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 Neural stem cells (NSCs) are present not only during the embryonic development but also in the adult brain of 
all mammalian species, including humans. Stem cell niche architecture in vivo enables adult NSCs to continuously 
generate functional neurons in specific brain regions throughout life. The adult neurogenesis process is subject to 
dynamic regulation by various physiological, pathological and pharmacological stimuli. Multipotent adult NSCs also 
appear to be intrinsically plastic, amenable to genetic programing during normal differentiation, and to epigenetic 
reprograming during de-differentiation into pluripotency. Increasing evidence suggests that adult NSCs significantly 
contribute to specialized neural functions under physiological and pathological conditions. Fully understanding the 
biology of adult NSCs will provide crucial insights into both the etiology and potential therapeutic interventions of 
major brain disorders. Here, we review recent progress on adult NSCs of the mammalian central nervous system, in-
cluding topics on their identity, niche, function, plasticity, and emerging roles in cancer and regenerative medicine.
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Introduction

The discovery of adult mammalian neural stem cells 
(NSCs) marks a milestone in the odyssey of our con-
temporary understanding of adult brain plasticity. Early 
in the twentieth century, influential histological and 
anatomic studies of Koelliker, His, Bizzozero and Cajal 
had established that the adult mammalian brain remained 
structurally constant after birth and no new neurons 
could be conceivably generated in adulthood [1-3]. In his 
masterpiece [1], Cajal commented “Once the develop-
ment was ended, the founts of growth and regeneration of 
the axons and dendrites dried up irrevocably. In the adult 
centers, the nerve paths are something fixed, ended, and 
immutable. Everything may die, nothing may be regener-
ated. It is for the science of the future to change, if pos-
sible, this harsh decree.” The stability of neural circuits 
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was also thought to be essential for higher brain func-
tions, such as storing long-term memory [4, 5]. Over the 
second half of the twentieth century, the notion of activi-
ty-dependent neuronal synaptic modification had gained 
steam and significantly enriched our understanding of the 
plastic nature of the mammalian brain [6, 7]. Structural 
plasticity at the cell population level, however, remained 
less apparent. Scattered evidence suggested the presence 
of dividing cells in the postnatal and adult brain [8-10], 
yet little attention was given to those studies, since the 
neuronal fate of those cells and the extent of such phe-
nomena were not immediately clear. Within the past two 
decades, technical advances, particularly the fate map-
ping method using 5-bromo-2-deoxyuridine (BrdU) in 
animals, have allowed researchers to demonstrate that a 
large number of newly generated cells in the adult brain 
were indeed neurons [11, 12]. Meanwhile, the identifica-
tion of trophic and mitogenic actions of growth factors, 
including fibroblast growth factors (FGF) and epidermal 
growth factor (EGF) family proteins, paved the way to 
culture and maintain a variety of neural cells in vitro [13, 
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14]. In early 1990s, it was demonstrated that neural cells 
derived from the adult rodent brain were capable of self-
replicating and giving rise to both neurons and glia in 
culture [15, 16]. Adult NSCs with similar properties were 
subsequently found to be present in many other brain re-
gions of mammals [17-21].

Rapid progress in the field has since led to the gen-
eral acceptance that adult NSCs are present specifically 
in the subventricular zone (SVZ) of the lateral ventricle 
wall and the subgranular zone (SGZ) of the hippocampal 
dentate gyrus [21-27]. It is believed that the unique niche 
architectures present in these regions permit functional 
neurogenesis from NSCs in vivo [22, 23, 28]. Interest-
ingly, NSCs have also been derived from a variety of 
adult brain regions [18-20, 29], yet it remains contro-
versial whether those regions harbor similar NSCs and 
enable neurogenesis under physiological conditions in 
vivo. Once isolated and grown in culture, adult NSCs are 
better defined in terms of the capacity to self-renew and 
generate multiple neural lineages, including neurons, as-
trocytes and oligodendrocytes. Intrinsically, adult NSCs 
appear to be plastic in their fate programing and repro-
graming in certain conditions, giving rise to a variety of 
lineages not expected from their in vivo counterparts. 
Perhaps in part due to the plastic nature of adult NSCs, it 
is becoming increasingly appreciated that many forms of 
neoplastic conditions in brain cancers might result from 
dysregulation of adult NSCs in vivo. Advances in deriva-
tion and culture of multipotent adult NSCs in vitro also 
fuel the hope for therapeutic intervention in combating a 
cohort of neurodegenerative diseases that elicit irrevers-
ible loss of neurons and glia. Here, we discuss a range of 
topics related to adult NSCs in the mammalian central 
nervous system (CNS), including their identity, niche, 
function, plasticity, application and emerging relevance 
to brain cancer and neural degenerative diseases.

