup62 staining observed in SOD1-ALS and sALS patient 
spinal cord tissue [243]. Since these initial studies, vari-
ous defects in the distribution of NTRs and Nups were 
reported in FUS, TDP-43, C9orf72, and sporadic ALS/
FTD models and patient tissue (Table 2).

NTR and FG-Nup abnormalities in FTLD-FUS and 
ALS-FUS post-mortem brain tissue center around 
TNPO1 [73, 255]. In FTLD-FUS brain tissue, the pre-
dominantly nuclear protein TNPO1 accumulates in 
cytoplasmic aggregates that contain all members of the 
FET protein family [248–251]. This finding is in con-
trast to familial ALS-FUS, where ALS-linked FUS muta-
tions clustered around the PY-NLS weaken FUS-TNPO1 
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binding [50, 73, 255] and neither TNPO1 nor EWSR1 
or TAF15 are recruited into FUS-positive inclusions 
[249]. Aberrant FUS-Nup interactions are linked to NCT 
defects, but co-aggregation of FUS with Nups has not 
been observed in ALS/FTD [42, 253, 256].

Prominent NTR and FG-Nup irregularities have also 
been described in ALS/FTD post-mortem tissue with 
TDP-43 pathology. KPNB1 exhibits decreased nuclear 
staining and increased cytoplasmic localization in sALS 
spinal cord tissue [243–247]. KPNB1 colocalizes with 
pTDP-43 inclusions in sALS-TDP, FTLD-TDP and 
C9ALS/FTD, but not in ALS-SOD1 or ALS-FUS patient 
tissue [42]. XPO2/CAS and importin-α1 protein levels are 
decreased in FTLD-TDP patient brain tissue, whereas in 
sALS-TDP spinal cord tissue, total levels of importin-α1 
and -α7 are increased and decreased, respectively [9, 212]. 
Importin-α3 is mislocalized from the nucleus, and par-
tially colocalizes with pTDP-43 in C9ALS/FTD and sFTD 
cases with TDP-43 pathology [240]. These findings indi-
cate a more general disruption of NTRs in TDP-43 pro-
teinopathies, beyond its transporter KPNB1.

Irregular nuclear staining of Nup50, Nup62, Nup88 and 
Nup153 was first described in sALS cases [243, 244, 246, 
247, 252]. Nup62 accumulates in pTDP-43 aggregates 
in sALS-TDP, FTLD-TDP and C9FTLD-TDP [42, 253]. 
Nup205 and FG-Nups Nup54 and Nup98 are also seques-
tered in TDP-43 inclusions in ALS/FTD patient tissue 
[216, 232, 252, 253]. Loss of specific Nups has also been 
observed in ALS/FTD patient-derived iPSCs and isolated 
nuclei [230, 235]. These changes were preceded by an 
increase of CHMP7, a mediator of NPC quality control, 
in nuclei of C9orf72 and sALS patient iPSC-derived spi-
nal neurons, suggesting a role for CHMP7-mediated Nup 
defects as a potential pathomechanism for ALS [235]. 
Intriguingly, CHMP7 may form a grommet to preserve 
nuclear integrity [257], indicating that increased CHMP7 
in the nucleus may be an initial response to prevent 
nuclear pore defects in ALS.

Therapeutic potential of NIRs countering aberrant 
phase transitions in ALS/FTD
Although the connection between aberrant RBP con-
densates and ALS/FTD offers many opportunities to 
discover new drug targets, their heterogeneity in com-
position, location, and physical properties makes devel-
oping novel therapeutics a challenging undertaking. 
Exploiting molecular chaperones as therapeutic agents to 
counteract protein misfolding and aggregation has been a 
longstanding, attractive idea since they evolved to control 
proteostasis [2, 14, 18, 258–260]. Indeed, a multitude of 
chaperones, often acting synergistically in chaperone net-
works, can prevent and reverse formation of amyloid-like 

structures including protein fibrils and oligomeric spe-
cies [2, 18].

