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SUMMARY

Huntington’s disease (HD) is an inherited neurode-
generative disorder caused by an expanded stretch
of CAG trinucleotide repeats that results in neuronal
dysfunction and death. Here, The HD Consortium re-
ports the generation and characterization of 14
induced pluripotent stem cell (iPSC) lines from HD
patients and controls. Microarray profiling revealed
CAG-repeat-expansion-associated gene expression
patterns that distinguish patient lines from controls,
and early onset versus late onset HD. Differentiated
HD neural cells showed disease-associated changes
in electrophysiology, metabolism, cell adhesion, and
ultimately cell death for lines with both medium and
longer CAG repeat expansions. The longer repeat
lines were however the most vulnerable to cellular
stressors and BDNF withdrawal, as assessed using
a range of assays across consortium laboratories.
The HD iPSC collection represents a unique and
well-characterized resource to elucidate disease
mechanisms in HD and provides a human stem cell
platform for screening new candidate therapeutics.

INTRODUCTION

HD is an autosomal-dominant progressive neurodegenerative

disease, characterized by movement, cognitive, and emotional

disorders (Ross and Tabrizi, 2011; Walker, 2007). It is caused

by an expanded CAG repeat in exon 1 of the Huntingtin (HTT)

gene, which encodes an expanded polyglutamine stretch

near the N terminus of the 350 kDa (HTT) protein (Consortium,

1993). The presence of more than 40 CAGs invariably causes

disease within a normal lifespan, and longer repeats predict

younger disease onset (Langbehn et al., 2010). Cell death occurs

in many brain regions, but striatal medium spiny neurons (MSNs)

expressing dopamine- and cAMP-regulated phosphoprotein

(DARPP-32) undergo the greatest degeneration (Vonsattel

et al., 2008). Although the mutation causing HD is known, our

understanding of the pathogenesis is incomplete, and there is

no treatment to delay the onset or slow the progression of HD.

Mutant HTT is widely expressed, and believed to induce

neurodegeneration through abnormal interactions with other
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proteins. This leads to many cellular alterations, including

abnormal vesicle recycling, loss of signaling by brain-derived

neurotrophic factor (BDNF), excitotoxicity, perturbation of Ca2+

signaling, decreases in intracellular ATP levels, alterations of

gene transcription, inhibition of protein clearance pathways,

mitochondrial and metabolic disturbances, and ultimately cell

death (Zuccato et al., 2010). Many of these observations were

based on transfection of cDNAs encoding mutant HTT into

primary nonhuman cells or rodent and human cell lines (reviewed

in Ross and Tabrizi, 2011). In other studies, fibroblasts and

lymphoblasts from HD patients show abnormal Ca2+ responses,

enhanced toxicity in response to cellular stress, and CAG-

repeat-expansion-associated altered ATP/ADP ratios (Seong

et al., 2005). However, significant differences between rodent

and human cells and between nonneuronal cells and neurons

limit the utility of these models for accurately representing

human disease. Ideally, in vitro mechanisms of neuronal death

should be established in human neurons carrying the mutation.

Human embryonic stem cells (hESCs) can generate highly

specified human cell populations, including DARPP-32-positive

MSNs of the striatum (Aubry et al., 2008), and thus could provide

a method for modeling HD. In fact, hESCs have been derived

from embryos carrying HD mutations during preimplantation

genetic diagnosis (Bradley et al., 2011). However, the limited

access to HD embryos, the inability to assess the ultimate

phenotype of the never-developed embryo, and the rare deriva-

tion of very long CAG expansions all restrict the utility of this

approach. Many of these shortcomings could be overcome

using cells from HD patients with known patterns of disease

onset and duration that are reprogrammed to generate induced

pluripotent stem cells (iPSCs; Takahashi et al., 2007; Yu et al.,

2007). iPSCs, like hESCs, can be expanded indefinitely, and

retain the potential to differentiate into neurons, and thus may

hold great promise for modeling neurological diseases (for

review see Mattis and Svendsen, 2011). Indeed, human iPSC

lines have been generated from a variety of individuals, including

HD patients (Park et al., 2008). However, just two studies have

looked for phenotypic changes after differentiation using lines

with lower repeat lengths and single assay techniques (Zhang

et al., 2010; Camnasio et al., 2012).

Here, we report the generation of a panel of iPSC lines derived

from a range of HD patient and control fibroblasts. Through an

international consortium effort involving eight research groups,

we show that these iPSC lines have clear, reproducible CAG-

repeat-expansion-associated phenotypes upon differentiation.

This report represents a unique stem cell resource for the

mailto:clive.svendsen@cshs.org
http://dx.doi.org/10.1016/j.stem.2012.04.027


Cell Stem Cell

IPSCs from HD patients
research and industrial community that may be used to both gain

further mechanistic insights into HD and explore novel drug

targets for this devastating disorder.

RESULTS

Neural Stem Cells Generated from HD iPSCs Express
Mutant HTT and Show Specific Gene and Protein
Expression Patterns
Fourteen HD and control iPSC lines were generated by the

consortium (Tables S1 and S2 available online), eight of which

were used in the various experiments within this paper (summa-

rized in Table S3). The HD iPSC lines expressed the appropriate

pluripotency markers (Figures 1A and S1A and S1B, available

online) and normal karyotypes (Figures 1B and S1C). They also

downregulated the exogenously expressed genes (except Klf4,

which was turned off at later stages of differentiation; Fig-

ure S1A), and formed teratomas with all three lineages upon

transplantation into immune-compromised mice (Figure S1D).

Neural stem cells (NSCs) were generated from the HD and

control iPSC lines by lifting cells into a defined medium with

epidermal growth factor (EGF) and fibroblast growth factor-2

(FGF-2), both at 100 ng/ml, as described previously (Ebert

et al., 2009). These NSCs grew as spherical aggregates that

were expandable for up to 50 passages and could be frozen or

thawed with high efficiency, providing all consortium members

with a reliable source of NSCs that could be differentiated into

neurons and glia (via short protocol) and DARPP-32-expressing

striatal neurons (via long protocol) (Figure 1C).

All NSC lines grew at similar rates and displayed genomic

integrity by array comparative genomic hybridization (Agilent

244K arrays; data not shown). For most lines, the normal and

expanded CAG repeat alleles exhibited only mild instability

with passage or upon differentiation (data not shown). However,

for one HD line (HD109i.1), we found complete stability of the

short 19 CAG repeat and a minor increase (<10%) with passage

of the long CAG repeat from 110 in the original fibroblast line to

118 after 26 passages of the NSCs (Figure 1D). Immunoblots of

protein extracts with an antibody that recognizes normal and

mutant HTT revealed that HD NSCs expressed both proteins,

with the large CAG expansion in the HD180i.5 line showing

slower migration on the gel (Figure 1E). Mutant HTT was also

present in the HD60i.4 NSCs, but its similar size to normal HTT

precluded its separation with the western blot parameters. An

antibody that selectively detects expanded polyglutamine

demonstrated the presence of mutated protein in the HD NSC

lines (Figure 1F). Sections through growing NSC aggregates

(Figure 1G) showed no expression of the pluripotentcy markers

Oct4, SSEA4, or Tra-1-60 (data not shown) and robust expres-

sion of NSC markers nestin and PAX6 (Figure 1H).