Adult neural stem cells: identity and properties

NSCs are self-renewing, multipotent progenitors re-
siding in the nervous system. In the adult brain, NSCs 
are primarily located in the SVZ of the lateral ventricle 
and the SGZ of the hippocampal dentate gyrus (Figure 
1A) [22, 23]. In the currently prevalent view, primary 
adult SVZ NSCs in vivo are slowly dividing, long-term 
BrdU-retaining progenitors that exhibit several common 
features of subventricular radial glia-like astrocytes and 
ventricular ependymal cells, including morphological 
characteristics and expression of the glial fibrillary acidic 
protein (GFAP) and the glycoprotein CD133. A double 
nucleotide thymidine analogue-labeling paradigm has 
been used to identify adult NSCs, based on their ability 

to re-enter cell cycle after long-term retention of thy-
midine analogs. Anatomical features and a comprehen-
sive panel of immunohistochemical markers also help 
ascertain their identity. In the adult SVZ, the quiescent 
adult NSC population is believed to locate underneath 
the ependymal layer, but contact the ventricle through 
their apical surfaces (Figure 1B). A subset of these cells 
is characterized as positive for LeX, CD133, GFAP and 
Nestin, while negative for differentiated cell markers 
CD24, O4, NeuN and S100β. Adult SVZ NSCs give 
rise to Dlx2+Mash1+ transient amplifying progenitors. 
The majority of these intermediate progenitor cells, in 
turn, give rise to PSA-NCAM+ doublecortin+ (DCX+) 
neuroblasts that migrate towards the olfactory bulb (OB) 
through the rostral migratory stream (RMS) in rodents; 
recently this has also been proposed to occur in humans 
through an anatomically distinct migratory stream [30, 

Figure 1 Adult NSCs in the SVZ and SGZ of the mammalian 
brain. (A) A schematic illustration of the adult mammalian brain 
in mice. Adult NSCs are primarily present in two germinal re-
gions: the subventricular zone (SVZ) of the lateral ventricle wall 
and the subgranular zone (SGZ) of the hippocampal dentate 
gyrus. (B) Adult NSCs in the SVZ. Quiescent or dormant adult 
SVZ NSCs (qNSC) correspond to a unique type of cell popula-
tion with cell bodies in the SVZ while contacting the ventricle 
through apical surfaces. They also share several common fea-
tures of GFAP+ astrocytes and CD133+ ependymal cells. Active-
ly self-renewing adult SVZ NSCs (aNSC) are located in the SVZ 
and give rise to neuroblasts that migrate towards the olfactory 
bulb. (C) Adult NSCs in the SGZ. Quiescent or dormant adult 
SGZ NSCs correspond to radial glia-like cells, some of which 
might transit to actively self-renewing adult SGZ NSCs and give 
rise to neuroblasts (NB) and newly generated neurons (NGN).
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31]. In the SGZ of the dentate gyrus, a similar subset of 
GFAP+, S100β−, Sox2+, Nestin+ radial cells corresponds 
to quiescent or dormant NSCs (Figure 1C). These NSCs 
may co-exist with the actively self-renewing population 
of GFAP−, S100β−, Sox2+, Nestin+ adult NSCs that gen-
erate GFAP+, S100β+ mature astrocytes and DCX+ neu-
roblasts. Unlike the interneuron lineage differentiation 
in the OB, adult NSCs in the SGZ of the hippocampus 
predominantly give rise to local glutamatergic excitatory 
dentate granule cells. The Sox2+ SGZ cells have recently 
been proposed to possess self-renewal capacity and mul-
tipotentiality [32], while these properties have not been 
strictly tested in vivo for SVZ NSCs under physiological 
conditions. Nonetheless, it remains unclear whether a 
single adult NSC undergoes extensive self-renewal and 
generates progeny of multiple neural lineages in vivo.