In ALS/FTD, however, where pathological cytoplas-
mic mislocalization and aggregation of physiologically 
nuclear proteins are hallmarks of disease, a potential 
therapeutic agent must be able to not only solubilize 
aberrant, toxic protein assemblies but also promote 
nuclear import of the resulting monomers and/or newly 
synthesized proteins to restore proteostasis [2, 18]. In 
this context, several members of the family of human 
NIRs naturally possess remarkably effective chaperoning 
activity while restoring physiological nuclear localiza-
tion of ALS/FTD-associated RBPs [14, 17, 40–42, 48–51] 
(summarized in Table 1). Due to this dual functionality, 
NIRs are attractive, novel drug candidates with highly 
promising therapeutic potential for ALS/FTD and related 
disorders [14, 17].

NLS‑dependent chaperone function
The heterodimer importin-α/β1 and the β-importin 
TNPO1 effectively counteract aberrant self-assembly 
of RBPs containing disordered PrLDs, and classical and 
PY-NLSs, respectively [14, 17, 40, 41, 48–54]. TNPO1 
has been demonstrated to prevent and reverse the forma-
tion of liquid-like droplets, hydrogels and fibrils, formed 
by FUS, TAF15 and EWSR1, as well as several disease-
associated variants, in  vitro [40, 48, 51]. TNPO1 failed 
to effectively counteract the self-assembly of variants 
lacking the PY-NLS, but retains modest activity at high 
concentrations, indicating additional interaction sites on 
cargo [40, 44, 48–50]. In FUS, the majority of ALS-caus-
ing missense mutations and truncations are clustered 
around the C-terminal PY-NLS, and K510 acetylation 
disrupts TNPO1 binding, resulting in the mislocalization 
and aggregation of FUS in the cytoplasm [261]. This indi-
cates that unhindered access to the PY-NLS is crucial to 
ensure stabilization and chaperoning of soluble FUS by 
TNPO1. At the molecular level, small-angle X-ray scat-
tering experiments have revealed that FUS adopts a more 
compact structure in complex with TNPO1 than when 
alone in solution [48]. Indeed, TNPO1-mediated disag-
gregation of FUS fibrils results in soluble TNPO1-FUS 
complexes that are competent for nuclear transport, sta-
bilizing the FUS monomer against re-aggregation [40]. 
Importantly, in addition to counteracting aberrant FUS 
self-assembly in  vitro, TNPO1 also combats pathologi-
cal hallmarks of ALS/FTD in vivo [40, 51]. Overexpres-
sion of TNPO1 dissolves cytoplasmic FUS foci in yeast 
and mammalian cell models, rescues FUS cytoplasmic 
mislocalization and recruitment into SGs, and buffers 
against FUS-associated cytotoxicity [40, 51]. TNPO1 suc-
cessfully rescues FUS-induced rough eye phenotype and 
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neurodegeneration in Drosophila, proving a therapeutic 
effect in metazoa [40].

In addition to its effect on proteins of the FET fam-
ily, TNPO1 effectively prevents and reverses hnRNPA1 
and hnRNPA2 self-assembly in  vitro [40]. TNPO1 also 
mitigates muscle degeneration caused by disease-linked 
hnRNPA2 variants in Drosophila [40]. In hnRNPA1 and 
hnRNPA2, the PY-NLS, which is crucial for interaction 
with TNPO1, is buried within the fibril core [40, 164, 262, 
263]. Consequently, TNPO1 disaggregates hnRNPA1 and 
hnRNPA2 fibrils more slowly than FET protein fibrils 
[40]. Comparison of structures of the hnRNPA1 PY-NLS 
in complex with TNPO1 and in an hnRNPA1 PrLD fibril 
suggests that binding of TNPO1 to hnRNPA1 via its PY-
NLS (residues 263–289 in the short isoform) promotes 
an extended conformation of the PY-NLS, which impedes 
fibril formation [164].