Gene expression in three HD NSC lines (HD180i.5, HD109i.1,

and HD60i.4) was compared to that in two control lines

(HD33i.8 and HD21i.5) by whole-transcript expression profiling

and analysis. Analysis of Variance (ANOVA) found 1,601 genes

that were significantly differentially expressed with an absolute

value of fold change >2. Hierarchical clustering showed a clear

separation of HD and control NSC data sets (Figure 1I), with all

HD data sets in one cluster and all controls in another. Of the

1,601 genes, key pathways were identified using Ingenuity
C

Pathway Tools (IPA), including those involved in signaling, cell

cycle, axonal guidance, and neuronal development (Table 1).

Many of these changes are consistent with known transcriptional

changes in HD, while others represent pathways not previously

associated with HD pathogenesis. Some changes associated

with specific categories were only present in lines with longer

repeats, whereas others, such as changes in calcium signaling,

showed effects specific to the 60 repeat range. Finally, there

existed subtle differences between differentially expressed

genes from highly expanded (HD180i.5 and HD109i.1) lines

versus the HD60i.4 line, which would be expected based on

our subsequent observations that there are differences in pheno-

types between the lines (Table 1 and subsequent figures).

Changes were validated by qPCR for 16 selected genes signifi-

cantly altered in the HD NSCs (Table S5), supporting HD-related

transcriptional deregulation even at this early stage of develop-

ment. We also conducted protein profiling of the HD180i.5

NSCs relative to the control line using mass spectrometry and

the iTRAQ method. IPA identified 356 upregulated and 191

downregulated proteins. Among the pathways enriched in

upregulated proteins were those involving IGF-1 (Figure S2A;

Zuccato et al., 2010). Gene expression and proteomics data

were then compared by IPA, and several of the pathways

modulated in the HD versus control lines were found to be in

common. For example, a portion of the axonal guidance

pathway involved in growth cone and extracellular matrix for-

mation had altered protein expression, including BDNF and

TRK receptors altered in HD (Figure S2B).

Neural Progenitor Cells Exhibit CAG Repeat-Associated
Changes in Cytoskeleton, Adhesion, and Energetics
Previously a number of dominant changes in cell adhesion have

been observed using immortalized and primary Hdh CAG

knockin mouse striatal cells grown as monolayers on laminin

(Reis et al., 2011). We first attempted to reproduce this pheno-

type by dissociating and acutely plating HD and control NSCs

from spheres (short differentiation; Figure 1C) but found no

difference in aggregation rates (data not shown). We then

moved to identical neural progenitor cell (NPC) growth condi-

tions as used in the mouse studies by plating HD and control

NSCs onto laminin-coated coverslips with EGF and FGF-2 at

20 ng/ml (see Supplemental Experimental Procedures). Cells

from all the HD lines grewwell as an NPCmonolayer under these

conditions and were positive for nestin, Sox1, Sox2, Musashi,

and Pax6 (Figure S3A) and were capable of differentiating into

neurons and astrocytes upon mitogen removal (Figure S3B).

However, HD NPCs had significantly less binding of phalloidin-

peptide than control NPCs, suggesting changes in the actin

cytoskeleton (Figure S3C). Furthermore, in a cell-cluster forma-

tion assay where cells are dissociated, plated, and allowed to

form aggregates over time, all the HD NPCs showed significantly

decreased cell-cell adhesion properties (Figures 2A and 2B).

Previous studies using an allelic series of CAG knockin mouse

ESC lines have shown dominant CAG length-dependent reduc-

tions in energy metabolism (Jacobsen et al., 2011). Here, all

human-derived HD NPCs showed significantly decreased intra-

cellular [ATP] (Figure 2C) and decreased [ATP/ADP] ratios (Fig-

ure 2D), suggesting that energy metabolism is compromised in

both the HD60 and HD180 lines.
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Figure 1. HD Fibroblasts are Reprogrammed into Karyotypically Normal iPSCs that Generate NSCs

(A) All reprogrammed lines form colonies (brightfield) and express the pluripotency markers Oct4, Tra-1-60, and SSEA4 by ICC.

(B) G-banding showed that the HD180i.5 line had a normal karyotype, which was representative of all lines at the colony and NSC stages.

(C) Schematic of the different differentiation protocols used.

(D) CAG repeat analysis in HD109i.1 fibroblasts and NSCs over 26 passages showed a small increase in repeat length over time.

(E) Western blots of HTT expression in iPSC-derived NSCs with the HTT antibody 2166 demonstrate normal (bottom arrow) and mutant (top arrow) HTT (epitope:

amino acids 441–455).
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Differentiated NSCswith Large CAG Expansion Show an
Electrophysiology and Cell Death Phenotype
In order to establish whether HD NSCs could give rise to

neurons with electrophysiological properties, NSCs were disso-

ciated, plated on laminin, and allowed to differentiate up to

21 days in defined medium (short differentiation; Figure 1C)

before having whole patch-clamp recordings performed upon

them. MAP2a/b and GABA staining showed that all three lines

generated neurons (Figure 3A) with functional expression of

voltage-activated K+ currents (Figure 3B), voltage-activated

Na+ currents (Figure 3C), voltage-activated Ca2+ currents (Fig-

ure 3D), and GABAA receptor Cl� currents (Figure 3E). Maturing

neurons from all lines also generated induced (Figure 3F) and

spontaneous (Figure 3G) action potentials that correlated well

with expression of voltage-gated Na+ channels (Table S4).

Importantly, there were repeat-associated differences in the

neurons’ ability to fire action potentials, either spontaneously

or after current injection. In the HD180i.5/7 clones, no spontane-

ously firing neurons could be detected by 2 weeks of differenti-

ation and there was no cell survival by 3 weeks of differentiation,

suggesting a gradual dying off of cells over time (Table S4). This

was in contrast to the other lines, which continued to express

inward and outward currents and fire action potentials, all with

similar magnitudes, and showed no increase in cell death at

3 weeks (Table S4). This acute cell death phenotype of the

HD180 clones was reproduced by other consortium members

using cell imaging and cleaved caspase 3 quantification (Figures

3H and 3I).