Despite general acceptance of their existence, the ex-
act identity and location of adult NSCs in vivo have long 
been controversial [33]. In the lateral ventricle, extensive 
early efforts had shown that the adult NSCs are mainly 
located in the SVZ sub-ependymal layers [19, 34]. The 
findings are particularly intriguing, since during develop-
ment, the SVZ is occupied by intermediate progenitors, 
while embryonic NSCs, radial glia, are located in the 
ventricular zone. A subsequent study, nevertheless, sug-
gested that bona fide adult NSCs could be identified from 
the ventricular zone ependymal layer [35]. These contro-
versies have prompted further examination of the exact 
location of adult NSCs, yet follow-up studies in different 
labs did not reach a consensus [36-38]. The most recent 

results may provide a unifying hypothesis on this issue: 
the cell bodies of adult NSCs are located in the SVZ 
while they contact the ventricles through ependymal 
cell-like apical surfaces [39]. In the SGZ of the dentate 
gyrus, two populations of adult NSCs likely co-exist as 
discussed above, yet their lineage relationship, respec-
tive self-renewal properties and developmental potentials 
are to be further examined in the future. Rigorous future 
study of adult NSCs in vivo will require both structural 
and functional characterization using multiple comple-
mentary approaches.

During CNS ontogenesis, adult NSCs appear to de-
scend from their region-specific embryonic counterpart, 
radial glia [40]. Radial glia of different regions, when 
labeled during the neonatal period, produced different 
types of neurons in adulthood, suggesting that postnatal 
NSCs may be regionally specified according to their lo-
cations [41]. Although this study suggested interesting 
similarity between embryonic and postnatal NSCs, the 
true diversity of adult NSCs was not directly addressed. 
It also remains an intriguing possibility that adult NSCs 
may give rise to diverse types of lineage-restricted pro-
genitors and neuroblasts that are heterogeneous and 
regionally specified (Figure 2A and 2B). In support of 
this notion, dopaminergic periglomerular neurons, but 
not granule neurons, in the OB originate mainly from the 
RMS [42]. In addition, proliferating adult SVZ NSCs 
express the transcription factor Pax6, but only a small 
subset of neuroblasts and new OB interneurons derived 
from these progenitors retains Pax6 expression [43]. In 

Figure 2 The lineage model of adult NSCs in the mammalian brain. (A) In one lineage model, adult NSCs (red, green and 
yellow) generated from primitive NSCs (blue) are intrinsically diverse, exhibiting vastly different developmental potential 
depending on their regions of distribution and developmental origins. (B) In an alternative model, adult NSCs are relatively 
homogenous (blue) and give rise to a heterogeneous population of lineage-restricted progenitors. (C) Under normal condi-
tions, adult NSCs differentiate into lineage-restricted progenitors and mature neurons and glia. Lineage-restricted progenitor 
may revert to adult NSCs, which can be further reprogramed into a pluripotent state under epigenetically altered conditions. 
Pathologically, adult NSCs or lineage-restricted progenitors may undergo genetic and epigenetic changes, transforming into 
tumorigenic cancer stem cells.
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the SGZ, while genetic evidence suggests that radial 
GFAP+ NSCs correspond to the ancestor population of 
the majority of new neurons [44], non-radial Sox2+ NSCs 
may also self-renew and give rise to neurons and astro-
cytes [32]. Collectively, these findings indicate that adult 
NSCs and their progeny may exhibit a significant degree 
of functional diversity resulting from their regional dis-
tribution and developmental origins. It will be interest-
ing to investigate how such functional diversity of adult 
NSCs and their progeny may contribute to, and can be 
manipulated for specific benefits of brain plasticity under 
physiological and pathological settings.