In contrast to FUS, EWSR1, TAF15, hnRNPA1, and 
hnRNPA2, TDP-43 contains a classical bipartite NLS 
instead of a PY-NLS. Consequently, TNPO1 fails to 
counteract aberrant TDP-43 self-assembly, whereas the 
importin-α/β1 heterodimer which binds classical NLSs 
prevents seeded and unseeded fibril formation of wild-
type TDP-43 and ALS-associated variant TDP-43Q331K 
in  vitro [40]. Importin-α/β1 heterodimers also effec-
tively prevent TDP-43 phase separation [41]. By contrast, 
importin-α/β1 complex was ineffective against fibrils 
formed by TDP-43 variants lacking the classical NLS and 
failed to prevent and reverse the self-assembly of proteins 
containing a PY-NLS [40]. The interaction of importin-α/
β1 with TDP-43 sterically interferes with NTD-mediated 
TDP-43 oligomerization, which may contribute to the 
observed inhibition of TDP-43 self-assembly in pres-
ence of the importin-α/β1 heterodimer [13, 38]. Similar 
to FUS, introducing an acetylation mimic in the NLS 
(K84Q) increases TDP-43 cytoplasmic mislocalization, 
presumably by disrupting interactions with importin-α-
associated KPNB1.

The vast majority (> 40 variants) of ALS/FTD-linked 
mutations are located in the PrLD of TDP-43 [7, 264, 
265] (Fig. 1). Curiously, however, a C-terminal frameshift 
variant of TDP-43 in the PrLD with an increased pro-
pensity to form solid fibrils instead of liquid-like conden-
sates, causes rimmed vacuole myopathy but not ALS/
FTD [266]. ALS/FTD-disease causing mutations in the 
RRMs of TDP-43 may increase its aggregation propensity 
by inhibiting RNA binding [221, 267]. While one poten-
tial ALS-associated variant in the NLS (A90V) was found 
to drive cytoplasmic localization of TDP-43 [268], this 
variant is also found in the healthy population and has 
only very minor effects on protein solubility and aggrega-
tion in vitro [269, 270].

NLS‑independent chaperone function
Recent evidence demonstrates that canonical NLSs in 
RBPs are not the only binding sites for NIRs to exert 
their nuclear import, chaperoning and disaggregation 
activities. Karyopherin-β family importins can directly 
bind NLSs, folded domains, or a combination of both 
to recognize and engage their cargo [36]. Several NIRs, 
including TNPO3 and IPO13, can bind dozens of cargo 
proteins with no defined consensus NLS [95]. KPNB1 
and other importins were shown to chaperone RNA- and 
DNA-binding proteins with exposed basic domains but 
also FG-Nups, as discussed below [47, 59].

NLS-independent cargo binding and chaperoning by 
NIRs is only beginning to be understood, and likely has 
therapeutic potential with respect to antagonizing aber-
rant phase transitions. In particular, RGG- and RSY-rich 
domains as well as R-rich DPRs undergo phase separa-
tion and aggregation and can be recognized by several 
NIRs [41, 43]. While arginines drive phase separation 
by complex coacervation or by promoting intermolecu-
lar cation-π interactions, π-π interactions [271], polar 
amino-acids such as serines and tyrosines are found in 
LARKS, which are short peptide sequences that mediate 
the formation of labile amyloid-like fibrils [165]. There-
fore, NIRs could also be exploited therapeutically to tar-
get aberrant assemblies of protein fragments and variants 
lacking NLSs, or with mutations therein.

FUS
The ALS-associated variant  FUSR495X is a truncated 
form that lacks the PY-NLS but is still partially detected 
in the nucleus [44]. Interestingly, TNPO1 reduced 
phase separation and fibrillization of  FUSR495X when 
added at high concentrations, although the effect was 
less pronounced compared to  FUSWT [40, 44]. Upon 
engaging the PY-NLS, TNPO1 makes secondary weak 
and dynamic interactions with other portions of FUS, 
including its N-terminal low-complexity PrLD, disor-
dered RGG domains, and with residues 164–500 which 
contain folded and unfolded domains [44, 48] [48, 50] 
(Fig.  1).  FUSWT uses its high affinity PY-NLS to bind 
TNPO1, whereas  FUSR495X that is missing the PY-NLS 
mostly relies on its RGG motifs for TNPO1 bind-
ing [44]. In the context of  FUSWT fibril disaggregation, 
TNPO1 likely engages the PY-NLS that is exposed on 
the surface of the FUS fibril, followed by secondary con-
tacts with the FUS PrLD to dissociate intermolecular 
contacts that hold the fibril together [40, 48, 51]. In the 
latter scenario, TNPO1 inhibits  FUSR495X phase separa-
tion by disrupting cation-π or π-π interactions between 
arginine residues in the RGG/RG domains and tyrosine 
residues in the FUS PrLD [40, 44, 48–50]. Importantly, 
arginine methylation can modulate TNPO1 binding 
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and chaperone activity, with TNPO1 exhibiting higher 
affinity for hypomethylated FUS [80, 272]. This finding 
explains why TNPO1 strongly accumulates in aggre-
gates containing hypomethylated FUS in FTLD-FUS 
cases [248, 273, 274]. Moreover, TNPO1 weakly engages 
the RRM and ZnF domain of FUS to cause it to eject 
bound RNA [48, 50]. Since RNA concentration modu-
lates FUS phase separation [49, 50, 52–54, 207], this 
adds another layer of regulation for TNPO1 by poten-
tially disrupting FUS-RNA interaction.