HDNSCsGenerate Forebrain Cell Types andDARPP-32-
Positive Neurons
To further patternNSCs toward a striatal fate, wemodified a pub-

lished long differentiation protocol with stepwise differentiation

in defined media over a period of 72 days (Figure 1C; Aubry

et al., 2008). Using this protocol, which included more growth

factors and the plating of cell clusters rather than dissociated

cells, the widespread cell death phenotype seen for the HD180

line at 3 weeks using the short differentiation protocol was

avoided. The expression of both neural and striatal-specific

genes gradually increased over time in all lines with no obvious

disease-specific differences (Figure 4A and S4). In addition,

western blotting showed robust increases in cytoplasmic

DARPP-32 protein in differentiated cultures of the HD109i.1

line compared to NSCs (Figure 4B). Together these data suggest

that the HD NSCs were capable of producing neurons with

a striatal phenotype. We next used immunocytochemistry (ICC)

to visualize the developing striatal neurons (Figures 4C and

4D). Up to 10% of the cells from all lines were bIII-Tubulin- or

Map2a/b-expressing neurons, and up to 5% were DARPP-32/

Bcl11B positive, but variation between cultures and lines after
(F) Western blots of polyglutamine expression in iPSC-derived NSCs using the IC

lines.

(G) Representative image of an NSC sphere demonstrating the section sampled

(H) HD iPSC-derived NSCs can be expanded as spherical aggregates in a self

a consistent expression of the neural progenitor markers PAX6 and nestin in the

(I) Hierarchical clustering of the top 1,601 genes from NSCs is represented by th

HD and control NSC lines are separated into two clusters, confirming the differe

C

the long, complex differentiation was too large to determine

statistical differences between HD and control samples at

a single time point. There was also some variability in gene

expression at the endpoint of differentiation among three HD

and two control samples (Figure 4E), in contrast to the similarities

seen between lines at the NSC stage (Figure 1I). Interestingly, in

the HD NSCs patterned toward a striatal fate, the majority of

genes showed increased expression relative to controls (Fig-

ure 4E and S4). Key pathways affected in HD were identified

with IPA, including those involved in proliferation, signaling,

and cellular assembly (Table 1).

CAG-repeat-expansion-associated Phenotypes in
Neural Cultures Derived from HD NSCs
Wenext askedwhether HDNSCs patterned toward a striatal fate

had an increased risk of dying over time by using the powerful

approach of tracking live cells in longitudinal studies. Differenti-

atedHDNSCs (longprotocol) were transfectedwith a fluorescent

reporter and followed with automated imaging and a longitudinal

analysis system (Arrasate and Finkbeiner, 2005). The tracked

cells that were frequently seen to die in these experiments often

had morphological features of neurons, including tapering

dendrite-like processes and thin axon-like processes extending

hundreds of microns and tipped with growth cones (Figure 5A).

To further confirm the identity of tracked live cells, separate

cultures were fixed and cells with very similar morphologies

were shown to express Map2a/b (Figure S5). By imaging labeled

cells with neuronal-like morphology over time, we established

that the cumulative risk of death was significantly higher for the

HD180i.5 and HD60i.4 lines than the HD33i.8 line (Figure 5B).

This is likely due to the expression of expanded CAGs in these

lines, and indeed we showed that overexpressing 134 CAG

repeats in the control HD33i.8 line led to an increased risk of

death, similar to that seen in the HD180i.7 line (Figure 5C).

BDNF is reduced in HD patients, and may be connected with

striatal degeneration (Zuccato and Cattaneo, 2009). In order to

establish whether the HD lines may be sensitive to BDNF, we

removed it from the medium and tracked cells over time.

Following BDNF withdrawal, there was a higher cumulative risk

of death in the HD180i.7 cells than the HD33i.8 cells (Figure 5D).

Complementary studies using a nuclear condensation assay

confirmed that another HD line (HD109i.1) and an additional

clone (HD180i.5) also showed significantly greater amounts of

cell death following BDNF withdrawal from the media than the

HD33i.8 control line (Figure 5E). We also found a robust and

significant CAG-associated increase in caspase 3/7 activity

upon BDNF withdrawal, across multiple clones of the HD180i

line, although the HD60 line showed a more variable clonal

response (Figure 5F). Interestingly, the addition of four times

the normal concentration of BDNF to the HD180.7 cultures
2 antibody demonstrate mutant HTT with expanded repeats in the HD-derived

for (H).

-renewing condition. ICC on cryosections of NSC aggregates demonstrated

three lines.

e vertical bars (yellow for HD and green for control). The data set shows that

ntial expression of these genes into the two categories.
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Table 1. Categorization of Significantly Differentially Expressed Genes by IPA

Categories Genes

HD versus control

NSCs

cell signaling, organismal

development, genetic disorder

AGTR2, BAI3, CALCRL, CCKAR, CD97, CELSR1, CELSR2, CELSR3,

CMKLR1, CYSLTR1, FZD1, FZD3, FZD4, FZD7, FZD8, GPR124, GPR155,

GPR160, GPR174, GPR19, GPR37, GPR63, GPR64, GPR98, GRM3, HRH2,

HTR1D, HTR2A, LGR5, LPAR5, NMUR2, NPY1R, OPN1SW, P2RY10

cell cycle, cancer, cellular

assembly and organization

AASS, ABCA8, AGTR1, ARHGAP18, CDKN2A, CYGB, EMILIN1, EYA4,

F11R, F2RL2, HIST1H3A, IFI16, IFI30, IFI44, IGSF5, IRF6, JAM2, MFSD1,

NAP1L2, NIPAL2, NMI, NUAK2, ONECUT1, PMEL, SLC1A3, SP110, SP140L,

TBX2, TMEM173, TMEM62, TMOD2, UCHL1

connective tissue disorders,

genetic disorder, dermatological

diseases and conditions

CD44, CHI3L1, COCH, COL12A1, COL15A1, COL16A1, COL19A1, COL1A1,

COL1A2, COL21A1, COL24A1, COL25A1, COL3A1, COL4A1, COL4A2,

COL4A6, COL5A1, COL6A1, COL6A2, COL6A3, COL6A6, COL8A1, DDR2,

HAPLN1, ITGA10, ITGA11, MMP13, MMP2, MMP9, PSAT1, TIMP2

tissue development, embryonic

development, cellular development

ALX4, BACH2, CAMK2N1, DES, DLK1, DLX1, EPHA3, EPHA5, EPHA7,

EPHB1, FOSL2, GBX2, GJB2, HOXB13, ISL1, KLF4, KLF5, KLRG1, LHX2,

MAFB, MME, MST4, NUAK1, PAX6, PTPN13, PTPRF, SALL1, SOX2,

SYNC, SYNM

gene expression, cellular

movement, nervous system

development and function

ABCG2, AHNAK, AHR, APBB2, CSRP1, DYSF, EGFR, EMX2, ERRFI1, FABP3,

FABP7, GRB14, LRRFIP1, MATN2, MYOF, NFIA, NFIB, NFIC, NFIX, OLFM1,

PIR, POU4F1, RIN2, SEPP1, SPARCL1, TFAP2C, TLE2, UBASH3B, UTY

Long CAG repeat

versus control NSCs

neurological disease CAMK4, CHRM2, GABRB3, GJB6, GLRB, HTR2A, LIFR, PDP1, PLCB1,

SLC1A6, SMAD6, SNAP25

axonal guidance signaling EPHA3, EPHB1, FZD1, PAK1, PIK3C2B, PLCB1, PRKAG2, RAC2, SEMA3E,