Given better-defined culture conditions, adult NSCs 
have been widely studied in vitro. Both the SVZ- and 
SGZ-derived NSCs can be expanded continually as free-
floating cell cluster, termed “neurosphere”, exhibiting 
self-renewal and multi-lineage neural potentiality, defin-
ing hallmarks of NSCs [19, 45]. Intriguingly, such adult 
NSCs in vitro seem to regain some glial characteristics 
when cultured as neurospheres [46], and may similarly 
exhibit certain diversity as in vivo [47]. Distinct from 
lineage-restricted progenitors, adult NSCs are capable 
of serial neurosphere formation while maintaining mul-
tipotentiality at the clonal level [48]. The adult SGZ-
derived NSCs can also be expanded as monolayer for a 
prolonged period of time [17]. In the presence of FGF-2, 
they can be clonally derived, proliferate while maintain-
ing an undifferentiated state, and are capable of dif-
ferentiating into neurons and glia both in vitro and after 
transplantation back into the CNS [17, 18, 49-51]. Adult 
NSCs grown in culture thus provide an advantageous 
system for studying their cellular properties, including 
self-renewal and multipotency, and may also serve as a 
valuable model and substrate for developing therapeutic 
strategies.

Adult neural stem cell niche: architecture and sig-
nals that regulate adult neurogenesis

The “niche” is defined as the microenvironment that 
intimately supports and tightly regulates stem cell be-
haviors, including their maintenance, self-renewal, fate 
specification and development [52, 53]. While dormant 
NSCs might be present and can be derived from multiple 
regions of the adult brain, unique local niche structure 
seems to restrict active neurogenesis from adult NSCs to 
two discrete regions, SVZ and SGZ [22, 23]. The overall 
structure of SVZ and SGZ niches has been extensively 
characterized [23, 54, 55]. In the SVZ, the NSC niche 
spreads extensively from the lateral ventricle along the 
RMS to the OB to accommodate local generation of new 
neurons in the OB [31]. In the adult SGZ, the niche is 

less structurally apparent and largely confined within the 
SGZ hilus region [55]. These distinguishing features of 
each niche structure may thus allow regulation of adult 
SVZ or SGZ NSCs in a region-specific manner, exempli-
fied by a varying degree of modulation by external cues 
through neuronal activity [56-58]. Though the specific 
niche architecture in the SVZ and SGZ is distinct, there 
are common features, including their cellular niche com-
ponents and extracellular niche signals that regulate be-
havior of adult NSCs and their development.

Astroglia, ependymal cells, vascular cells, NSC 
progeny and mature neurons are among major cellular 
components of the neurogenic niche. Ample in vitro and 
in vivo evidence suggests pivotal roles of astroglia in 
regulating almost every developmental process of adult 
neurogenesis, including self-renewal, fate specification 
of adult NSCs, migration, differentiation and final syn-
aptic integration of new neurons [22, 50, 59, 60]. Mature 
ependymal cells seem to mainly regulate the quiescence 
and self-renewal of adult NSCs in the SVZ by direct 
cell-cell contact and diffusible signals including the pig-
ment epithelium-derived factor [61]. Through oriented 
cilia beating and formation of gradient guidance cues, 
ependymal cells also promote neuroblast migration along 
the RMS [62]. On the other hand, SGZ neurogenesis is 
known to be particularly sensitive to the surrounding 
neuronal activity. Thus, mature neurons near the neuro-
genic site are suited to function as niche cells, provid-
ing spatiotemporal regulation of adult neurogenesis in 
response to neuronal activity [56, 58, 63]. Accumulating 
evidence also points to prominent roles of vascular cells 
in regulating the proliferation of adult NSCs, with early 
studies focused on particularly the SGZ [64]. Recent 
three-dimensional imaging techniques have revealed that 
the SVZ vasculature comprises an extensive network of 
planar interconnected blood vessels [65, 66]. The con-
tacts between adult SVZ NSCs and vessels are unusually 
permeable and frequently devoid of astrocytic and peri-
cyte interferences, suggesting that blood-derived cues 
are gaining access to regulate adult NSCs. Though these 
individual cellular niche components have been well 
described so far, their exact modes of regulation, relative 
importance in different developmental processes of the 
adult NSCs, and their mutual cross-talk and coordination 
remain under intensive investigation.