Intriguingly, multiple additional NIRs, including 
KPNB1, TNPO3 and IPO7, prevent and reverse FUS self-
assembly by binding RGG domains in FUS [43, 44]. These 
importins could be therapeutically exploited to antago-
nize aberrant aggregation of ALS-associated variants of 
FUS which lack the C-terminal PY-NLS or weaken the 
TNPO1-PY-NLS interaction [7, 275]. Both TNPO1 and 
TNPO3 also suppress phase separation of CIRBP by 
binding its RGG motifs [56]. Similar to FUS, arginine 
methylation of the RG/RGG domains in CIRBP reduces 
TNPO1 and TNPO3 binding and thus CIRBP nuclear 
translocation [56]. TNPO3 also transports arginine-rich 
nuclear-speckle protein SRRM2 [82, 276], further high-
lighting the importance of arginine residues in mediating 
the interaction between NIRs and their cargo.

TDP-43
KPNB1 and other β-type importins mitigate aggrega-
tion, mislocalization and neurotoxicity of TDP-43 vari-
ants lacking its classical NLS across different models 
of TDP-43 proteinopathy [42]. KPNB1 reduces cyto-
plasmic aggregation of truncated TDP-CTFs and full-
length TDP-43 constructs where the classical NLS was 
mutated to abrogate binding of importin-α, suggesting 
that KPNB1 might engage the TDP-43 PrLD directly or 
indirectly to antagonize TDP-43 aggregation. Mapping 
experiments indicated that KPNB1 can be immunopre-
cipitated from cell lysates with the PrLD of TDP-43, as 
well as its RRM2 domain, although RRM2 is not required 
for the effects of KPNB1 on TDP-43 [42]. While the splic-
ing isoform short-TDP-43 (sTDP), which lacks the PrLD 
but still harbors an intact NLS [277], can form a complex 
with KPNB1, its cytoplasmic aggregation was only mildly 
reduced by KPNB1 expression, suggesting that sTDP 
aggregates via a different mechanism than TDP-CTFs, 
and is less effectively antagonized by KPNB1 [42].

Mutating the Nup-interacting site in the active N-ter-
minal fragment of KPNB1 (HEAT repeats 1–8) abol-
ished FG-Nup binding and its ability to reduce TDP-CTF 
aggregation [42]. Together with previous findings that 
FG-Nups associate with the PrLD of TDP-43 [216], this 
finding suggests that FG-Nups could mediate the interac-
tion between KPNB1 and TDP-43 PrLD in the cytoplasm, 

and possibly the KPNB1-dependent reduction of TDP-
CTF aggregation. Nup62, an FG-Nup that promotes 
TDP-43 proteinopathy [278], and KPNB1 colocalize with 
pTDP-43-positive inclusions in postmortem CNS tissue 
of ALS/FTD patients [42, 253], and Nup62 overexpression 
increased the recruitment of KPNB1 to cytoplasmic TDP-
CTF aggregates [42]. Phenylalanine residues throughout 
the PrLD promote TDP-43 droplet formation and fibril 
formation [42, 279, 280], and KPNB1 has been proposed 
to bind to FG-like repeats in the TDP-43 PrLD, either 
directly or indirectly via FG-Nups [13]. However, remov-
ing phenylalanine residues in TDP-43 PrLD did not affect 
its co-aggregation with Nup62, while surprisingly, intro-
ducing additional phenylalanine residues in the TDP-43 
PrLD abrogated this co-aggregation [42].

