Potentiated Hsp104 Variants Antagonize Diverse Proteotoxic Misfolding Events

Meredith E. Jackrel,1 Morgan E. DeSantis,1,2,5 Bryan A. Martinez,4 Laura M. Castellano,1,3 Rachel M. Stewart,1,6 Kim A. Caldwell,2 Guy A. Caldwell,2 and James Shorter1,2,3,*

1Department of Biochemistry and Biophysics
2Biochemistry and Molecular Biophysics Graduate Group
3Pharmacology Graduate Group
Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
4Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
5Present address: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
6Present address: Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
*Correspondence: jshorter@mail.med.upenn.edu
http://dx.doi.org/10.1016/j.cell.2013.11.047

SUMMARY
There are no therapies that reverse the proteotoxic misfolding events that underpin fatal neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD). Hsp104, a conserved hexameric AAA+ protein from yeast, solubilizes disordered aggregates and amyloid but has no metazoan homolog and only limited activity against human neurodegenerative disease proteins. Here, we reprogram Hsp104 to rescue TDP-43, FUS, and α-synuclein proteotoxicity by mutating single residues in helix 1, 2, or 3 of the middle domain or the small domain of nucleotide-binding domain 1. Potentiated Hsp104 variants enhance aggregate dissolution, restore proper protein localization, suppress proteotoxicity, and in a C. elegans PD model attenuate dopaminergic neurodegeneration. Potentiating mutations reconfigure how Hsp104 subunits collaborate, desensitize Hsp104 to inhibition, obviate any requirement for Hsp70, and enhance ATPase, translocation, and unfoldase activity. Our work establishes that disease-associated aggregates and amyloid are tractable targets and that enhanced disaggregases can restore proteostasis and mitigate neurodegeneration.

INTRODUCTION
Protein misfolding underpins several fatal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) (Cushman et al., 2010). In PD, α-synuclein (α-syn) forms highly toxic prefibrillar oligomers and amyloid fibrils that accumulate in cytoplasmic Lewy bodies (Cushman et al., 2010). In ALS, TDP-43 or FUS accumulate in cytoplasmic inclusions in degenerating motor neurons (Robberecht and Phillips, 2013). Unfortunately, treatments for these disorders are palliative and ineffective due to the apparent intractability of aggregated proteins. Effective therapies are urgently needed that eliminate the causative proteotoxic misfolded conformers via degradation or reactivation of the proteins to their native fold.

Inspiration can be drawn from nature, where amyloidogenesis and protein misfolding have been subjugated for adaptive modalities (Newby and Lindquist, 2013). For example, beneficial yeast prions are tightly regulated by Hsp104, a hexameric AAA+ protein that rapidly deconstructs various amyloids and prefibrillar oligomers (DeSantis et al., 2012; Lo Bianco et al., 2008; Newby and Lindquist, 2013). Hsp104 also reactivates proteins from disordered aggregates after environmental stress (Shorter, 2008). Hsp104 is highly conserved in eubacteria and eukaryotes, except in metazoa, which bafflingly lack an Hsp104 homolog and display limited ability to disaggregate disordered and amyloid aggregates (Duennwald et al., 2012; Shorter, 2008, 2011). Thus, Hsp104 could be harnessed to augment human proteostasis and counter protein misfolding in neurodegenerative disease (Shorter, 2008). Indeed, Hsp104 synergizes with human Hsp70 and Hsp40 to resolve various misfolded species linked with human neurodegenerative disease and can partially antagonize protein misfolding and neurodegeneration in metazoan (Cushman-Nick et al., 2013; DeSantis et al., 2012; Duennwald et al., 2012; Lo Bianco et al., 2008; Shorter, 2011; Vacher et al., 2005). Hsp70 overexpression can also mitigate neurodegeneration (Cushman-Nick et al., 2013). However, these potentially therapeutic activities remain limited and vast improvements are needed to maximize therapeutic potential. Indeed, very high concentrations of Hsp104 are needed to antagonize human neurodegenerative disease proteins, which Hsp104 never ordinarily encounters, and some substrates are refractory to Hsp104 (DeSantis et al., 2012; Lo Bianco et al., 2008).

A key but elusive goal is to engineer or evolve optimized chaperones against neurodegenerative disease substrates to
maximize therapeutic efficacy (Shorter, 2009). Chaperones are impractical targets for protein engineering due to their typically large size, and protein disaggregases such as Hsp104 have poorly understood structures, making rational design challenging (Saibil, 2013). Here, we broach this issue and isolate potentiated Hsp104 variants that eradicate TDP-43, FUS, and α-syn aggregates and potently suppress toxicity. We report several artificially engineered chaperones to optimize proteostasis and thwart neurodegeneration. We suggest that neuroprotection may be possible for diverse neurodegenerative diseases via subtle structural modifications of existing chaperones.

RESULTS

Substrate-Binding Tyrosines in Hsp104 Pore Loops Are Optimal for Disaggregation

Hsp104 is adapted for disaggregation of the yeast proteome. We sought to engineer Hsp104 variants to disaggregate TDP-43, an RNA-binding protein with a prion-like domain (Cushman et al., 2010), which has no yeast homolog and is not a natural Hsp104 substrate. A yeast model of TDP-43 proteinopathies has been developed in which TDP-43 is overexpressed via a galactose-inducible promoter (Johnson et al., 2008). TDP-43 aggregates in the cytoplasm and is toxic to yeast, which phenocopies TDP-43 pathology in disease and has enabled identification of common ALS genetic risk factors (Elden et al., 2010). To explore Hsp104 sequence space against TDP-43 toxicity, we employed Δhsp104 yeast to assess Hsp104 variants in the absence of wild-type (WT) Hsp104. TDP-43 is highly toxic in the absence of wild-type (WT) Hsp104. TDP-43 toxicity was not due to lower levels of TDP-43, which were roughly equal across strains (Figures S1A and S1B). Thus, diverse mutations at specific positions in the MD enhance Hsp104 activity.