SEMA4D, VEGFA, WNT8A

Medium CAG repeat

versus control NSCs

calcium signaling TNNT1, CHRFAM7A, MYH8, CREB5, GRIA4, RYR1, ACTC1, GRIK1, TP63,

TRDN, CHRND, PRKAR2B

skeletal and muscular system

development and function

ACTN2, ANK2, CACNA1S, CALCR, CHRND, ITGA2, MAP2K6, MYBPC1,

PLCE1, PSEN2, PTGS1, SGCA

Long CAG repeat

versus medium

long HD

genetic disorder ARPP21, ATP2A1, DGKB, TNNC2

calcium signaling ATP2A1, CHRND, GRIN3A, MYH3, TNNC2, TNNT2

HD versus control

striatal-like cells

cellular growth and proliferation,

cellular assembly and

organization, cellular function

and maintenance

AHNAK, AK1, ASS1, BICC1, CCDC80, CCNE2, CSF1, CTSH, CYTL1,

DAAM1, EGF, ERBB2, EXO1, FN1, FRRS1, GLIPR1, HGF, IGF1, IRX1,

LPCAT3, MAN1A1, MYEF2, NEK3, NPNT, PARVA, PTPRG, STAG1,

SUPT6H, TBC1D8, TP53, TSTA3

cell-to-cell signaling and interaction,

connective tissue development

and function, lipid metabolism

CDCP1, COL14A1, CTSA, DCN, EFEMP2, ELN, EMILIN1, EMILIN2, FBLN1,

FGF5, FKBP10, GLB1, HSPG2, MDK, MFAP2, MRC2, NEU1, NID2, PLA2G2A,

PLSCR4, PPFIBP1, PTGIS, S100A4, SDC2, SDC4, SERPINA3, TPD52L1

tissue development, embryonic

development, organ development

ADAMTS12, ADAMTS9, ALDH1A3, AXL, B4GALT1, C1R, CASP12, CFB,

CFH, COMP, DLK1, DOK5, EDA, EPHB4, FABP6, FOXF1, GREM1, GRN,

HBP1, NMRAL1, PRDX4, RARG, RTKN, SRPX, TENC1, TNFAIP8

connective tissue disorders,

genetic disorder, dermatological

diseases and conditions

ANTXR1, ANTXR2, COL11A1, COL12A1, COL16A1, COL1A1, COL1A2,

COL21A1, COL25A1, COL27A1, COL3A1, COL4A1, COL5A1, COL5A2,

COL6A2, COL6A3, COL6A6, CREB3L1, CTSK, DDR2, ITGA11, MMP13,

MMP16, MMP2, PCOLCE, THBS1

cellular assembly and organization,

cellular function and maintenance,

cellular movement

ANGPTL4, AP3B1, ARHGAP6, CAST, DAB2, DLL1, ERF, FURIN,

GORASP2, LAMA2, LAMB1, MMP14, PACRG, PCLO, PLAGL1,

PTPRN, PTPRN2, RASA4, RPSA, S100A11, SNTB2, SNX9, SYT4,

TMEM119, UTRN

HDversus control NSCsamples orHD versus control striatal-like sampleswere analyzed and organized by IPA into functional categories and networks.

Genes from these groupings are shown. Genes in bold represent significantly increased gene expression and nonbolded genes represent significantly

decreased gene expression. Only the most highly ranked groupings were selected. The top subsection shows the top ranked categories for all 1,601

differentially expressed genes in HD versus control NSCs. Three center subsections depicting representative genes from the top two categories are

shown. Long CAG repeat versus control NSCs contains changes between only the HD180 and HD109 lines, and not the HD60 line, compared to

controls. Medium CAG repeat versus control NSCs contains changes between HD60 and control. Long CAG repeat versus medium CAG repeat

contains genes from an analysis of HD180 andHD109 versus HD60. The representative genes in the subsections are also in the list of HD versus control

NSCs genes (top). The fact that there are such genes explains why subtle differences can be seen in the hierarchical clustering/heatmap between these

lines (Figure 1I). The bottom section shows the top five IPA categories for differentially expressed HD versus control striatal-like cells.
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Figure 2. NPCs with Expanded CAG Alleles Exhibit Altered Cell-Cell Adhesion and Energetics

(A) Representativemicrographs demonstrating similar dispersion of NPCs at time 0, for all genotypes, and cell-cell clusters formed at 12 hr, whichwere larger with

shorter CAG alleles, compared to NPCs with longer CAG alleles.

(B) Quantitative analysis of average NPC cluster size at time 0 and 12 hr, showing a significant difference at the 12 hr time point between the shorter CAG (HD33i.8

and HD28i.2) and the longer CAG (HD60i.4, HD60i.3, HD180i.5, and HD180i.7) alleles, consistent with decreased cell adhesion.

(C) The relative intracellular [ATP] values were decreased in NPCs with longer CAG alleles (HD60i.4, HD60i.3, HD180i.5, and HD180i.7) compared to those with

shorter CAG alleles (HD33i.8 and HD28i.2).

(D) The relative intracellular [ATP/ADP] ratio for the longer CAG alleles (HD60i.3, HD60i.4, HD180i.5, and HD180i.7) was significantly decreased compared to

NPCs with shorter CAG alleles (HD33i.8 and HD28i.2).

All graphs show plotted cell values normalized to the low CAG allele controls. Error bars indicate SD; *p < 0.05, **p < 0.01, and ***p < 0.001.
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significantly reduced the cumulative death, although not to

control levels (Figure 5G).

We wanted to establish whether exposing HD cells to excito-

toxic stress using glutamate could bring out a more robust

phenotype, as has been shown previously using hydrogen

peroxide on dopamine neurons derived from Parkinson’s
C

disease iPSCs (Nguyen et al., 2011). Using the short differentia-

tion protocol, we first confirmed that increases in [Ca2+]i were

evoked by extracellular KCl, g-aminobutyric acid, L-glutamate/

L-glycine, N-methyl-D-aspartic acid, kainate, and a-amino-3-

hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), demon-

strating that GABAA and the three subtypes of ionotropic
ell Stem Cell 11, 264–278, August 3, 2012 ª2012 Elsevier Inc. 269



Figure 3. iPSCs Can Be Differentiated into Mature, Electrophysiologically Active Neurons Susceptible to Glutamate Toxicity

(A) HD180i, HD60i, and HD33i lines differentiated for 14 days were positive for MAP2a/b and GABA (scale bar, 50 mm).

(B) Current density (pA.pF�1) versus voltage (mV) relationships for the outward, voltage-activated currents of the exemplar conventional whole-cell recording

shown in the inset in normal extracellular solution (ECS) and after iso-osmotic addition of 20mM tetraethylammonium chloride (TEA). Holding potential =�70mV.