The finding that detergent-insoluble cytoplasmic 
sTDP aggregates that do not colocalize with Nup62 and 
Nup98 due to the absence of the PrLD, were not strongly 
reduced by KPNB1, indicated that FG-Nups might play a 
role in the reduction of TDP-CTF aggregation by KPNB1 
[42]. Turbidity assays using purified components indi-
cated that KPNB1 can partially prevent and reverse for-
mation of TDP-CTF condensates [42]. Moreover, HEAT 
repeats 1–9 of KPNB1 also exerted this activity, which 
was reduced by mutating the N-terminal Nup-interacting 
site [42].

KPNB1 expression also relocated cytoplasmic TDP-
43 lacking an NLS back to the nucleus in an FG-Nup-
dependent manner [42]. Importantly, KPNB1 reduced 
cytoplasmic TDP-43-induced toxicity in neuronal cells 
and in fly models of TDP-43 proteinopathy [42]. A 
genetic modifier screen in flies expressing human TDP-
43 carrying an ALS-causing mutation [281] established 
that reduced levels of Ketel, the fly ortholog of KPNB1, 
enhances TDP-43 toxicity in  vivo [42]. Overexpression 
of Ketel reduces retinal degeneration, TDP-43 hyper-
phosphorylation, motor defects, and death in flies [42]. 
IPO13, which shows robust activity towards TDP-CTF 
aggregates in neuronal cells, also rescues neuron eye 
degeneration in TDP-43ΔNLS flies, further confirming 
that multiple NIRs can reduce TDP-43 proteinopathy 
[42]. It will be interesting to investigate whether a simi-
lar mitigation of TDP-43-mediated neurodegeneration 
can be achieved by specific NIRs in additional models 
of TDP-43 proteinopathy, and if these measures restore 
TDP-43 function in vitro and in vivo.

C9DPRs
Several independent genetic modifier screens in yeast 
and fly models of C9ALS converged on components 
of the NCT machinery, implicating both C9RNA foci 
and DPR pathology in causing NCT defects [232–234]. 
Multiple NIRs were identified as modulators of R-DPR 
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toxicity in C9ALS/FTD models [10]. Overexpression of 
TNPO1, TNPO3, IPO9, IPO11 and importin-α4 miti-
gated poly-PR toxicity in yeast [233], and KPNB1 knock-
down in poly-PR and poly-GR-expressing flies worsened 
rough eye degeneration [237, 282]. However, most of 
these studies failed to uncover whether NIRs directly 
target R-DPRs or rather correct  G4C2-induced neuronal 
defects. Upregulation of NIRs in yeast did not change 
the levels or distribution of poly-PR aggregates, suggest-
ing that NIRs abrogated toxicity by reestablishing normal 
NCT via indirect mechanisms [233].

Further studies showed that R-DPRs can sequester 
NIRs and may impede their function of preventing RBP 
phase transition in ALS/FTD. In cells, R-DPR inclusions 
were found to be positive for NIRs KPNB1 and TNPO1, 
FG-Nups, but also several ALS-related RBPs includ-
ing TDP-43, hnRNPA1 and Matrin-3 [78, 137]. Poly-GR 
and poly-PR can affect the phase separation of multiple 
RBPs and disturb the assembly and dynamics of mem-
braneless organelles [283]. R-DPRs can render TDP-43 
and multiple NIRs insoluble and disrupt nuclear import 
of TDP-43 [41, 137]. Of note, high levels of KPNB1 or 
TNPO1 suppressed poly-GR condensation in  vitro and 
prevented poly-GR from stimulating TDP-43 aggrega-
tion [41]. KPNB1 prevents TDP-43 sequestration within 
cytoplasmic poly-GR aggregates in an FG-Nup-depend-
ent manner, but without eliminating poly-GR aggregates 
themselves [42]. Importin-α3 and -α4 were also found to 
reroute cytoplasmic TDP-43 back to the nucleus in a neu-
ronal model of poly-glycine-alanine (poly-GA) pathology 
[284]. Importantly, TNPO1 mitigates poly-GR-mediated 
toxicity in cell culture [285]. These findings suggest that 
elevated levels of NIRs can be a promising therapeutic 
opportunity to counter R-DPR toxicity in C9ALS/FTD.