Select Missense Mutations in the Middle Domain Potentiate Hsp104 Activity

Next, we explored the coiled-coil middle domain (MD) of Hsp104, which is less conserved than the substrate-binding pore loops. MD variants can have unexpected gain-of-function phenotypes (Schirmer et al., 2004). The Hsp104 MD (residues 411–538; Figure 1A) facilitates optimal ATPase activity, communication between NBD1 and NBD2, intrinsic disaggregate activity, and interactions with Hsp70 during disordered aggregate dissolution (DeSantis and Shorter, 2012). We randomly mutagenized the MD and screened this Hsp104 library against α-syn, FUS, or TDP-43 toxicity (Johnson et al., 2008; Outeiro and Lindquist, 2003; Sun et al., 2011). We employed Δhsp104 yeast, as deletion of Hsp104 does not affect α-syn, FUS, or TDP-43 toxicity (Johnson et al., 2008; Ju et al., 2011). We identified several Hsp104 variants that potently rescued α-syn, FUS, and TDP-43 toxicity, whereas Hsp104WT was ineffective (Figure 1B). Potentiated Hsp104 variants had a missense mutation in helix 1 (Hsp104Y426F) or in the distal loop between helix 1 and 2 (Hsp104A437W or Hsp104Y507C) (Figures 1A and 1B). Unexpectedly, we uncovered an enhanced variant with a missense mutation in the NBD1 small domain (Hsp104N539K) (Figures 1A and 1B). Thus, the MD or small domain of NBD1 can be mutated to potentiate Hsp104 activity against α-syn, FUS, and TDP-43.

Two potentiating mutations, A503V and Y507C, lie in MD helix 3. Thus, we performed a valine scan of helix 3 (residues 498–507) in search of additional enhanced variants (Figures 1C and 1D). Most helix-3 valine substitutions behaved like Hsp104WT (Figure 1C). However, Hsp104D504V suppressed α-syn, FUS, and TDP-43 toxicity (Figure 1C). Hsp104D504V and Hsp104Y507C suppressed FUS and α-syn toxicity, but not TDP-43 toxicity (Figure 1C). Thus, select missense mutations in helix 3 engender potentiated Hsp104 variants with altered substrate specificity.

Two different Y507 mutations yielded enhanced variants. Thus, we explored other substitutions at this position. Hsp104Y507A, Hsp104Y507C, and Hsp104Y507T rescued α-syn, FUS, and TDP-43 toxicity (Figure S1A available online). Likewise, additional substitutions at D504 (to C), V426 (to G), or N539 (to E, D, G, or K) yielded potentiated Hsp104 variants against FUS toxicity (Figures S1A and S1B). Thus, diverse mutations at specific positions in the MD enhance Hsp104 activity.

Hsp104A503X Variants Suppress TDP-43 Toxicity and Promote Its Proper Localization

Hsp104A503V was among the strongest suppressors of α-syn, FUS, and TDP-43 toxicity, and so we explored this position further and mutated A503 to all amino acids. None of these Hsp104 variants were toxic to yeast when overexpressed at 30°C (Figure S2). Mutation of A503 to V, S, or C suppressed TDP-43 toxicity; Hsp104A503C most strongly suppressed TDP-43 toxicity, followed by Hsp104A503S, and Hsp104A503V (Figures 2A, 2B, and S3A). Surprisingly, mutation of A503 to nearly any residue suppressed TDP-43 toxicity, whereas Hsp104A503P enhanced toxicity (Figures 2A and S3A). Indeed, we could now mutate the conserved pore loop Y residues (Y257 and Y662) to F (Hsp104A503V-DPLF) and retain suppression of TDP-43 toxicity (Figure 2A). Rescue of TDP-43 toxicity was not due to lower levels of TDP-43, which were roughly equal across strains (Figure 2C). Likewise, rescue could not be explained by higher Hsp104 expression. Hsp104 variants were expressed at slightly lower levels than Hsp104WT (Figure 2C). Quantitative immunoblot revealed that Hsp104 hexamer:TDP-43 ratios were ~1:1.31 for Hsp104WT and ~1:2.20 for Hsp104A503V. Hsp70 and Hsp26 levels were also similar for all strains, indicating that Hsp104 variants do not induce a heat shock response (HSR; Figure 2C). Hsp104A503V expression from the native Hsp104 promoter (which is weaker than the galactose promoter)
suppressed TDP-43 toxicity (Figures S4A and S4B). Here, quantitative immunoblot revealed that Hsp104 hexamer: TDP-43 ratios were ~1:1.70 for Hsp104 WT and ~1:4.55 for Hsp104 A503V. Thus, even low Hsp104 A503V levels rescued TDP-43 toxicity. Finally, Hsp104 A503V, Hsp104 A503S, and Hsp104 A503V-DPLF rescued TDP-43 toxicity in Δre1 (to disrupt the unfolded protein response [UPR]) and Δatg8 (to disrupt autophagy) strains (Figure 2D). Thus, neither the UPR nor autophagy is needed for enhanced Hsp104 variants to rescue TDP-43 toxicity.

TDP-43 normally shuttles between the nucleus and cytoplasm. However, in ALS, TDP-43 is usually depleted from the nucleus and aggregated in the cytoplasm of degenerating motor neurons (Robberecht and Philips, 2013). Indeed, cytoplasmic TDP-43 aggregates persist upon Hsp104 WT overexpression (Figure 2E). By contrast, Hsp104 A503V eliminated cytoplasmic TDP-43 aggregates and ~46% of cells had nuclear TDP-43 localization (Figure 2E). Accordingly, Hsp104 A503V reduced the amount of insoluble TDP-43 by ~57%, whereas Hsp104 WT was ineffective (Figure 2F). Thus, Hsp104 A503V eliminates TDP-43 aggregation and toxicity and restores TDP-43 to the nucleus. These phenotypes are a therapeutic goal for ALS and other TDP-43 proteinopathies. Several suppressors of TDP-43 toxicity have
been isolated in yeast, but none clear cytoplasmic TDP-43 aggregates (Sun et al., 2011). Thus, our enhanced Hsp104 variants are the first (to our knowledge) genetic suppressors that eradicate TDP-43 aggregates and restore TDP-43 to the nucleus.