Recent advances have led to the identification of major 
molecular niche signals for adult NSCs [67]. A plethora 
of developmental cues and physiological humoral fac-
tors have been shown to promote progenitor proliferation 
and maintenance, including Wnt [68], Sonic Hedgehog 
(Shh) [69], bone morphogenic protein antagonists [45], 
membrane-associated Notch signaling [70], leukemia in-
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hibitory factor [71], transforming growth factor-alpha [72] 
and cytokines [73, 74]. Growth factors, including FGFs 
and neurotrophins such as brain-derived neurotrophic 
factor, also significantly contribute to proliferation, sur-
vival and dendritic development of newborn neurons in 
the adult brain [75-78]. The extracellular matrix provides 
a platform for presentation of molecular cues and cel-
lular interaction within neurogenic niches [79]. Most of 
these factors elicit specific effects on both SVZ and SGZ 
NSCs in the adult brain, reminiscent of their roles in 
regulating NSCs in the developing nervous system. The 
cellular environments of NSCs in the adult versus devel-
oping nervous system, however, are strikingly different. 
The regulated production of diffusible factors from niche 
cells, therefore, may serve to translate a myriad of physi-
ological milieu into precise regulation of adult NSCs and 
strategic addition of new neurons into the existing neuro-
nal circuitry.

Functions of adult neural stem cells

Most types of adult stem cells outside of the nervous 
system, especially those from epithelial origins, function 
to maintain tissue homeostasis by providing a continual 
replacement for lost cells during physiological cell turn-
over or upon injury [52]. This general “cell replacement” 
view of adult stem cells also forms part of the initial 
skepticism for the functional relevance of adult NSCs 
and new neurons in any significant higher brain func-
tions. Accumulating evidence has clearly shown that 
a large number of newborn neurons can be generated 
from adult NSCs, and integrate into pre-existing neural 
circuits [80]. Adult neurogenesis in either the SVZ or 
the SGZ is also highly sensitive to environmental cues, 
physiological stimuli and neuronal activity [24, 56, 81, 
82], suggesting that the tailored addition of new neurons 
might serve specific neuronal functions. Direct functional 
evidence for adult NSCs and newly generated neurons, 
however, has not been obtained until recently.

Early efforts attempted to use anti-mitotic drugs or 
X-irradiation to assess the contribution of adult NSCs 
to animal behavior [83, 84]. Though certain learning 
deficits have been shown in early studies, the specific-
ity of manipulation was called into question because 
other proliferating precursor cells and mature cell types 
were affected. Using elegant mouse genetic approaches, 
Zhang et al. demonstrated that removal of a crucial regu-
lator of adult NSC proliferation, the transcription factor 
TLX [85], specifically from the adult NSCs resulted in 
marked deficits in spatial learning [86]. In contrast, sup-
pressed adult neurogenesis does not affect contextual 
fear conditioning, locomotion or diurnal rhythmic activi-

ties, indicating a selective contribution of adult NSCs to 
specific cognitive functions. More recent results based 
on cell type-specific and temporally controlled genetic 
ablation of adult NSCs or neurogenesis seem to suggest 
distinct modes of adult SVZ and SGZ contribution to 
brain functions [87]. While the SVZ NSCs and neuro-
genesis are essential for the maintenance of the OB, the 
hippocampal SGZ NSCs and neurogenesis provide a 
substrate for additional brain plasticity and are crucial for 
spatial learning and memory [87]. By maintaining a high 
rate of cellular turnover in the OB from the SVZ NSCs, a 
complement of new young neurons may confer the sen-
sory organ with a privilege in behavior adaptation, such 
as olfactory learning of novel odorants. Supporting this 
notion, OB neurogenesis is functionally correlated with 
olfactory discrimination learning, and new OB neurons 
are preferentially recruited during olfactory behavior [88, 
89]. Unlike other adult somatic tissues, the dentate gyrus 
appears to increase its volume over the lifetime of an 
animal through continued addition of new neurons. Ab-
lation of adult Nestin+ progenitors blocked the increase 
of its volume over time and resulted in behavior deficits 
in spatial learning and memory [87]. At the circuitry 
level, new neurons from adult SGZ NSCs possess unique 
physiological properties with enhanced plasticity during 
specific time windows and are preferentially recruited 
for information processing in hippocampus-dependent 
learning behaviors [90-92]. Thus, adult SGZ NSCs are 
essential for neuronal addition and hippocampal growth, 
potentially contributing to new memory formation via 
activity-dependent structural plasticity throughout life.