Nucleoporins
FG-Nups are intrinsically disordered proteins that are 
prone to phase separate and form condensates in the 
cytoplasm during NPC biogenesis [60, 97, 286]. Tran-
sient post-mitotic cytoplasmic PML (promyelocytic leu-
kemia) bodies were found to incorporate FG-Nups in a 
KPNB1-dependent fashion, suggesting that NIRs may 
function as chaperones and assembly factors for FG-
Nups at the NPC permeability barrier and in cytoplas-
mic assemblies [287]. A variety of chaperones, including 
the MLF2-Hsp70 complex, DNAJB6, and KPNB1, pro-
tect against the sequestration of FG-Nups by aberrant 
cytoplasmic NPC-like assemblies that induce NCT 
defects [21, 46, 288].

Evidence for the relevance of FG-Nup condensates in 
disease was reported in the context of early-onset DYT1 
dystonia, a neurological movement disorder caused by a 
mutation in the ATPase TorsinA [21]. TorsinA deficiency 

compromises NCT and proteostasis due to the formation 
of aberrant cytoplasmic nuclear envelope blebs, instead 
of mature NPCs. These blebs stain positive for FG-Nups, 
DNAJB6 and Hsp70 proteins [21, 288]. Under physi-
ological conditions, Nup62 and other FG-Nups also form 
mobile cytoplasmic foci that are positive for DNAJB6 
[288] and KPNB1 [287]. Interestingly, recombinant FG-
Nups aggregate under crowding conditions, which can 
be inhibited by DNAJB6 [288] or KPNB1 [19, 45, 46]. 
KPNB1-positive cytoplasmic granules were also found 
in cortical and motor neurons of the mouse CNS, where 
loss of C9orf72 increased their abundance and changed 
their composition by disrupting association with FG-
Nups [289]. It will be interesting to see how this C9orf72 
loss-of-function phenotype may contribute to the TDP-
43 pathology observed in C9ALS/FTD disease models 
and patients.

Aside from KPNB1, several other β-importins, includ-
ing IPO4, IPO7 and IPO9, were previously found to 
function as cytoplasmic chaperones for ribosomal and 
histone proteins [47, 59] and to reduce formation of 
TDP-CTF aggregates [42]. Interestingly, β-importins, but 
not exportins, also reduce cytoplasmic aggregation of 
Nup62 [42], suggesting that KPNB1 and other NIRs can 
antagonize intermolecular interactions that enable for-
mation of cytoplasmic FG-Nup condensates. Exportins 
strongly colocalized with Nup62 aggregates but did not 
affect their size and number [42]. However, an increase 
in cytoplasmic Nup foci in C. elegans oocytes after 
reducing XPO1/CRM1 activity via RNAi or an inhibitor 
suggests that XPO1 may also play a role in regulating FG-
Nup solubility [60]. These Nup foci are enriched for FG-
Nups, including orthologs of human Nup62 and Nup98, 
and may represent toxic condensates that are actively 
repressed in healthy cells.

Importin variants and fragments with optimized activity
The discovery that NIRs counter deleterious phase 
transitions of RBPs has led to the idea that NIRs can 
be utilized for therapeutic applications to restore RBP 
homeostasis and mitigate neurodegeneration [14, 15, 
17, 18, 42, 142]. It is unclear why TNPO1 accumulates 
in FUS-positive inclusions in FTLD-FUS rather than 
preventing FUS aggregation, since TNPO1 can effi-
ciently reduce phase separation of hypomethylated 
FUS in  vitro and in cells [40, 49]. The same question 
also applies to KPNB1 which accumulates in TDP-
43-positive inclusions in ALS/FTD, while it can effi-
ciently reduce TDP-43 pathology in models of TDP-43 
proteinopathy [42]. It appears that in late-onset neuro-
degenerative diseases the activity and protein levels of 
endogenous NIRs are insufficient to prevent pathologi-
cal phase transitions. This failure raises the question of 
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whether naturally occurring NIRs can be modified to 
develop potentiated variants that outperform the wild-
type chaperoning activity and nuclear import efficiency 
[17, 290, 291] (Fig. 3).