Hsp104A503X Variants Suppress FUS Toxicity and Aggregation

Next, we tested Hsp104A503X variants for rescue of FUS toxicity in yeast. FUS, like TDP-43, is a nuclear RNA-binding protein with a prion-like domain that forms cytoplasmic aggregates in degenerating neurons of FUS proteinopathy patients and in yeast (Ju et al., 2011; Robberecht and Philips, 2013; Sun et al., 2011). As for TDP-43, mutation of A503 to any amino acid except P strongly suppressed FUS toxicity, as did Hsp104A503V-DPLF (Figures 3A, 3B, and S3B). Hsp104A503G most strongly suppressed FUS toxicity (Figures 3A, 3B, and S3B). Rescue of FUS toxicity by Hsp104A503X variants (or Hsp104D498V or Hsp104D504V) could not be explained by lower FUS levels, induction of Hsp70 or...
Hsp26 in a HSR, or higher Hsp104 levels (Figure 3C). Indeed, quantitative immunoblot revealed that Hsp104 hexamer:FUS ratios were 1:5.13 for Hsp104 WT and 1:3.25 for Hsp104 A503V. Even low Hsp104 A503V levels expressed from the natural Hsp104 promoter suppressed FUS toxicity (Figures S4C and S4D). Here, quantitative immunoblot revealed that Hsp104 hexamer:FUS ratios were 1:5.21 for Hsp104 WT and 1:9.58 for Hsp104 A503V. Rescue of FUS toxicity by Hsp104 A503V, Hsp104 A503S, and Hsp104 A503V-DPLF occurred in Δire1 strains and Δatg8 strains (Figure 3D). Thus, the UPR and autophagy are not required for potentiated Hsp104 variants to suppress FUS toxicity.

Hsp104 A503V eliminated FUS aggregates, whereas Hsp104 WT had no effect (Figure 3E). In contrast to TDP-43, FUS was now...
diffuse in the cytoplasm (Figure 3E) because the yeast nuclear transport machinery fails to decode the FUS PY-NLS (Ju et al., 2011). Hsp104A503X reduced the amount of insoluble FUS by ∼49%, whereas Hsp104WT was ineffective (Figure 3F). Genome-wide overexpression screens have yielded several suppressors of FUS toxicity in yeast, but none that solubilize FUS inclusions (Ju et al., 2011; Sun et al., 2011). Thus, potentiated Hsp104 variants are the first (to our knowledge) genetic suppressors that eradicate FUS aggregates.

Hsp104A503X Variants Suppress α-Syn Toxicity and Promote Its Proper Localization

Next, we tested Hsp104A503X variants against α-syn toxicity in yeast. α-Syn is a lipid-binding protein that localizes to the plasma membrane but forms cytoplasmic inclusions in degenerating dopaminergic neurons in PD and in yeast (Cushman et al., 2010; Outeiro and Lindquist, 2003). Nearly all Hsp104A503X variants suppressed α-syn toxicity except Hsp104A503P, which had no effect (Figures 4A, 4B, and S3C). By contrast, Hsp104WT slightly enhanced α-syn toxicity (Figures 4A and 4B). Hsp104A503V-DPLF suppressed α-syn toxicity, though not as strongly as Hsp104A503V (Figure 4A). Rescue of α-syn toxicity by Hsp104A503X variants (or Hsp104A503V) could not be explained by lower α-syn levels, induction of Hsp70 or Hsp26 in a HSR, or higher Hsp104 levels (Figure 4C). Quantitative immunoblot indicated that the Hsp104 hexamer/α-syn ratios were ∼1.24 for Hsp104WT and ∼1.28 for Hsp104A503V. Expression of Hsp104A503V from the Hsp104 promoter suppressed α-syn toxicity, whereas Hsp104WT had no effect (Figures S4E and S4F). Here, quantitative immunoblot indicated that the Hsp104 hexamer/α-syn ratios were ∼1.30 for Hsp104WT and ∼1.59 for Hsp104A503V. Hsp104A503S, Hsp104A503V, Hsp104A503V-DPLF rescued α-syn toxicity in Δire1 and Δatg8 strains (Figure 4D). Thus, the UPR and autophagy are not required for rescue.

Hsp104A503V eliminated cytoplasmic α-syn inclusions and restored plasma membrane α-syn localization, whereas Hsp104WT had no effect (Figure 4E). Indeed, Hsp104A503V reduced the amount of insoluble α-syn by ∼66%, whereas Hsp104WT increased it by ∼33.9% (Figure 4F). Thus, potentiated Hsp104 variants eradicate α-syn inclusions and restore α-syn localization.

Potentiated Hsp104 Variants Prevent Neurodegeneration in a C. elegans PD Model

To test potentiated Hsp104 variants in a metazoan nervous system, we used a transgenic C. elegans PD model, which has illuminated mechanisms and modifiers of α-syn-induced neurodegeneration (Cao et al., 2005; Cooper et al., 2006; Tardiff et al., 2013). We selected Hsp104A503S and Hsp104A503V-DPLF to study in this context, which displayed strong (Hsp104A503S) and moderate (Hsp104A503V-DPLF) rescue of α-syn toxicity (Figure 4A). We focused on these variants because unlike Hsp104A503V they conferred greater than WT levels of thermostolerance and were less toxic to yeast at 37°C when expressed from the galactose promoter (Figures S5A and S5B).

The dopamine transporter (dat-1) gene promoter was used to direct expression of Hsp104 variants and α-syn to dopaminergic (DA) neurons. Expression of α-syn alone resulted in ∼16% of animals with normal numbers of DA neurons after 7 days and ∼8% of animals after 10 days compared to controls (Figures 5A–5C). Coexpression of Hsp104WT or an ATPase-dead, substrate binding-deficient Hsp104DPLA-DWB (which bears the “double pore loop” and “double Walker B” mutations: Y257A:E285Q:Y662A:E687Q) did not rescue neurodegeneration (Figures 5A and 5B). C. elegans expressing Hsp104A503S or Hsp104A503V-DPLF displayed significant protection (30.5% and 34% normal worms, respectively) compared to the null Hsp104 variant or α-syn alone at day 7 (Figure 5A). This trend continued at day 10 (Figure 5B), when Hsp104A503S-expressing (21%) and Hsp104A503V-DPLF-expressing (25%) worms had significantly more normal DA neurons compared to α-syn alone (7.8%), Hsp104DPLA-DWB (10%), or Hsp104WT (11%). Hsp104 variants did not alter α-syn mRNA levels (Figure S5C). Thus, Hsp104A503S and Hsp104A503V-DPLF remain significantly neuroprotective against α-syn toxicity even as animals age.