(C) Current density (pA.pF�1) versus voltage (mV) relationships for the inward, voltage-activated currents of the same cell as in (B) in the presence of ECS and after

iso-osmotic replacement of Na+ with N-methyl D glutamine (NMDG). The exemplar family of Na+ currents in the inset was recorded in the presence of 20mM TEA

and is displayed on a fast time base. Holding potential = �70 mV.

(D) Current (pA) versus voltage (mV) relationships, evoked using a voltage-ramp protocol, for currents carried by Ba2+ (27 mM, iso-osmotic replacement of NaCl,

Ba2+) in the absence and presence of 2 mM of the L-type Ca2+ channel blocker, nifedipine (Ba2+ + Nif). Holding potential = �110 mV.

(E) Current density (pA.pF�1) versus voltage (mV) relationship for Cl� currents activated by 300 mM GABA. The inset shows a family of GABA-activated currents

recorded at the voltages shown in the main panel; GABA application is indicated by the bar above the traces shown and the voltage was stepped from�60mV to

the voltages indicated in the main panel at the point indicated by the arrow. Holding potential = �70 mV.

(F) Typical evoked action potential (upper trace) recorded under current-clamp in the conventional whole-cell patch-clamp configuration during the current

injection shown in the lower trace (from 0 to + 120 pA).

(G) Example of spontaneous action potential activity recorded under current-clamp (I = 0 mV) in the conventional whole-cell patch-camp configuration.

(H and I) Staining for cleaved caspase 3 revealed increased apoptotic death in the HD180i.5 line over time compared with the control line HD33i.8 (p < 0.05,

Student’s t-test and error bars are SEM).

Cell Stem Cell

IPSCs from HD patients
glutamate receptors were expressed in these cultures (Fig-

ure S6). Then, cultures were exposed to 20 s pulses of glutamate

and were examined using fura-2 ratiometric imaging of intracel-
270 Cell Stem Cell 11, 264–278, August 3, 2012 ª2012 Elsevier Inc.
lular Ca2+ concentration ([Ca2+]i). Interestingly, using this assay

there was a clear CAG-repeat-expansion-associated phenotype

in Ca2+ handling after 20 s pulses with glutamate (Figure 6A).



Cell Stem Cell

IPSCs from HD patients
Because in HD there is evidence for chronic, elevated exposure

of cells to glutamate (Behrens et al., 2002; Faideau et al., 2010),

we also examined cells differentiated under chronic exposure to

pathological levels of glutamate (150 mM), which significantly

exacerbated the Ca2+ dyshomeostatis in the HD180i lines

(Figure 6B).

We next assessed the effects of glutamate pulsing by using

the long differentiation protocol. Staining and quantification

of TUNEL-positive nuclei demonstrated that multiple 30 min

glutamate pulses led to an increased level of cell death in the

HD cultures (Figures 6C and 6D). While the HD33i line showed

apparent increases in death after pulsing, it also had a higher

basal level of cell death (40% versus 20%) and so this increased

death did not reach significance when compared to basal

levels. While repeated glutamate pulsing has previously been

shown to induce aggregation of the polyQ-expanded protein

ATXN3 in SCA3 iPSC lines (Koch et al., 2011), we did not see

aggregation of the expanded HTT protein by ICC in these

cultures (data not shown). Finally, we evaluated the effects of

other HD-related toxic stressors on cell survival. Both H2O2

(oxidative stress) and 3-methyladenine (3-MA) (autophagy inhi-

bition), but not lactacystin, led to an increased amount of cell

death in the HD lines when compared to controls (Figures 6E

and 6F). Together these data suggest that the risk of death for

HD iPSC differentiated cultures was far greater than that of

the control cultures. This was evident through multiple means

of stressing the HD-derived cells, including the withdrawal of

trophic support, pulsingwith glutamate, or the addition of cellular

stressors.

DISCUSSION

This study characterizes a set of CAG-repeat-expansion-

associated phenotypes in neural cells derived from HD iPSC

lines. A unique aspect of the current report was that we worked

as a consortium, using the same set of lines in a wide range of

cellular assays. HD is an ideal disorder for exploring the utility

of iPSCs for disease modeling because it is caused by a single

gene and there is a strong correlation between the length of

the expanded CAG repeat and the age of disease onset (Consor-

tium, 1993; Stine et al., 1993). In addition, there is a weaker,

though still highly significant correlation between the length of

the expanded repeat and rate of progression of some clinical

phenotypes (e.g., motor and cognitive disorder), though not

others (e.g., emotional disorders) (Rosenblatt et al., 2012). Inter-

estingly, we found that in some assays, such as cellular aggrega-

tion, overall energy metabolism, and cumulative risk of death

over time in the long differentiation protocol, both the HD60

and HD180 lines showed very similar pathological profiles that

were significantly different from control lines. However, in other

assays, such as cell survival in a short differentiation protocol,

BDNF withdrawal, and glutamate toxicity, only the HD180 line

(and, where tested, the 109 line) showed a robust phenotype.

Finally, in one assay we developed based on calcium homeo-

stasis following repeated glutamate pulsing, we saw a clear,

repeat-dependent phenotype with a graded response across

the HD33, HD60, and HD180 lines. The gene array studies also

suggested a gradation of expression changes, particularly those

that are differentially expressed in both the very long repeat lines
C

(HD180 and HD109) and the more moderate length repeat line

(HD60) compared to control lines, but there are also clear differ-

ences between the long and medium repeat lines within this

group. Together these studies suggest that there are clear

phenotypes associated with expanded CAG repeats, and that

the choice of assay and exact tissue culture conditions will deter-

mine the extent of the phenotypic gradation with the length of the

CAG expansion that can be detected.

The success of this model reflected the maintenance of

the HTT CAG repeat expansion following reprogramming, stem

cell expansion, and subsequent differentiation. The HD lines

demonstrated only mild CAG repeat instability in culture, and

the slight increase in repeat number with passaging for one of

the longest CAG lines (HD109) may correspond to the somatic

genomic CAG instability seen in tissues from HD patients

(Shelbourne et al., 2007). As expected, we found expression of

themutant protein in these cultures, although no inclusion bodies

were found in the cells before or after differentiation, or after the

addition of cellular stressors, possibly reflecting the long period

of time before inclusions develop in the human disease (Ross

andPoirier, 2004). It is important to note that while HTT inclusions

are pathognomonic in postmortem tissue, inclusion formation is

not linked to HTT cell toxicity (Arrasate et al., 2004).