To be applied as effective therapeutics, it may be benefi-
cial for potential NIR-based drug candidates to modulate 
certain properties. Among these are cargo specificity and 
affinity, high passage rate through the NPC, low molecu-
lar weight, and the ability to effectively target proteins in 
monomeric and oligomeric states, as well as mesoscopic 
phase-separated condensates and solid-like aggregates. 
Optimal NIR-cargo interactions must be reversible to 
ensure cargo dissociation by Ran-GTP in the nucleo-
plasm. To improve the recognition of cargo bearing dis-
ease-causing mutations in the NLS, it will be important 
to gain detailed structural information on the NIR-cargo 
binding sites if it is currently not available. Increasing the 

NIR-cargo binding affinity could be achieved by intro-
ducing mutations within the cargo binding site of NIRs, 
or by developing small molecules that stabilize the NIR-
cargo interaction [14]. In addition to rationally designed 
variants, amino-acid substitutions that result in poten-
tiated chaperone activity can be identified via a fully 
unbiased approach by combining error-prone PCR with 
yeast disease models [290]. Thus, a library of variants of 
a chaperone of interest, or subdomains thereof, could 
be generated and tested for its efficiency to antagonize 
aggregation and cytotoxicity of a disease protein of inter-
est co-expressed in yeast or human cells. This strategy 
has been successfully applied to identify potentiated vari-
ants of the yeast protein disaggregase Hsp104 [292–296], 
including potentiated variants with enhanced substrate 
specificity [297], and could be also used to identify NIRs 
with potentiated activity.

Fig. 3 Designing and engineering NIR-based drug candidates with optimized activity and suitable properties for delivery. Starting from naturally 
occurring, wild-type NIRs, specific cargo binding, improved chaperoning activity and increased NPC transition rates can be achieved by generating 
variants with altered cargo-binding affinities and amino acid substitutions at the NIR surface. Smaller, active NIR fragments will facilitate NIR gene 
delivery via AAVs and could exhibit lower immunogenicity. PDB-ID: 2H4M
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In addition to optimal cargo recognition, high import 
efficiency of the desired cargo into the nucleus may be 
a beneficial feature of a potential NIR-based therapeutic 
protein candidate, provided that endogenous NIRs are 
unable to perform this task. Of note, the surface amino-
acid composition of engineered GFP and KPNB1 pro-
teins greatly affects their passage rates through the NPC 
[109]. In particular, the substitution of lysine with argi-
nine residues at the protein surface accelerates NPC pas-
sage rates due to cation-π and increased π-π interactions 
with FG-Nups, whereas lysine residues can only engage 
via cation-π interactions [271]. Although rapid passage 
across the NPC is a naturally given property of NIRs, the 
substitution of superficial lysines with arginines could 
represent a strategy to further improve NIR-cargo NPC 
transition rates.

For therapeutic application of biologics, it would be 
highly beneficial if the drug candidate has a low molecu-
lar weight and small size. This property has been explored 
in depth with respect to therapeutic antibodies that often 
exhibit a molecular weight well above ~ 100 kDa, compa-
rable to full-length human NIRs [298]. Using nanobodies 
or antibody fragments instead of full-size antibodies pro-
vides several pharmacodynamic and -kinetic advantages 
including facilitated recombinant production, increased 
stability, improved penetration of barriers in the body 
and enhanced affinity and specificity for the target [299, 
300]. A similar approach could also be beneficial for 
NIR-based biologics. Encouragingly, shorter fragments 
of TNPO1 and KPNB1 are sufficient to chaperone FUS 
and TDP-CTF assemblies, respectively, and to medi-
ate subsequent nuclear import [42, 51]. Specifically, a 
C-terminal fragment of TNPO1 containing only HEAT 
repeats 8–20 prevents and reverses FUS aggregation and 
phase separation in  vitro, solubilizes cytoplasmic FUS 
foci and restores nuclear localization of FUS in yeast and 
human cells, and suppresses FUS-associated toxicity in 
yeast [51]. This construct is the smallest fragment that 
fully preserves all mapped TNPO1-FUS PY-NLS interac-
tions [73]. Similarly, an N-terminal fragment of KPNB1 
containing HEAT repeats 1–8 is necessary and sufficient 
to reduce TDP-CTF aggregation and toxicity in cellular 
models of TDP-43 proteinopathy [42].