Potentiated Hsp104 Variants Typically Have Elevated ATPase Activity

Nearly all of the Hsp104A503X variants suppressed α-syn, FUS, and TDP-43 toxicity in yeast. This unexpected degeneracy is intriguing as there are few, if any, examples of missense mutations to nearly any class of residue that lead to a therapeutic gain of function. To explore the mechanism behind this gain of function, we assessed the biochemical properties of several Hsp104 variants that suppressed toxicity. Each Hsp104A503X variant and Hsp104Y507C exhibited ∼2- to 4-fold higher ATPase activity than Hsp104WT (Figure 6A). Hsp104A503V-DPLF has higher ATPase activity than Hsp104WT, though not as high as the Hsp104A503X variants (Figure 6A). Hsp104A503V-DPLF ATPase activity similar to Hsp104WT (Figure 6A). Thus, enhanced Hsp104 variants typically have higher ATPase activity than Hsp104WT. However, Hsp104A503V-DPLF illustrates that elevated ATPase activity is not absolutely required for potentiation.

Potentiated Hsp104 Variants Do Not Require Hsp70 and Hsp40 for Disaggregation

Rescue of toxicity by enhanced Hsp104 variants might reflect an altered mechanism of disaggregation. Thus, we assessed activity against disordered luciferase aggregates (DeSantis et al., 2012). Hsp104WT was inactive alone and required Hsp70 and Hsp40, which could be from human (Hsc70 and Hdj2) or yeast (Ssa1 and Ydj1; Figures 6B and 6C). By contrast, potentiated Hsp104 variants were extremely active without Hsp70 and Hsp40, and with the exception of Hsp104D504C, Hsc70 and Hdj2 further increased activity (Figures 6B and 6C). Typically, in the absence of Hsc70 and Hdj2, potentiated Hsp104 variants were ∼3- to 9-fold more active than Hsp104WT plus Hsc70 and Hdj2 (Figure 6B). The only exception was Hsp104D498V, which in the absence of Hsc70 and Hdj2 was still as active as Hsp104WT plus Hsc70 and Hdj2 (Figure 6B). Hsp104WT was most active in the presence of Ssa1, Ydj1, and the Hsp110, Sse1 (Figure 6C) (Shorter, 2011). However, even here, Hsp104WT luciferase reactivation activity only reached Hsp104A503V, Hsp104A503S and Hsp104A503V-DPLF activity in the absence of Ssa1, Ydj1, and Sse1 (Figure 6C). In the presence of Ssa1, Ydj1, and Sse1, the luciferase reactivation activity of...
Hsp104A503V, Hsp104 A503S, and Hsp104 A503V-DPLF was 7- to 8-fold higher than Hsp104 WT (Figure 6C). Potentiated Hsp104 variants are highly active without Hsp70 and Hsp40 (Figures 6B and 6C). Thus, absolute dependence on Hsp70 and Hsp40 hinders Hsp104 from rescuing α-syn, FUS, and TDP-43 toxicity. Independence from Hsp70 and Hsp40 is promising for applying Hsp104 variants to reverse protein misfolding in diverse systems, such as purification of aggregation-prone recombinant proteins from E. coli where DnaK incompatibility is an issue (DeSantis and Shorter, 2012).

Figure 4. Hsp104A503X Variants Suppress α-Syn Toxicity, Aggregation, and Mislocalization

(A) Δhsp104 yeast cotransformed with two copies of α-syn-YFP and the Hsp104 variants, or YFP and vector, were serially diluted 5-fold and spotted onto glucose (off) or galactose (on).

(B) Selected strains from (A) were induced in liquid and growth was monitored by A600nm.

(C) Strains from (B) were induced for 8 hr in galactose, lysed, and immunoblotted.

(D) WT, ΔIRE1, or ΔATG8 yeast were cotransformed with vector controls or α-syn plus vector or the indicated Hsp104 variant and were serially diluted 5-fold and spotted onto glucose (off) or galactose (on).

(E) Fluorescence microscopy of cells coexpressing α-syn-YFP and Hsp104 WT, Hsp104A503V, or vector. α-Syn localization was quantified by counting the number of cells with plasma membrane fluorescence or cytoplasmic aggregates. Values represent means ± SEM (n = 3).

(F) Δhsp104 yeast cotransformed with α-syn and vector or the indicated Hsp104 variant were induced with galactose for 8 hr at 30°C, lysed, and processed for sedimentation analysis and quantitative immunoblot. The relative amount of insoluble α-syn was determined as a percentage of the vector control. Values represent means ± SEM (n = 2).

See also Figures S3 and S4.
Potentiated Hsp104 Variants Translocate Substrate Faster Than Hsp104WT

We next determined that potentiated Hsp104 variants displayed accelerated substrate translocation. Thus, we used an Hsp104 variant, termed HAP, where G739-K741 are mutated to IGF, which enables association with the chambered peptidase ClpP (Tessarz et al., 2008). In the presence of ClpP, translocated substrates are degraded rather than released. Thus, HAP translocates fluorescein isothiocyanate (FITC)-casein for degradation by ClpP, thereby releasing FITC and increasing fluorescence. In the presence of ClpP, HAPAG03V (K_m ~1.29 nM) is a more effective FITC-casein translocase than HAPWT (K_m ~2.88 nM) (Figure 6D). The lower K_m for HAPAG03V might reflect differences in substrate recognition rather than translocation speed. However, the K_d of Hsp104WT (K_d ~65 nM) and Hsp104AG03V (K_d ~80 nM) for FITC-casein were similar (Figure 6E) as were binding kinetics (Figure 6F). Thus, substrate recognition by Hsp104WT and Hsp104AG03V is very similar. Hence, we suggest that Hsp104AG03V translocates substrate more rapidly than Hsp104WT. Accelerated translocation likely enables potentiated variants to avoid kinetic traps and exert additional force to unfold stable substrates.