Alterations in gene transcription and protein expression are

prominent in HD mouse models and human HD brain tissue

(Ross and Thompson, 2006). In dividing HD NSCs, which

had a very stable number of nestin-positive progenitors, we

observed HD-related changes in expression of genes including

SLC1A3 (Fan and Raymond, 2007), UCHL1 (Xu et al., 2009),

EGFR (Lievens et al., 2005), and TRK receptors (Apostol et al.,

2008; Zuccato et al., 2010), consistent with changes in human

HD brain (Hodges et al., 2006) and HD transgenic mouse stria-

tum (Luthi-Carter et al., 2000). Among the genes upregulated,

GLB1, PLSCR4, PTGIS, and PLA2 have been implicated in lipid

metabolism andmembrane fluidity, with possible consequences

for cell signaling and receptor function in HD (Karasinska and

Hayden, 2011). Additional altered pathways were identified,

including a network of G protein-coupled receptors, develop-

mental genes such as PAX6, and matrix metalloproteinases,

consistent with the involvement of this family of proteases in

mutant HTT toxicity (Miller et al., 2010). The concordance of

pathways and networks at RNA and protein levels further

suggests a primary dysfunction of these systems in this model

of HD. These results suggest that expanded CAG repeats were

having a biological effect even at the NSC stage, and further

analysis of these pathways may uncover factors that contribute

to emerging HD pathology (Molero et al., 2009).

Following cell differentiation to a striatal-like phenotype, we

found more genes with increased rather than decreased expres-

sion, as shown previously in studies of human HD striatum

(Hodges et al., 2006). Genes upregulated in human tissue and

differentiated HD iPSCs included p53, which is also upregulated

in HDmice andmay contribute to the cell death seen in this study

and those of others (Bae et al., 2005); syndecan4, involved in re-

cycling of lipids and cholesterol from degenerating terminals

(Blain et al., 2004); HMG box protein 1, a tumor suppressor

and transcription factor that accumulates in the Alzheimer’s

brain and may impair Ab clearance (Takata et al., 2004);

and SRPX, which contributes to language and cognitive
ell Stem Cell 11, 264–278, August 3, 2012 ª2012 Elsevier Inc. 271
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Figure 4. iPSCs Can Be Differentiated into a Striatal-like Phenotype

(A) qRT-PCR from day 0 (NSC stage) to 86 using the long differentiation protocol for HD180i.5/7, HD60i.3/4, and HD28i.2/HD33i.8 demonstrates that neural

(Mash1), neuronal (MAP2), and striatal-specific (DARPP-32 and Bcl11B) genes upregulate over time. Error bars are SEM.

(B) Western blots for DARPP-32 in HD109i.1 NSCs and differentiated cells also show upregulation in the cytoplasmic (C) but not nuclear (N) fraction upon

differentiation.
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Figure 5. HD iPSCs Show Increased Risk

of Death over Time in Culture and After

Trophic Factor Withdrawal

(A) Examples from a time series of images of two

differentiated cells at day 35 from the HD33i.8 and

HD60i.4 lines. Often cell bodies (hollow arrow, top

and bottom rows) extend 1–3 processes, which

are tipped by structures resembling growth cones

(solid arrow, upper row, day 1). Degeneration

and cell death were evident (bottom row, compare

days 3–5) from the blebbing and retraction of

neurites (closed arrows) and the loss of the cell

soma (open arrow). Scale bar, 50 mm.

(B) Kaplan-Meier analysis revealed that the cumu-

lative risk of death was higher for the HD180i.5

(hazard ratio is 1.4, p < 0.01, n = 337 cells) and the

HD60i.4 (hazard ratio is 1.5, p < 0.001, n = 164 cells)

lines compared to the HD33i.8 (n = 248 cells) line.

Total n = 750 cells; six experiments for HD60i.4,

seven for HD180i.5, and eight for HD33i.8.

(C) The cumulative risk of death is significantly

increased in HD33i.8 cells overexpressing (by

plasmid transfection) 134 CAG repeats (94 cells)

compared to cells overexpressing 17 CAG

repeats (92 cells). p < 0.01, hazard ratio is 1.7, n =

2 experiments.

(D) The risk of death was significantly higher for the

HD180i.7 line (195 cells) grown in BDNF compared

to the HD33i.8 line (134 cells) grown in BDNF.

Hazard ratio is 2.1 (p < 0.001). After BDNF removal,

the risk of death was significantly greater for the

HD180i.7 line (156 cells) compared to the HD33i.8

line (n=191cells); thehazard ratio is2.56 (p<0.001).

Removal of BDNF did not significantly increase the

risk of death for the HD33i.8 and HD180i.7 lines

compared to the lines grown in BDNF; however, the

increased risk of death for the HD180i.7 line after

BDNF removal approached significance (p = 0.08,

hazard ratio = 1.22, n = 4 experiments).

(E) BDNF was withdrawn for 48 hr, and cells were

fixed and labeled with Hoechst. Quantifying con-

densed nuclei as a measure of cell toxicity showed

that both HD109i.1 and HD180i.5 lines had sig-

nificantly more cell death after BDNF withdrawal,

whereas the HD33i.8 control line showed no

change. ANOVA; *p < 0.01 and error bars are SEM.

(F) Quantifying caspase 3/7 after BDNF was

withdrawn for 24 hr showed that both clones of the

HD180i line demonstrated significant increases in

caspase 3/7 activity. In addition to BDNF,

dbcAMP and VPAwere removed from themedium

because they increase endogenous BDNF tran-

scription (Pruunsild et al., 2011). Error bars are

SEM. *p < 0.05 ANOVA

(G) Addition of 43 BDNF reduced the cumulative risk of death for HD180i.7. The risk of death is significantly less for the HD180i.7 line plus 43 BDNF (108 cells)

compared to the HD180i.7 line alone (182 cells) (p < 0.001). The hazard ratio is 0.67. There is no difference in the cumulative risk of death between the HD33i.8

line (208 cells) that received 43 BDNF (156 cells; p = 0.43). The hazard ratio is 1.06 (n = 4 experiments).
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development (Royer et al., 2007). An advantage of this iPSC

model is that gene expression changes in human neurons can

be identified over time during the degeneration process and at
(C) HD180i, HD60i, and HD33i cells differentiated for 56 days expressed bIII-Tu

neuron), and GABA (GABAergic neuron). Nuclei are stained with Hoechst.

(D) HD109i.1 cells can be differentiated into mature, striatal-like neurons that exp

(E) Hierarchical clustering of the top 787 genes from striatal-like cells is represente

that most genes are upregulated in the HD lines and that they can be separated

C

specific stages of neuronal differentiation to illuminate patho-

genic mechanisms, in contrast to gene expression studies

done only in end-stage postmortem human HD brain tissue.
bulin (immature neuron), DARPP-32 (striatal), GFAP (glia), MAP2a/b (mature

ress MAP2a/b and Bcl11B.

d by the vertical bars (yellow for HD and green for control). The data set shows

into two defined clusters.
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Figure 6. HD iPSCs Have Increased Vulnerability to Stress and Toxicity

(A) Using the short differentiation protocol, Ca2+ dysfunction was significantly elevated in the HD lines compared to the HD33i.8 line (*p < 0.02; yp < 0.001).

(B) As in (A), except after a 14 day chronic pretreatment with pathological glutamate (150 mM). Significantly different from HD33i.8, *p < 0.005; HD60i.4,

yp < 0.0001.