In addition to expanding plasticity for the hippocam-
pus, adult NSCs from the SGZ have also been suggested 
to play a significant role in mood regulation [93, 94]. On 
one hand, stress and various antidepressant treatments 
can profoundly affect adult hippocampal neurogenesis 
[93, 95]. On the other hand, disrupting antidepressant-
induced adult SGZ neurogenesis blocks behavioral re-
sponses to antidepressants [94]. Furthermore, “learned 
safety”, a physiological paradigm mimicking anti-de-
pressant treatment, promotes the survival of new neurons 
from adult SGZ NSCs and its antidepressant effects are 
abolished in mice with ablated adult hippocampal NSCs 
and neurogenesis [96]. Such mood regulation appears to 
be uniquely attributed to the SGZ NSCs, and might be 
explained by the convergent role of adult SGZ NSCs in 
expanding plasticity for the hippocampus: new neurons 
generated from the SGZ NSCs may gate contextually ap-
propriate new memory formation to prefrontal cortical-
striatal circuits in alleviating depression. The exact man-
ner by which adult SGZ NSCs and their progeny partici-
pate in alleviating depression or in learning and memory 
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remains a fascinating issue to be explored.

Cellular plasticity of adult neural stem cells

Under physiological conditions, adult NSCs follow 
a highly stereotypic differentiation path to generate 
predominantly inhibitory granule/periglomerular inter-
neurons in the OB and excitatory granule neurons in 
the dentate gyrus. While the local niches significantly 
shape such stereotyped neuronal differentiation, multi-
potent adult NSCs appear to be intrinsically plastic in 
their neural fate programing in vivo. In the adult SVZ, 
transient amplifying progenitors may revert to an adult 
NSC-like state when situated in certain conditions, such 
as heightened EGF receptor signaling [97]. Overexpres-
sion of the transcription factor Olig2 diverts the neuronal 
fate of transient progenitors from adult NSCs towards 
oligodendrocytes that migrate away from the SVZ to the 
corpus callosum [42]. Similarly, the neuronal subtype 
differentiation in the OB is not completely fixed, since 
maintenance of high level of Pax6 leads to almost com-
plete conversion of all precursors in the RMS towards a 
periglomerular neuron fate [42]. In the SGZ, retrovirus-
mediated overexpression of the transcription factor Ascl1 
redirected the fate of the adult NSCs predominately to 
oligodendrocytes [98]. Such role of Ascl1 is region-
specific, since no fate switch and oligodendrocyte dif-
ferentiation of SVZ progenitors occurred. In certain 
pathological conditions, such as brain injury, new neu-
rons appear to be also generated in local non-neurogenic 
sites, including the cortex [60, 99]. For example, non-
neurogenic, ventricular ependymal cells can be activated 
during stroke and surprisingly generate both neuroblasts 
and glia [100]. In the SGZ, loss of Disrupted-In-Schizo-
phrenia 1 during NSC differentiation causes accelerated 
neuronal integration and mispositioning of new neurons 
in a cell-autonomous fashion [101]. These findings in-
dicate that adult NSCs might be highly plastic in nature 
and are subject to a combination of extrinsic and intrinsic 
instructions during neural differentiation.

Consistent with their plastic nature in vivo, adult 
NSCs are also amenable to epigenetic reprograming in 
vitro [102]. Adult NSCs co-cultured with endothelial 
cells were converted to cells that stably express endothe-
lial markers and form capillary networks, independent of 
cell fusion [103]. This is particularly surprising because 
NSCs and endothelial cells are believed to be descen-
dants of the ectoderm and mesoderm, respectively. Adult 
NSCs may even contribute to the formation of tissues 
from all three germ layers when injected into early mouse 
embryo [104], although the possibility of cell fusion to 
host cells was not thoroughly examined. Nevertheless, 