Potentiated Hsp104 Variants Are Enhanced Unfoldases

Next, we established that enhanced Hsp104 variants had enhanced unfoldase activity using a RepA_1-70-GFP substrate (Doyle et al., 2007). To assess RepA_1-70-GFP unfolding in the absence of spontaneous refolding, we added GroEL_Los, which captures unfolded proteins and prevents refolding (Weber-Ban et al., 1999). Hsp104WT unfolds RepA_1-70-GFP, but only in the presence of a permissive ratio of ATP and ATPγS (Doyle et al., 2007) (Figures 6G and 6H). Thus, with ATP alone, Hsp104WT did not unfold RepA_1-70-GFP (Figure 6G). By contrast, Hsp104AG03X variants rapidly unfolded RepA_1-70-GFP in the presence of ATP (Figure 6G). Hsp104WT unfolded RepA_1-70-GFP in the presence of an ATP:ATPγS (3:1) mixture. By contrast, ATP:ATPγS slightly inhibited Hsp104AG03V unfoldase activity, but even here, Hsp104AG03V unfolded RepA_1-70-GFP more rapidly than Hsp104WT (Figure 6G). Hsp104AG03X variants had very similar unfoldase kinetics (Figure 6G). By contrast, Hsp104AG03V and Hsp104AG03V-DPLF were slightly slower unfoldases than Hsp104AG03S, whereas Hsp104AG03C was slightly faster (Figure 6H). These differences could reflect changes in substrate recognition or turnover or both. Regardless, potentiated Hsp104 variants are enhanced unfoldases that are intrinsically primed to unfold substrates and do not have to wait for regulatory events (mimicked here by ATPγS addition).

Hsp104AG03V Hexamers Are Tuned Differently Than Hsp104WT Hexamers

Do potentiated Hsp104 variants employ the same mechanism of intersubunit collaboration as Hsp104WT to disaggregate proteins? How Hsp104 subunits within the hexamer collaborate to promote disaggregation can be interrogated via mutant subunit doping. Here, mutant subunits defective in ATP hydrolysis, substrate binding, or both are mixed with WT subunits to generate heterohexamer ensembles according to the binomial distribution (DeSantis et al., 2012). Hsp104 forms dynamic hexamers that promote disaggregation can be interrogated via mutant subunit doping. Here, mutant subunits defective in ATP hydrolysis, substrate binding, or both are mixed with WT subunits to generate heterohexamer ensembles according to the binomial distribution (DeSantis et al., 2012). Hsp104 forms dynamic hexamers that

Figure 5. Hsp104AG03S and Hsp104AG03V-DPLF Protect Against α-Syn Toxicity and Dopaminergic Neurodegeneration in C. elegans

(A) Hsp104 variants and α-syn were coexpressed in the dopaminergic (DA) neurons of C. elegans. Hermaphroditic nematodes have six anterior DA neurons, which were scored at day 7 posthatching. Hsp104AG03S and Hsp104AG03V-DPLF have significantly greater protective activity than both α-syn alone and the null variant. Normal worms have a full complement of DA neurons at this time.

(B) At day 10, there is a decline in worms with normal DA neurons. Hsp104AG03S and Hsp104AG03V-DPLF exhibit greater protective activity when compared to Hsp104WT and the null variant. Values represent means ± SEM (of three independent experiments, n = 30 per replicate with three to four replicates per independent experiment; p < 0.05, one-way ANOVA group). Normal worms have a full complement of DA neurons at this time.

(C) Photomicrographs of the anterior region of C. elegans coexpressing GFP with α-syn. Worms expressing α-syn alone (left) exhibit an age dependent loss of DA neurons. Worms expressing α-syn plus Hsp104AG03S (right) exhibit greater neuronal integrity. Arrows indicate degenerating or missing neurons. Triangles indicate normal neurons. See also Figure S5.
two to five mutant subunits abolish activity), or globally cooperative (one mutant subunit abolishes activity) (DeSantis et al., 2012). Incorporation of Hsp104A503V-DWA subunits (which bear the “double Walker A” [DWA] K218T:K620T mutations and cannot bind ATP) or Hsp104A503V-DPLA subunits (which bear the “double pore loop” [DPL] Y257A:Y662A mutations and cannot bind substrate) into Hsp104 A503V hexamers caused a roughly linear decline in luciferase disaggregase activity (Figure 6I). This linear decline indicates that, like Hsp104 WT, Hsp104 A503V hexamers resolve disordered aggregates via a probabilistic mechanism (DeSantis et al., 2012). Thus, a single Hsp104A503V subunit per hexamer able to hydrolyze ATP and engage substrate can drive disaggregation.

However, Hsp104A503V hexamers operate differently than Hsp104WT hexamers. A single Hsp104 DWB subunit (which bears the “double Walker B” [DWB] E285Q:E687Q mutations and can bind but not hydrolyze ATP) inactivates the Hsp104 WT hexamer (DeSantis et al., 2012). By contrast, the luciferase disaggregate activity of Hsp104A503V was stimulated by Hsp104 A503V-DWB subunits (Figure 6J). Fluorescence resonance energy transfer (FRET) studies confirmed that Hsp104 A503V-DWB subunits incorporated into Hsp104A503V hexamers. The FRET efficiency was 0.36 (compared to 0.38 for mixing Hsp104 WT with Hsp104 DWB; DeSantis et al., 2012) using the conditions employed for luciferase reactivation. In high-salt buffer (1 M NaCl), hexamerization is inhibited and FRET efficiency decreased to 0.24. At a higher

