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ABSTRACT: TAR DNA-binding protein of 43 kDa
(TDP-43) forms granulo-filamentous aggregates in
affected brain regions of >95% of patients with ALS and
∼50% of patients with frontotemporal degeneration
(FTD). Furthermore, in disease, TDP-43 becomes N-
terminally truncated resulting in protein deposits that are
mainly composed of the C-terminal prion-like domain
(PrLD). The PrLD is inherently aggregation-prone and is
hypothesized to drive protein aggregation of TDP-43 in
disease. Here, we establish that the N-terminal region of
the protein is critical for rapid TDP-43 granulo-
filamentous aggregation. We show that the biopolymer
poly(ADP-ribose), or PAR, inhibits granulo-filamentous
aggregation of TDP-43 by engaging PAR-binding motifs
(PBMs) embedded in the TDP-43 nuclear-localization
sequence. We demonstrate that progressive N-terminal
truncation of TDP-43 can decelerate aggregation kinetics
and promote formation of thread-like filaments. Thus, the
N-terminal region and the PBMs of TDP-43 promote
rapid granulo-filamentous aggregation and antagonize
formation of thread-like fibrils. These findings illustrate
the complexity of TDP-43 aggregation trajectories.

Amyotrophic lateral sclerosis (ALS) and frontotemporal
lobar degeneration with ubiquitin-positive inclusions

(FTLD-U) are two fatal neurodegenerative disorders charac-
terized by the presence of insoluble aggregates of TAR DNA-
binding protein of 43 kDa (TDP-43) in affected brain
regions.1,2 To date, most of the disease-causing mutations in
TDP-43 occur in the C-terminal prion-like domain (PrLD).3

PrLDs are intrinsically disordered regions that can switch from
unfolded states to self-templating fibril forms such as the
amyloid-like cross-β fibrils.3−7 The majority of TDP-43
aggregates in ALS/FTLD-U patients have the appearance of
granular filaments, but a subset have amyloid-like qualities.8−11

Full-length TDP-43 forms granulo-filamentous aggregates in
vitro that can transition into thread-like fibrils.4,12,13 This
transition is promoted by certain disease-linked mutations in
the PrLD, including Q331K.12 An emerging hypothesis is that
the PrLD of TDP-43 may drive the protein aggregation
observed in disease.12

PrLDs have also been implicated in liquid−liquid phase
separation (LLPS), a process by which proteins condense into
reversible liquid droplets.14−16 Of interest are the ALS-linked

proteins hnRNPA1, FUS, and TDP-43 which undergo LLPS in
vitro.4,16−20 We uncovered that the biopolymer poly(ADP-
ribose) (PAR) potently promotes TDP-43 LLPS in vitro20 and
that PAR is elevated in ALS motor neuron nuclei.21 PAR is
generated by poly(ADP-ribose) polymerases (PARPs),22 and
inhibitors of various PARPs (PARP-1, PARP-2, PARP-5a, and
PARP-5b) mitigate cytoplasmic aggregation of TDP-43 and
TDP-43-associated toxicity to primary neurons and in
Drosophila.20,21 These findings raised the possibility that PAR
may directly regulate TDP-43 aggregation.
To determine if PAR could impact TDP-43 aggregation, we

purified full-length human TDP-43 with a His6-SUMO
solubility tag23 (Figures S1A and S2A). At physiological
concentrations of TDP-43 protein,24 cleavage of the His6-
SUMO tag with ubiquitin-like specific protease (Ulp1)
induced TDP-43 aggregation over a 200 min period (Figure
1A). The addition of PAR to His6-SUMO-TDP-43-WT

significantly reduced TDP-43-WT aggregation (Figure 1A,
Figure S2B,C), while mono(ADP-ribose) had no effect (Figure
1B). Our previous studies established that LLPS of TDP-43
can occur in the presence of a crowding reagent and is
promoted by PAR.20 We examined TDP-43-WT by differential
interference contrast (DIC) microscopy; before cleavage with
and without PAR, the protein remained diffuse and did not
form any visible micron-sized aggregates (Figure S3A).
However, 30 min after Ulp-1 cleavage, we observed the
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Figure 1. PAR inhibits TDP-43 aggregation. (A) Ulp1-cleavage of
His6-SUMO-TDP-43-WT increased optical density (OD). Co-
incubation with 6 μM PAR reduced the optical density of TDP-43-
WT. (B) Mono(ADP-ribose) (mADPr, 6 μM) had no effect on the
optical density of TDP-43-WT.
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formation of spherical droplets that appeared to coalesce into
solid structures after a further 30 min (Figure S3B). Our
present data indicate that under conditions that lack a
crowding reagent, PAR reduces filamentous aggregation of
TDP-43.
The nuclear-localization sequence (NLS) of TDP-43 is a

region of intrinsic disorder25 (Figure S1B) and is critical for
physically binding to PAR and as well as LLPS of TDP-43 in
vitro.20 In contrast to cleaved His6-SUMO-TDP-43-WT,
cleaved His6-SUMO-TDP-43-ΔPAR-binding motif (PBM)
(Figure S4A) exhibited decelerated aggregation kinetics
(Figure 2A) and took over 18 h to aggregate (Figure 2B).