(C) Images demonstrate TUNEL-positive nuclei (green) and total nuclei (blue) in HD and control lines after exposure to either no glutamate or five glutamate pulses.

(D) HD iPSCs were differentiated for 56 days before exposure to repeated 30 min pulses (0–5) of 50 mM glutamate. Cells were allowed to rest 24 hr before cell

death was analyzed. Compared to the zero glutamate pulse condition, TUNEL staining was significantly increased in both clones of the HD180i line after four or

five glutamate pulses and in both clones of the HD60i line after five glutamate pulses. The control lines showed no significant increase (one-way ANOVA with

Bonferroni posttest. Error bars are SEM. *p < 0.05, **p < 0.01, ***p < 0.001 ANOVA Error bars are SEM and *p < 0.05, **p < 0.01, ***p < 0.001.) after five pulses.

(E) Images demonstrate noncondensed nuclei (arrows) and bright condensed nuclei (arrowheads) in HD180i.5 and HD33i.8 differentiated iPSCs in either non-

treated media or media treated with 300 mM H2O2, 10 mM lactacystin, or 5 mM 3-MA.

(F) Nuclear condensation assay shows enhanced toxicity of HD180i.5 cells compared to control HD33i.8 cells upon treatment with H2O2 or 3-MA. *p < 0.05 and

error bars represent SEM.
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A number of dominant, CAG-repeat-expansion-associated

biochemical and cell biological phenotypes, such as altered

cell adhesion and altered energetics, have been observed in
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murine Hdh CAG knockin ESCs and derived immortalized lines

(Ginés et al., 2010; Jacobsen et al., 2011). Neural progenitors

derived from the HD60i and HD180i NSC lines were found to
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undergo less aggregation upon plating, and showed significantly

reduced ATP levels compared to control lines. This suggests

disruptions of cell adhesion and energy metabolism, which

may alter the cells’ ability to survive and differentiate appropri-

ately. This was reflected by a gradual reduction in the number

of neurons that could generate spontaneous and induced action

potentials over time in the HD lines, and ultimately cell death by

3 weeks of differentiation in the HD180i cultures. Thus, our

studies showed that under specific culture conditions, there

was a severe phenotype associated with endogenous levels of

mutant HTT expression.

Using a longer differentiation protocol that included the

addition of multiple growth factors to direct the cells toward

a striatal lineage (Aubry et al., 2008), it was possible to avoid

the acute stress-related neural cell death seen in the HD NSC

lines, again reinforcing the idea of stress being a key component

of these in vitro models of disease. A very sensitive single-cell

time-lapse assay (Arrasate et al., 2004) showed conclusively

that cells within the HD60i and HD180i lines had a significantly

greater cumulative risk of death than those in control lines.

Furthermore, a similar cell death pattern in control lines could

be seen due to overexpression of mutant, but not normal, HTT.

To uncover further phenotypes in cultures at single time points

may require stressors to the system, as shown in iPSC models

of Parkinson’s disease and SCA3 (Mattis and Svendsen, 2011;

Seibler et al., 2011). We found clear CAG-repeat-expansion-

associated differences in the vulnerability of cells to the addition

of exogenous stressors, such as H2O2 or 3-MA, or the repetitive

exposure to glutamate. This is of interest in light of studies

showing that HD may be associated with increased reactive

oxygen species (Túnez et al., 2011). Withdrawal of BDNF from

the medium also revealed a CAG expansion-associated toxic

phenotype, based on the time-lapse assay, nuclear condensa-

tion assays, and caspase activation. There is a long literature

on the role of BDNF in HD pathogenesis in relation to striatal

neuron vulnerability (Zuccato and Cattaneo, 2009), as well as

reported toxicity in response to BDNF withdrawal in a single

HD iPSC line (Zhang et al., 2010). Our new data further support

a central role of BDNF in HD. It will be of interest to test if there

is preferential cell toxicity in neurons expressing striatal markers,

as contrasted with other neurons in the culture. This kind of

preferential toxicity was seen for dopamine neurons in a recent

report on iPSCs derived from a patient with a LRRK2 mutation

(Nguyen et al., 2011). However, in HD, unlike in Parkinson’s

disease, there is widespread neuronal dysfunction and death,

especially in cases with long repeats, so cell toxicity may not

be limited purely to striatal neurons.

Our study is notable for detecting clear, CAG-repeat-expan-

sion-associated phenotypes, including cell toxicity, as would

be expected for a neurodegenerative disease such as HD. We

observed three variations on the relationship between pheno-

types and the length of the CAG expansion in cells differentiated

from HD iPSCs compared to controls. Some phenotypes were

present in the HD lines in a graded fashion that correlated with

the length of the CAG expansion. Others were only found in lines

with the longest CAG expansion. Still others were present to

a similar extent in lines with HD-associated CAG expansions

of any length. The ability to detect a relationship between the

length of the CAG expansion and dysfunction induced by
C

mHTT will likely depend on a number of factors including the

sensitivity and dynamic range of a particular assay and the cell

type being studied. Our data would also be consistent with a

model of HD pathogenesis in which the number of affected

pathways and, in some cases, the extent of their dysfunction

varies with the length of the CAG expansion. The CAG depen-

dence of neurodegeneration could therefore be an emergent

property of the cumulative effect of a multifarious network of

pathways affected by mHTT.

In conclusion, we have developed and characterized an iPSC

model of HD that includes multiple lines, clones, and repeat

lengths. Future experiments using an allelic series of cell lines

with a range of expanded repeat lengths will help define

the CAG-repeat-expansion-associated dependence of different

phenotypes. The utility of this model system includes elucidation

of HD cellular pathogenesis, development of HD-specific

biomarkers, and ultimately screening for small molecule or other

therapeutic interventions.

EXPERIMENTAL PROCEDURES

Generation and Characterization of iPSC Lines

Human fibroblast lines were obtained from two HD patients with expanded

CAG alleles of 60 and 180 repeats and from one non-HD sister of the former

with 33 repeat CAG alleles (Table S1 and Table S2). Reprogramming was

conducted by lentiviral transduction of six transcription factors (Oct4, Sox2,

Klf4, cMyc, Nanog, and Lin28) as previously described (Yu et al., 2007). A

number of clonal colonies with iPSC morphology (Figure 1A) were expanded

into stable iPSC lines named HD33i.x, HD60i.x, and HD180i.x, where ‘‘x’’

defines the clone number. Additional iPSC lines were generated from patient

fibroblast samples collected by consortium members (Table 1; HD109 and

HD21), using retroviral transduction and maintenance of iPSC colonies as

described in Takahashi et al. (2007). A previously generated control line

(HD28i.2) was also used in some experiments (WT4.2; Ebert et al., 2009).

Finally, HD lines have been generated, but not yet characterized, using non-

integrating methods (Yu et al., 2009). Karyotyping and teratoma formation

were performed, and are described further in the Supplemental Experimental

Procedures.