Figure 6. Potentiated Hsp104 Variants Are Tuned Differently Than Hsp104WT
(A) ATPase activity of Hsp104 variants. Values represent means ± SEM (n = 3).
(B) Luciferase aggregates were incubated with Hsp104 variant plus (checkered bars) or minus (clear bars) Hsc70 (0.167 μM) and Hdj2 (0.167 μM). Values represent means ± SEM (n = 3).
(C) Luciferase aggregates were incubated with Hsp104 variant plus or minus Hsc70 (0.167 μM) and Hdj2 (0.073 μM); Ssa1 and Ydj1; or Ssa1, Ydj1, and Sse1. Values represent means ± SEM (n = 3).
(D) Increasing concentrations of FITC-casein were incubated with ClpP plus HAPWT or HAPA503V. Initial degradation rates were plotted against FITC-casein concentration to determine Km. Values represent means ± SEM (n = 3).
(E) FITC-casein was incubated with increasing concentrations of Hsp104WT or Hsp104A503V. Change in fluorescence polarization was plotted against Hsp104 concentration to determine Km. Values represent means ± SEM (n = 3).
(F) Kinetics of Hsp104WT (1 μM) or Hsp104A503V (1 μM) binding to FITC-casein (0.1 μM) assessed by fluorescence polarization. Values represent means ± SEM (n = 3).
(G and H) RepA 1-70-GFP was incubated with Hsp104 variant and GroELhap plus ATP or ATP·ATP·S (3:1). GFP unfolding was measured by fluorescence. Representative data are shown.
(I) Buffer, Hsp104A503V-DWA, or Hsp104A503V-DPLA was mixed in varying ratios with Hsp104A503V to create heterohexamer ensembles and luciferase disaggregate activity was assessed. Values represent means ± SEM (n = 3). Black line denotes the theoretical curve of a probabilistic mechanism where only a single A503V subunit is required for disaggregation.
(J) Experiments were performed as in (I) for Hsp104A503V-DWB and Hsp104A503V-DPLA-DWB. Theoretical curves are shown wherein adjacent pairs of A503V:A503V or A503V:mutant subunits confer hexamer activity, while adjacent mutant subunits have no activity. Each adjacent A503V:A503V pair has an activity of 1/6. Adjacent A503V:mutant pairs have a stimulated activity (s), and the effect of various s values are depicted. Values represent means ± SEM (n = 3).
Hsp104 concentration (1 μM), which favors hexamerization, FRET efficiency increased to 0.43. We could model the stimulatory effect of Hsp104A503V-DWB subunits if we imposed rules whereby an Hsp104A503V-DWB subunit stimulates activity of an adjacent Hsp104A503V subunit ~2-fold (Figure 6J). This stimulation depended on substrate binding by Hsp104A503V-DWB as Hsp104A503V-DPLA-DWB subunits (which bear the “double pore loop” and DWB Y257A:E285Q:Y662A:E687Q mutations and can bind, but not hydrolyze, ATP and cannot bind substrate) failed to stimulate adjacent Hsp104A503V subunits (Figure 6J). Thus, Hsp104A503V hexamers operate via principles distinct from those of Hsp104WT hexamers. The Hsp104A503V hexamer displays greater plasticity and tolerates a wider variety of subunit-inactivating events to maintain a robust disaggregase activity. Thus, an Hsp104A503V subunit that (1) binds but cannot hydrolyze ATP and (2) engages substrate stimulates the disaggregase activity of an adjacent Hsp104A503V subunit. In Hsp104WT, a single subunit with these properties inactivates the hexamer. The increased resilience of Hsp104A503V hexamers to subunit-inactivating events likely empowers facile resolution of recalcitrant substrates.

Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF Disaggregate Preformed α-Syn Fibrils More Efficaciously Than Hsp104WT

To test Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF in comparison to Hsp104WT against a recalcitrant PD-associated substrate we employed α-syn fibrils, allowing us to distinguish if Hsp104 prevented amyloid formation or eliminated preformed amyloid. Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF disaggeregated preformed α-syn fibrils at concentrations where Hsp104WT was inactive (Figures 7A–7C). Indeed, electron microscopy (EM) revealed that α-syn fibrils were converted to small structures by low concentrations of Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF, whereas Hsp104WT left fibrils intact (Figure 7C). Thus, Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF are more powerful amyloid disaggregases than Hsp104WT.

Hsp104A503V and Hsp104A503S Disaggregate Preformed TDP-43 and FUS Aggregates More Efficaciously Than Hsp104WT

Next, we tested whether Hsp104A503V and Hsp104A503S were more potent disaggregases of TDP-43 and FUS (Johnson et al., 2009; Sun et al., 2011). Hsp104WT was unable to resolve TDP-43 aggregates and slightly enhanced TDP-43 aggregation in the absence of Ssa1, Ydj1, and Sse1 (Figure 7D). By contrast, Hsp104A503V and Hsp104A503S partially resolved TDP-43 aggregates in the absence of Ssa1, Ydj1, and Sse1 (Figure 7D). Hsp104A503V and Hsp104A503S in the presence of Ssa1, Ydj1, and Sse1, but not Hsp104WT, effectively dissolved short TDP-43 filaments and amorphous structures (Figures 7D and 7E). Very similar results were obtained with preformed FUS fibrils (Figures 7F and 7G). Hsp104WT slightly increased FUS aggregation in the absence of Ssa1, Ydj1, and Sse1, whereas Hsp104A503V and Hsp104A503S modestly reduced aggregation (Figure 7F). Hsp104A503V and Hsp104A503S effectively disaggregated FUS in the presence of Ssa1, Ydj1, and Sse1, whereas Hsp104WT was ineffective (Figure 7F). Indeed, Hsp104A503V and Hsp104A503S eradicated FUS fibrils (Figure 7G). Thus, Hsp104A503V and Hsp104A503S disaggregate preformed TDP-43 and FUS aggregates more efficaciously than Hsp104WT.

DISCUSSION

Here, we demonstrate that Hsp104, a protein disaggregate from yeast, can be modified to powerfully eradicate diverse substrates implicated in ALS and PD. We have developed the first (to our knowledge) disaggregases (or even chaperones) engineered to optimize proteostasis. Indeed, enhanced Hsp104 variants are the first agents defined to reverse TDP-43 and FUS aggregation. They not only suppress toxicity and eliminate protein aggregates but also restore proper protein localization. Importantly, these Hsp104 variants are not overtly toxic like other MD mutants (Lipińska et al., 2013). Thus, potentiated Hsp104 variants can be uncovered that are not invariably toxic and that rescue various toxic neurodegenerative disease proteins in vitro and in vivo under conditions where Hsp104WT is impotent. Potentiated Hsp104 variants suppress neurodegeneration in a C. elegans PD model. Thus, we provide a promising example of engineered disaggregases rescuing neurodegeneration in a metazoan nervous system under conditions where the WT disaggregate is ineffective. Our findings suggest that general neuroprotection via activated protein disaggregases may be possible for diverse neurodegenerative diseases.