The addition of PAR had no effect on the aggregation of TDP-
43-ΔPBM (Figure 2B and Figure S4B). Examination of TDP-
43-ΔPBM before cleavage revealed no preformed micron-sized
aggregates (Figure S3A). Thus, the N-terminal region of TDP-
43, and specifically the PBMs, enables rapid aggregation of
TDP-43, and PAR engages PBMs within the NLS to reduce
TDP-43 aggregation.
Transmission electron microscopy (TEM) revealed that

cleavage of the His6-SUMO tag from both TDP-43-WT and
TDP-43-ΔPBM led to the formation of granulo-filamentous
aggregates (Figure 3A), consistent with previous TEM studies
and of TDP-43 aggregates in human tissue.8,10,12 PAR did not
drastically alter the structure of the TDP-43-WT or TDP-43-
ΔPBM aggregates (Figure 3A). However, PAR significantly
reduced the overall size of the TDP-43-WT aggregates, while
having no effect on the size of the TDP-43-ΔPBM aggregates
(Figure 3B). Indeed, PAR promoted retention of TDP-43-WT
in the supernatant fraction after low-speed centrifugation
(Figure 3C and Figure S5). Thus, we propose that PAR
reduces granulo-filamentous aggregation of TDP-43 via an
interaction with PBMs embedded within the NLS.
In ALS and FTLD-U, splicing defects and proteolytic

cleavage can elicit formation of TDP-43 C-terminal fragments
that contain the PrLD.26−28 As the C-terminal fragments of
TDP-43 either contain a partial PAR-binding region (TDP-43-
C35) or lack the PAR-binding region (TDP-43-C25) (Figure
S1A), we examined the aggregation kinetics of these two C-
terminal fragments. Strikingly, the ability of TDP-43-C35 and
TDP-43-C25 to form turbid aggregates was, like TDP-43-
ΔPBM, reduced compared to TDP-43-WT (Figure 4A).
Examination by TEM revealed that TDP-43-C35 formed
granulo-filamentous aggregates, whereas TDP-43-C25 formed
granulo-filamentous aggregates and thread-like fibrils (Figure
4B). The TDP-43-C25 aggregates were unreactive to the

amyloid diagnostic dye Thioflavin T (Figure S6). Combined,
these data reveal that the N-terminal portion of TDP-43
contributes to granulo-filamentous aggregation and antago-
nizes the transition into thread-like oligomers.
Here, we show that N-terminal portions of TDP-43

contribute to granulo-filamentous aggregation. Our data
indicate that PAR interacts with PBMs embedded within the
NLS of TDP-43 to reduce granulo-filamentous aggregation.
Defining the mechanism by which PAR binding reduces TDP-
43 aggregation will require further study. Regions within the
N-terminal domain of TDP-43 regulate self-oligomeriza-
tion.25,29−32Thus, PAR-binding to the NLS adjacent to the
N-terminal domain may physically block interactions that
contribute toward aggregation. In disease, TDP-43 aggregates
appear to be predominantly granulo-filamentous. Thus, agents
that antagonize contributions from the N-terminal region of
TDP-43 could have therapeutic utility. However, as oligome-
rization is essential for TDP-43 function,25,29−32 agents that
prevent this functional oligomerization could be detrimental.
Understanding under what circumstances functional versus
toxic TDP-43 assemblies form,33 how they differ, and how they

Figure 2. PAR-binding motifs enable rapid TDP-43 aggregation. (A)
Compared to TDP-43-WT, the TDP-43-ΔPAR-binding motif (PBM)
did not aggregate in the same time frame. (B) TDP-43-ΔPBM
aggregated over 54 h. PAR (6 μM) had no effect on the optical
density of TDP-43-ΔPBM.

Figure 3. PAR reduces TDP-43 aggregation. (A) Ulp1 cleavage of
HIS6-SUMO-TDP-43-WT and HIS6-SUMO-TDP-43-ΔPBM led to
granulo-filamentous aggregation (hatched boxes). PAR (6 μM)
reduced aggregate size of TDP-43-WT and had no effect on TDP-
43-ΔPBM (hatched boxes). (B) Quantification of aggregate size.
Mean (±SD), one-way ANOVA (P < 0.0001), and Kruskal−Wallis
test. (C) PAR (6 μM) reduced the amount of TDP-43-WT in the
pellet fraction at 400g (Figure S5). Mean (±SD), two-way ANOVA,
and Tukey’s test.

Figure 4. C-terminal fragments of TDP-43 have altered aggregation
properties. (A) The increase in optical density of TDP-43-C35 and
TDP-43-C25 was reduced compared to TDP-43-WT. (B) TDP-43-
WT, TDP-43-C35, and TDP-43-C25 formed granulo-filamentous
protein aggregates (black arrows). TDP-43-C25 also formed thread-
like aggregates (white arrows).
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are resolved will help develop therapeutic strategies to
selectively target toxic assemblies.
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