Generation of iPSC-Derived NSC Lines

NSC lineswere generated by treating iPSCcolonieswith collagenase (1mg/ml,

GIBCO) and lifting them from the feeder layers directly into Stemline medium

(Sigma) supplemented with 100 ng/ml basic FGF (Chemicon), 100 ng/ml

EGF (Chemicon), and 5 mg/ml heparin (Sigma) in polyhema-coated flasks to

prevent attachment. iPSC-derived NSCs were expanded as spherical aggre-

gates and passagedweekly with a chopping technique (Svendsen et al., 1998).

Neural Differentiation from NSCs

A short differentiation protocol with NSCs plated onto laminin-coated cover-

slips was used for some experiments (Figure 1C, see Supplemental Experi-

mental Procedures). In addition, a long differentiation protocol was used

based on a protocol from Aubry et al. (2008) (Figure 1C). Growth medium

containing EGF/FGF was removed from NSCs, and cells were plated on

laminin or allowed to aggregate for 5 days in NIM (1% N2 in DMEM:F12).

BDNF (20 ng/ml; Peprotech 450-02) was then added for 2 days. The medium

was then supplemented for 21 days with BDNF, rhShh (200 ng/ml; R&D 1845-

SH), and Dkk1 (100 ng/ml; R&D 1096-DK-010). The rest of the differentiation

was then completed in NIM with BDNF, dibutyryl cyclic AMP (dbcAMP,

0.5 mM; Sigma D0260) and valproic acid (VPA, 0.5 mM; Sigma P4546).

Medium was half-changed twice per week or as needed. If cells were differen-

tiated as aggregates, they were plated on day 42.

RNA Isolation andQuantitative Reverse-Transcriptase PCRAnalysis

Total RNA was isolated using the RNeasy Mini Kit (QIAGEN) and digested by

DNase I (RQ1 DNase, Promega). Complementary DNA was generated from
ell Stem Cell 11, 264–278, August 3, 2012 ª2012 Elsevier Inc. 275
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0.5–2 mg total RNA using a Reverse Transcript System (Promega A3500 or In-

vitrogen). qRT-PCR and primer sequences are described in the Supplemental

Experimental Procedures.

Immunocytochemistry

Cells were fixed in 4% paraformaldehyde (PFA) at room temperature, rinsed

with PBS, and permeabilized with 5% normal goat and/or donkey serum con-

taining 0.2% Triton X-100 for 30 min at room temperature. Cells were then

labeled with primary antibodies (listed in the Supplemental Experimental

Procedures) for 60 min at room temperature or overnight at 4�C, and then

the appropriate fluorescently tagged secondary antibodies for 60 min at

room temperature. Hoechst nuclear dye was used to label nuclei. Cells were

counted using stereological software (stereoinvestigator).

Western Blotting

Western blotting was performed per manufacturer recommendations. The

HTT-specific antibody 2166 (Millipore) was used to detect HTT protein in the

control and HD lines. The expanded polyglutamine-specific antibody IC2

(Chemicon) was used to detect mutant HTT in the HD lines.

BDNF Withdrawal

Cells were differentiated toward a striatal fate for 52–54 days and then trans-

ferred into basic NIM without BDNF, VPA, and dbcAMP for 48 hr. Cell death

was measured by quantifying condensed nuclei (described in below assay).

In addition, cells were differentiated toward a striatal fate for 42 days and

then transferred into basic NIM, NIM plus 10 ng/ml BDNF/0.25 mM VPA/

0.25 mM dbcAMP, NIM plus 20 ng/ml BDNF/0.5 mMVPA/0.5 mM dbcAMP,

or NIM plus 20 ng/ml BDNF alone for 24 hr. Caspase 3/7 activity wasmeasured

using a Caspase-Glo 3/7 assay (see Supplemental Experimental Procedures).

dbcAMP and VPA were removed from the medium in the above experiments

because they increase endogenous BDNF transcription but are not critical

for cell survival (Pruunsild et al., 2011).

Cell Stress and Toxicity Assays

To assess the effects of cellular stressors, differentiated iPSCs were treated

with 3-MA (5 mM) for autophagy inhibition, lactacystin (10 mM) for proteasome

inhibition, and hydrogen peroxide (H2O2, 300 mM) for oxidative stress. All

reagents were purchased from Sigma. Cells were then fixed with 4% PFA,

permeabilized with 0.3% Triton X-100, and stained with 0.4 mg/ml Hoechst

33342. Cell toxicity was assayed by quantifying condensed nuclei with the

Volocity software (Perkin-Elmer) with the Zeiss Axiovert 200 microscope and

is described further in the Supplemental Experimental Procedures. Cells

were considered as nonviable when their Hoechst intensity was greater than

200% of the control intensity.

To assess the effects of cellular toxicity, cells were differentiated for 56 days

and then treated with zero to five 30 min pulses of 50 mM glutamate (Sigma

G1251) in DMEM:F12 1:1, with 30 min no-glutamate rests between pulsing.

At the end of treatment, cells were maintained in conditioned media for

24 hr before fixation in 4% PFA. Effects of glutamate pulses were assessed

by quantifying TUNEL incorporation per total Hoechst-stained nuclei, accord-

ing to manufacturer recommendations (Promega DeadEndFluorometric

TUNEL System, G3250). Effects of glutamate pulses were also assessed

by measuring Ca2+ dyshomeostasis (see Supplemental Experimental

Procedures).

Automated Survival Assays

Cells were transfected with reporter genes and then plated and imaged as

described in Arrasate and Finkbeiner (2005), Arrasate et al. (2004), and our

Supplemental Experimental Procedures.

Electrophysiology and Calcium Imaging

Details are given in the figure legends and the Supplemental Experimental

Procedures.

Gene Expression Studies

Microarray experiments were performed using Affymetrix Human Gene 1.0 ST

Arrays. RNA integrity was verified using a Bioanalyzer 2100 (Agilent) and
276 Cell Stem Cell 11, 264–278, August 3, 2012 ª2012 Elsevier Inc.
processed at the UC Irvine Genomics High-Throughput Facility. Additional

details are in the Supplemental Experimental Procedures.

iTRAQ Procedure and LC-MS Analysis

Total cell lysates were prepared from HD33i.8, HD60i.4, and 180i.5 cell lines

(two duplicate samples from each cell line), and the proteins were precipitated

with TCA and subjected to the iTRAQ procedure.

HPLC Analysis of Adenine Nucleotides

HPLC analysis was performed on NPCs to analyze quantitative differences on

cellular ATP/ADP ratios, as described in the Supplemental Experimental

Procedures.

Phalloidin Assay

For phalloidin staining, cells were incubated in phalloidin reagent, as described

in the Supplemental Experimental Procedures.

Cell Cluster Formation Assay

Dissociated NPCs were plated and clump size was measured after 12 hr, as

described in the Supplemental Experimental Procedures.
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