it is an intriguing possibility that specific culture condi-
tions to expand adult NSCs in vitro may reprogram their 
epigenetic status and partially contribute to the expanded 
capacity of their developmental potential [46, 105-107]. 
Directed reprograming of adult NSCs to generate plu-
ripotent embryonic stem cell (ESC)-like cells further 
demonstrates the striking plasticity of adult NSCs (Figure 
2C). Somatic cell nuclear transfer or cell fusion with plu-
ripotent ESCs can reprogram most types of adult somatic 
cells into pluripotency, yet reprograming of NSCs using 
these methods appears to be particularly efficient [108]. 
In accordance with the epigenetic nature of reprogram-
ing, altering the epigenetic status of adult NSCs through 
DNA or histone modification can dramatically affect the 
efficiency of reprograming [109]. For genetic factor-
induced reprograming of somatic cells [110, 111], one 
factor Oct4 is sufficient to reprogram adult NSCs into 
induced pluripotent stem cells, whereas most other cell 
types require three or four factors [111-114]. The reduced 
requirement for reprograming of adult NSCs may be due 
to their close resemblance to ESCs, including unlimited 
self-renewal and expression of key transcription factors, 
such as Sox2 and c-myc [115]. These exciting findings 
suggest that adult NSCs may possess unusually plastic 
epigenomes that can be manipulated for reprograming, 
thus providing an important experimental model for un-
derstanding reprograming mechanisms and for therapeu-
tic applications.

Adult NSCs in brain disorders and therapeutic ap-
plication

Dysregulation or disruption of endogenous adult 
NSCs has been implicated in brain disorders. In the 
SGZ, ectopic integration of the progeny of adult NSCs 
into epileptogenic networks may directly contribute to 
mossy fiber sprouting and increased seizure susceptibil-
ity [116]. Aberrant regulation of adult NSCs per se has 
been increasingly studied in the context of brain tumors 
that are hypothesized to result from subversion of intrin-
sic properties of adult NSCs [117] (Figure 2C). As func-
tional roles of adult neurogenesis become more defined, 
it is evident that adult NSCs may well contribute to the 
capacity of the brain to maintain physiological tissue ho-
meostasis and protect the animal against anxiety, depres-
sion, and learning and memory deterioration.

One major implication of adult NSC study is pertinent 
to understanding brain tumor formation. Brain tumors are 
essentially a diverse group of neoplasm conditions that 
closely resemble most tissue organs in their cellular and 
functional hierarchy, as the homeostasis is governed by 
a distinct sub-population of stem-like cells in both situ-
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ations. There is now increasing evidence that the tumor-
initiating cells might arise from endogenous stem cells 
through accumulated multiple genetic and epigenetic 
alterations [117]. Cancer stem cells (CSCs) have been 
isolated from major malignant brain tumors, including 
medulloblastomas, glioblastoma and ependymomas, and 
they share several key properties of adult NSCs, such as 
long-term self-renewal [118-121]. These CD133+ brain 
CSCs form self-renewing neurosphere-like colonies in 
vitro, and can differentiate into one or more neural lin-
eages. Unlike adult NSCs, however, CSCs are genetical-
ly or epigenetically aberrant with growth factor-indepen-
dent proliferation and differentiation [122]. Certain CSCs 
also seem to further acquire the ability to take advantage 
of the vascular niche structure of normal adult NSCs in 
order to gain uncontrolled growth in metastatic tissue 
loci [123]. Importantly, multiple studies have shown that 
the purified population of CD133+ sphere-forming CSCs 
expedites tumor formation following transplantation into 
the immunodeficient mice [119, 121, 124]. It remains to 
be further investigated whether most brain tumors origi-
nate from endogenous adult NSCs. Though endogenous 
adult NSCs are attractive candidates for accumulating 
mutations due to their long-term self-renewal capacity, 
direct evidence is lacking on whether cancer-initiating 
events occur in NSCs, progenitors or differentiated cells. 
Clinically, many types of human brain tumors are known 
to frequently arise deep in the brain near the SVZ region 
[125]. In animal models, introducing the oncogene con-
stitutively active EGFR and deleting the tumor suppres-
sor gene Ink4a/Arf in NSCs led to high-grade glioma 
[126], while mutant mice deficient in p53 and with con-
ditional null allele of NF1 or PTEN in a GFAP+ popula-
tion developed glioblastoma at very high penetrance [127, 
128]. In the future, more sophisticated genetic models 
may clarify the issue of the origin(s) of different types of 
tumors, and pinpoint novel targets for potential therapeu-
tic interventions against malignant brain cancer.