We have identified the MD as a key region governing Hsp104 function. It is perplexing and unprecedented that missense mutations to nearly any residue at specific and disparate positions (e.g., A503, Y507) confer a therapeutic gain of function. Potentiation stems from loss of amino acid identity rather than specific mutation. Thus, Hsp104 activity is likely tightly constrained but can be unleashed by subtle changes to side chains at specific positions. These constraints are too tight for Hsp104WT to counter TDP-43, FUS, and α-syn aggregation and toxicity under the conditions employed in our experiments. Thus, we reveal a surprising inimical deficit in existing disaggregate functionality. We suggest that the MD functions as a capacitor braced to unleash Hsp104 activity. Missense mutations at specific positions in MD helix 1, 2, or 3 or the small domain of NBD1 (immediately C terminal to the MD) likely destabilize autoinhibitory interactions that dampen Hsp104 activity or induce conformational changes that mimic or aid in an allosteric activation step. Potentiating mutations obviate any absolute requirement for Hsp70 and enhance Hsp104 ATPase activity, substrate translocation speed, unfoldase activity, and amyloid disaggregate activity. Additionally, Hsp104A503V hexamers display enhanced plasticity and are more resistant to defective subunits than Hsp104WT. Thus, enhanced variants possess a more robust disaggregate activity that is desensitized to inhibition. Irrespective of the mechanism of activation, we have established that seemingly minor structural modulation of a disaggregate can suppress a constellation of otherwise intractable proteotoxicities in vivo. We are unaware of any precedent for attaining such a wide-reaching set of gain of therapeutic functions via such minor changes in primary sequence, e.g., by removing a single methyl group (A503G) or by adding a single methylene bridge (V426L).

Further engineering to develop enhanced variants that specifically target single proteins (e.g., disaggregate FUS, but not
Figure 7. Potentiated Hsp104 Variants Disaggregate Preformed α-Syn, TDP-43, and FUS Fibrils More Efficaciously Than Hsp104 WT

(A–C) α-syn fibrils were incubated without or with Hsp104 WT, Hsp104 A503V, Hsp104 A503S, or Hsp104 A503V-DPLF for 1 hr at 30°C. Fiber disassembly was assessed by ThT fluorescence (A), sedimentation analysis (B), or (C) EM (bar, 0.5 μm). (A and B) Values represent means ± SEM (n = 2).

(legend continued on next page)
TDP-43 will prove valuable to minimize any off-target effects. Hsp104 could be potentiated against any protein, which might find key applications in purification of troublesome recombinant proteins. Irrespective of the feasibility of introducing Hsp104 as a therapeutic, our work suggests that protein aggregates are not intractable and that general neuroprotection via altered proteostasis is achievable. Ultimately, we envision introducing potentiated Hsp104 variants in short transient bursts to restore natural proteostasis. In this way, long-term expression of an exogenous protein is avoided. Reactivation of disease-associated proteins to their nonpathogenic states suggests that Hsp104 variants and other agents that achieve this goal may be highly promising for halting and reversing neurodegenerative disease. Nonetheless, caution is needed and many barriers must be breached to translate Hsp104 variants into disruptive technologies and potential therapeutics.

EXPERIMENTAL PROCEDURES

Yeast Strains and Media

Yeast were WT W303a or the isogenic W303aΔhsp104 strain. Δire1 and Δatg8 were in BY4741. Standard methods were used for transformation and spotting. See the Extended Experimental Procedures for more information.

Library Construction and Screening

The pore loop variant library was constructed via QuickChange mutagenesis (Agilent) and DNA shuffling to obtain randomly combined residues at positions Y257 and Y662. The MD variant library was constructed using GeneMorph II EZClone Domain Mutagenesis kit (Agilent) with modifications. Libraries were transformed into yeast harboring pAG303GAL-TDP-43, pAG303GAL-FUS, or pAG303GAL-α-syn. Yeast were grown overnight in raffinose-containing media and plated on galactose-containing media for selection. Select colonies were sequenced by colony PCR. Isolated Hsp104 variants were cloned independently and transformed into yeast to ensure they suppressed toxicity. See the Extended Experimental Procedures for more information.

Hsp104 Variant Toxicity and Thermotolerance

W303aΔhsp104 yeast were transformed with the indicated 416GAL-Hsp104 plasmids. Cultures were grown in synthetic raffinose medium to A600nm = 2.0, spotted onto SD-Ura or SGal-Ura, and incubated at 30°C or 37°C for 48–72 hr. For thermotolerance, yeast were grown to saturation in synthetic raffinose medium to A600nm = 2.0, spotted onto SD-Ura or SGal-Ura, and incubated at 30°C or 37°C for 48–72 hr. For thermotolerance, yeast were grown to saturation in synthetic raffinose medium to A600nm = 2.0, spotted onto SD-Ura or SGal-Ura, and incubated at 30°C or 37°C for 48–72 hr.

Sedimentation Analysis

Yeast were induced in galactose-containing medium for 5 hr (TDP-43 and FUS) or 8 hr (α-syn). Cells were lysed, separated into soluble and insoluble fractions by sedimentation, and processed for quantitative immunoblot. See the Extended Experimental Procedures for more information.

Fluorescence Microscopy

After 5 hr induction at 30°C (8 hr for α-syn strains), yeast cultures were processed for fluorescence microscopy. For TDP-43, cells were fixed and stained with 4',6-diamidino-2-phenylindole (DAPI) to visualize nuclei. For FUS, live cells were used and nuclei were visualized with Hoechst dye. See the Extended Experimental Procedures for more information.

Analysis for Dopaminergic Neuron Death in C. elegans

Three distinct C. elegans stable lines were created for each Hsp104 variant. Age synchronized worms were generated by allowing 50 transgenic adults on a NGM plate to lay eggs for 3 hr. Adults were then removed (day 0). At day 7 and 10 of analysis, 40 randomly selected transgenic worms were placed in 3 mM levamisol for paralysis and transferred to a 2% agarose pad on a glass microscope slide. Worms have 8 dopaminergic neurons visible through Pdat-1::gfp, which fade in an age-dependent manner due to α-syn accumulation. Only the six anterior neurons of the worm were analyzed. Each worm was scored “Wild Type” when there was a full complement of visible, anterior dendritic processes. Worms missing one or more dendritic processes were scored “Not Wild Type.” In total, three separate stable lines were analyzed. See the Extended Experimental Procedures for more details.

Protein Purification

Proteins were purified as recombinant proteins in E. coli using standard techniques (see Extended Experimental Procedures).

ATPase Activity

Hsp104 (0.042 μM hexamer) was incubated with ATP (1 mM) for 5 min at 25°C. ATPase activity was assessed by inorganic phosphate release using a malachite green detection kit (Innova).