A future challenge is the translation of a NIR-based 
drug candidate into a clinically applicable therapeutic 
[2, 17, 51, 292–294]. To achieve this goal, it will be cru-
cial to identify suitable methods ensuring tissue specific, 
highly efficient delivery. One approach could be the use 
of adeno-associated virus (AAV) particles carrying the 
gene for the modified potentiated NIR. To minimize 
the size of the packaged gene construct (maximal pack-
aged genome size ~ 5 kb [301]), potentiated smaller NIR 
fragments will be beneficial. In addition to AAV-based 

approaches, lipid nanoparticles (LNPs) could be another 
strategy to package and deliver NIR mRNA to be trans-
lated in situ [302–304]. It is also conceivable to develop 
small molecules that bind to the endogenously expressed 
target NIR to mimic the effect of potentiating amino-acid 
substitutions [14]. Such strategies could be particularly 
effective to strengthen single-site NIR-cargo interactions 
but might be less successful for multi-site interactions.

Another challenge is the minimization of immuno-
genicity. This unfavorable immune response could be 
evoked by the therapeutic NIR itself or by the vehicle 
used for delivery (Fig.  3) and induce the formation of 
anti-drug or AAV-neutralizing antibodies [305–307]. 
Chemical modifications, including PEGylation or glyco-
sylation of the biologics themselves [308], AAV capsid 
modifications and shielding [309–312], as well as using 
synthetic vectors, including LNPs, for gene or mRNA 
delivery [313] may reduce immunogenicity and could 
be potential strategies also for successful NIR-based 
therapies.

Perspectives
NIRs act as potent protective modifiers of prion-like 
RBP pathology by reversing toxic protein aggregation 
and cytoplasmic mislocalization, thus mitigating neu-
rodegeneration caused by nuclear loss-of-function and 
cytoplasmic gain-of-toxicity [14, 17, 42]. Of particu-
lar interest are recent findings that NIRs can chaperone 
their cargo via both NLS-dependent and -independent 
mechanisms, thus expanding the repertoire of aggrega-
tion-prone targets for NIRs. Indeed, NIRs could also find 
applications in treating tauopathies and polyglutamine 
disorders [314–316].

Interestingly, FG-Nups co-aggregate with many neu-
rodegenerative disease-causing proteins, suggesting that 
beyond ALS/FTD, NIRs can target a variety of aggrega-
tion-prone proteins via cytoplasmic FG-Nups. In Hunting-
ton’s disease (HD), Nup62 and other Nups co-aggregate 
with cytoplasmic mutant Huntingtin in HD patients, 
iPSC-derived neurons, and mouse models [317, 318]. In 
addition, tau pathology drives cytoplasmic aggregation of 
Nup62 and Nup98 in AD brain tissue [319].

In closing, we propose that NIRs can modulate del-
eterious phase separation of disease-linked RBPs and 
other proteins through both NLS-dependent and -inde-
pendent chaperone mechanisms. It will be important to 
investigate the neuroprotective effect of NIRs in in vivo 
models of proteinopathies. Increasing protein expression 
or activity of NIRs, either pharmacologically or by using 
engineered potentiated variants, may be used therapeu-
tically to reverse pathological phase transition of ALS/
FTD-related RBPs and other FG-Nup-associated disease 
proteins, and ultimately alleviate neurodegeneration.  A 
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recent cryo-EM study has shown that while all FET pro-
teins formed insoluble aggregates with TNPO1 in the 
brain tissue of four FTLD-FUS cases, only TAF15 was 
observed to form filaments [320]. It will be interesting to 
see whether NIRs can be designed as therapeutic tools 
targeting TAF15 proteinopathy in “FTLD-FET” [147].
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