Discovery of endogenous adult NSCs with unique 
capacity to expand in culture and diverse developmental 
potential for neuronal and glial differentiation also opens 
doors for therapeutic application of these cells. Adult 
NSCs provide tools for understanding disease mecha-
nisms and for drug screening using differentiated neural 
cells from these adult NSCs in vitro [26, 129]. Common 
neurological disorders and neurodegenerative diseases, 
including Parkinson’s disease, Alzheimer’s disease, spi-
nal cord injury, epileptic seizure, demyelinating diseases, 
stroke and multiple sclerosis, among others, are caused 
by, or accompanied with a major irreversible loss of neu-
rons and glial cells [130, 131]. The application of adult 
NSCs has been quite successful in several animal disease 

models and has yielded important insights for potential 
stem cell-based trials in human [130, 132, 133]. Sub-
stantial challenges remain before animal studies could be 
translated into clinically meaningful human therapy, such 
as efficient isolation and expansion of human NSCs; tu-
morigenicity of cells after transplantation; delivery meth-
ods for transplantation of cells; full maturation and func-
tional integration of transplanted cells. Ultimately, any 
effective cell replacement therapy would require disease-
specific application of stem cells, and equally impor-
tantly, the basic understanding of mechanisms regulating 
their in vitro proliferation, differentiation, in vivo integra-
tion and optimization of functional recovery in disease-
specific animal models. In addition to directly replacing 
lost cells in diseases, accumulating evidence suggests 
that transplanted NSCs may also ameliorate neuronal 
dysfunction through various other mechanisms, includ-
ing serving as pumps of neuroprotective agents [134], 
restoring homeostasis to the surrounding tissue [135] and 
acting in synergy with other established therapies [136].

Endogenous adult NSCs seem to be involved in tis-
sue repair during pathological conditions, such as brain 
injury, and thus may be therapeutically useful for self-
repair if properly mobilized [137]. For example, induced 
apoptotic degeneration of corticothalamic neurons in 
anterior cortex of adult mice was shown to stimulate pro-
liferation of local progenitors, and the generation of new 
pyramidal neurons that appeared to eventually integrate 
into the corticothalamic circuit [99]. In a brain ischemic 
model, endogenous adult NSCs were found to proliferate 
in response to ischemic stroke, and migrate to the hippo-
campal area regenerating local pyramidal neurons. This 
process is inherently limited, but is greatly enhanced by 
infusion of mitogens including FGF-2 [138]. Compared 
with transplantation of adult NSCs, mobilization of en-
dogenous adult NSCs for self-repair has advantages, in-
cluding reduced immune rejection, better location-specif-
ic recruitment, and enhanced maturation and functional 
integration of generated progeny. To realize the clinical 
potential of such endogenous adult NSCs, however, it is 
essential to understand modes and mechanisms of adult 
NSC mobilization, as well as to find novel means to 
maximize the extent of such mobilization for self-repair 
in a highly controlled manner.

Conclusions

After a century-long conceptual assumption on the 
fixed regenerative capacity of the adult mammalian brain, 
the surprising discovery of adult mammalian NSCs and 
continued neurogenesis throughout life heralds a new era 
for deeper understanding of brain plasticity. Adult NSCs 



www.cell-research.com | Cell Research

Dengke K Ma et al.
679

npg

not only contribute to the maintenance of neural tissue, 
but also offer expanded plasticity to key brain structures 
that are critical for learning and memory. Isolation and 
culture of adult NSCs provide an advantageous model 
for understanding the basic biology regulating self-
renewal, developmental potential and reprograming of 
stem cells, in addition to serving as a valuable source for 
cell replacement-based therapy in treating neurological 
disorders. Knowledge of adult NSCs both in vitro and 
in vivo also proves to be directly pertinent towards un-
derstanding the self-repair capacity of the brain, as well 
as yielding novel insights for brain cancer research and 
treatment.

Rapid and exciting progress in the field has shed light 
on the biology and clinical potential of adult NSCs. Still 
more unknowns and uncharted territories await further 
exploration. At the systems level, the exact manner by 
which adult NSCs and their progeny interact with and 
exert impact on the host tissue in the adult brain still re-
mains poorly understood. Evolutionarily, the functional 
significance of adult NSCs extant in mammals remains 
an open and intriguing question. The clinical promise of 
adult NSCs is yet to be realized, which requires a com-
prehensive understanding of the mechanisms of their 
properties and regulation, and their application through 
long-term collaborative efforts of both basic and trans-
lational research. There is no doubt that science of today 
is “changing the harsh decree of adult (brain) centers” 
viewed by Cajal a century ago.
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