Luciferase Reactivation

Aggregated luciferase (50 nM) was incubated with Hsp104 (0.167 μM hexamer) with ATP (5.1 mM) and an ATP regeneration system (ARS; 1 mM creatine phosphate, 0.25 μM ATP-kinase) plus or minus Hsc70 (0.167 μM) and Hdj2 (0.167 μM) for 90 min at 25°C (DeSantis et al., 2012). In some reactions (Figure 6C), Hsc70 concentration was 0.167 μM and Hdj2 were replaced with Ssa1 (0.167 μM) and Ydj1 (0.073 μM) or Ssa1 (0.167 μM), Ydj1 (0.073 μM), and Sse1 (0.043 μM). Luciferase activity was assessed by luminescence. Mutant doping experiments were as described previously (DeSantis et al., 2013). The Hsp104ASQ variants Hsp104ASQ-DWA (K218T:A503V:K620T), Hsp104ASQ-DPLA (Y257A:A503V:Y662A), Hsp104ASQ-DWB (E285Q:A503V:Y662A), Hsp104ASQ-DPLA-DWB (Y257A:E285Q:A503V:Y662A: E687Q), and Hsp104ASQ-DPLA-DWB (Y257A:E285Q:A503V:Y662A: E687Q) were mixed with Hsp104ASQ in varying ratios to give a total concentration of 0.5 μM Hsp104 hexamer. Hsc70 and Hdj2 were omitted for these experiments. Random subunit mixing was confirmed by FRET. See the Extended Experimental Procedures for more information.

RepA1-70-GFP Unfolding

RepA1-70-GFP unfolding was as described previously (Doyle et al., 2007).

FITC-Casein Degradation and Binding

FITC-casein (0.1–50 μM) was incubated at 25°C with HAP (0.1 μM) for 90 min at 25°C. Degradation of FITC-casein was monitored by fluorescence (excitation 490 nm, emission 520 nm). To calculate initial rate, a linear fit of the first 2.5 min of the reaction was used. The slope was calculated. To assess binding, FITC-casein (6 nM) was incubated with increasing concentrations (0–5 μM) of Hsp104ASQ or Hsp104ASQ with 2 mM ATP•S for 10 min at 25°C. Fluorescence polarization was measured (excitation 470 nm, emission 520 nm).

α-Syn Fibril Disaggregation

α-Syn (80 μM) was assembled into fibrils via incubation in 40 mM HEPES-KOH (pH 7.4), 150 mM KCl, 20 mM MgCl2, 1 mM dithiothreitol for 48 hr at 37°C with agitation. α-Syn fibrils (0.5 μM monomer) were incubated without or with Hsp104ASQ, Hsp104ASQ-DWA, Hsp104ASQ-DPLA, or Hsp104ASQ-DPLA-DWB (0.5 or 5 μM) plus ATP (10 mM) and ARS (20 mM creatine phosphate and 0.5 μM creatine kinase) plus or minus Hsc70 (0.167 μM) and Hdj2 concentration was 0.042 μM.

(D and E) TDP-43 aggregates were incubated with buffer, Hsp104WT, Hsp104ASQ, or Hsp104ASQ plus or minus Ssa1, Ydj1, and Sse1 for 1 hr at 30°C. (D) Aggregate dissolution assessed by turbidity. Values represent mean ± SEM (n = 3). (E) Aggregate dissolution assessed by EM. Scale bar, 0.5 μm.

(F and G) FUS aggregates were incubated with buffer, Hsp104WT, Hsp104ASQ, or Hsp104ASQ plus or minus Ssa1, Ydj1, and Sse1 for 1 hr at 30°C. (F) Aggregate dissolution assessed by turbidity (absorbance at 395 nm). Values represent mean ± SEM (n = 3). (G) Aggregate dissolution assessed by EM. Scale bar, 0.5 μm.
TDP-43 and FUS Disaggregation

To generate TDP-43 and FUS aggregates, GST-TEV-TDP-43 (6 μM) or GST-TEV-FUS (6 μM) was incubated with TEV protease in 50 mM Tris-HCl (pH 7.4), 50 mM KCl, 5 mM MgCl₂, 0.2 M trehalose, and 20 mM glutathione. FUS was aggregated for 90 min at 25°C without agitation, by which time all the FUS had aggregated (Sun et al., 2011). TDP-43 was aggregated for 4 hr at 25°C with agitation, by which time all the TDP-43 had aggregated (Johnson et al., 2009). TDP-43 or FUS aggregates (3 μM monomer) were incubated for 1 hr at 30°C with Hsp104 WT, Hsp104 A503V, or Hsp104 A503S (1 μM) plus or minus Ssa1 (1 μM), Ydj1 (0.44 μM), and Sse1 (0.26 μM) plus ATP (10 mM) and ARS (20 mM creatine phosphate and 0.5 μM creatine kinase). Disaggregation was assessed via turbidity (absorbance at 395 nm) and EM (Johnson et al., 2009; Sun et al., 2011).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and five figures and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2013.11.047.

ACKNOWLEDGMENTS

We thank Sue Lindquist, Johannes Buchner, Wald Houry, Aaron Gitter, Martin Denuenwald, and Brad Johnson for kindly sharing reagents; Beatrice Razzo, Liz Sweeney, and Nabeel Akhtar for help in library construction and screening; and Mark Lemmon, Mariana Torrente, and Liz Sweeney for critiques. Our studies were supported by an American Heart Association postdoctoral fellowship (M.E.J); NIH training grant T32GM071339 and NRSA predoctoral fellowship F31NS079009 (M.E.D.); NSF graduate research fellowship DGE-0822 (L.M.C.); NSF CAREER Award 0845020 (K.A.C.); NIH grant R15NS075684 (G.A.C.); NIH Director’s New Innovator Award DP2OD002177, NIH grants R21NS087354, R21HD074510, and R01GM098836, a Muscular Dystrophy Association Research Award (MDA277268), Packard Center for ALS Research at Johns Hopkins University, Target ALS, and an Ellison Medical Foundation New Scholar in Aging Award (J.S.).

Received: June 3, 2013
Revised: September 28, 2013
Accepted: November 20, 2013
Published: January 16, 2014

REFERENCES

