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SUMMARY

The suspected link between infection by Zika virus
(ZIKV), a re-emerging flavivirus, and microcephaly
is an urgent global health concern. The direct target
cells of ZIKV in the developing human fetus are not
clear. Here we show that a strain of the ZIKV,
MR766, serially passaged in monkey and mosquito
cells efficiently infects human neural progenitor cells
(hNPCs) derived from induced pluripotent stem cells.
Infected hNPCs further release infectious ZIKV parti-
cles. Importantly, ZIKV infection increases cell death
and dysregulates cell-cycle progression, resulting in
attenuated hNPC growth. Global gene expression
analysis of infected hNPCs reveals transcriptional
dysregulation, notably of cell-cycle-related path-
ways. Our results identify hNPCs as a direct ZIKV
target. In addition, we establish a tractable experi-
mental model system to investigate the impact and
mechanism of ZIKV on human brain development
and provide a platform to screen therapeutic com-
pounds.
Zika virus (ZIKV), a mosquito-borne flavivirus, is now reported to
be circulating in 26 countries and territories in Latin America and

the Caribbean (Petersen et al., 2016). While infected individuals

can often be asymptomatic or have only mild symptoms, of

mounting concern are reports linking ZIKV infection to fetal

and newborn microcephaly and serious neurological complica-

tions, such as Guillain-Barré syndrome (Petersen et al., 2016).

The World Health Organization declared a Public Health Emer-

gency of International Concern on February 1 of 2016 (Heymann

et al., 2016). ZIKV infects human skin cells, consistent with its
major transmission route (Hamel et al., 2015). ZIKVwas detected

in the amniotic fluid of two pregnant women whose fetuses had

been diagnosedwithmicrocephaly (Calvet et al., 2016), suggest-

ing that ZIKV can cross the placental barrier. ZIKV was also

found in microcephalic fetal brain tissue (Mlakar et al., 2016).

Because so little is known about direct cell targets and mecha-

nisms of ZIKV, and because access to fetal human brain tissue

is limited, there is an urgent need to develop a new strategy to

determine whether there is a causal relationship between ZIKV

infection and microcephaly. Here we used human induced

pluripotent stem cells (hiPSCs) as an in vitro model to investigate

whether ZIKV directly infects human neural cells and the nature

of its impact.

We obtained a ZIKV stock from the infected rhesus Macaca

cell line LLC-MK2. We passaged the virus in the mosquito C6/

C36 cell line and titered collected ZIKV on Vero cells, an inter-

feron-deficient monkey cell line commonly used to titer viruses.

Sequences of multiple RT-PCR fragments generated from

this stock (Figure S1A) matched the sequence of MR766, the

original ZIKV strain that likely passed from an infected rhesus

monkey to mosquitos (Dick et al., 1952). We first tested several

human cell lines and found varying levels of susceptibility to

ZIKV infection (Table S1). Notably, the human embryonic kidney

cell line HEK293T showed low permissiveness for ZIKV infection

(Figure S1C).

To identify direct target cells of ZIKV in the human neural line-

age, we used a highly efficient protocol to differentiate hiPSCs

into forebrain-specific human neural progenitor cells (hNPCs),

which can be further differentiated into cortical neurons (Wen

et al., 2014). The titer of ZIKV in the infected humans is currently

unknown. We performed infections at a low multiplicity of infec-

tion (MOI < 0.1) and the medium containing virus inoculum was

removed after a 2 hr incubation period. Infection rates were

then quantified 56 hr later with RT-PCR using MR766-specific

primers (Figure S1A) and with immunocytochemistry using an

anti-ZIKV envelope antibody (Figures 1A and 1B). The hNPCs
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Figure 1. ZIKV Infects hiPSC-Derived Neural Progenitor Cells with High Efficiency

(A and B) Sample confocal images of forebrain-specific hNPCs (A) and immature neurons (B) 56 hr after infection with ZIKV supernatant, immunostained for ZIKV

envelop protein (ZIKVE; green) and DAPI (gray). Cells were differentiated from the C1-2 hiPSC line. Scale bars, 20 mm.

(C) Quantification of infection efficiency for different cell types, including hESCs, hiPSCs, hNPCS derived from two different hiPSCs, and immature neurons 1 or

9 days after differentiation from hNPCs. Both hESCs and hiPSCs were analyzed 72 hr after infection, whereas all other cells were analyzed 56 hr after infection.

Numbers associated with bar graphs indicate numbers of independent experiments. Values represent mean ± SD (*p < 0.01; Student’s t test).

(D) Production of infectious ZIKV particles by infected hNPCs. Supernatant from hNPC cultures 72 hr after ZIKV infectionwas collected and added to Vero cells for

2 hr. The Vero cells were further cultured for 48 hr. Shown are sample images of ZIKVE immunostaining (green) and DAPI (gray). Scale bars, 20 mm.

See also Figure S1 and Table S1.
were readily infected by ZIKV in vitro, with the infection

spreading to 65%–90% of the cells within 3 days of inoculation

(Figures 1A and 1C). Quantitative analysis showed similar results

for hNPCs derived from hiPSC lines of two different subjects

(Figure 1C). As a control, we also exposed human embryonic

stem cells (hESCs), hiPSCs, and immature cortical neurons to

ZIKV under the same conditions. hESCs and hiPSCs could

also be infected by ZIKV, but the infection was limited to a few

cells at the colony edge with reduced expression of the pluripo-

tent marker NANOG (Figures 1C and S1D; Table S1). Immature

neurons differentiated from hNPCs also exhibited lower levels

of infection under our conditions (Figures 1B and 1C). Together,

these results establish that hNPCs, a constitutive population of

the developing embryonic brain, are a direct cell target of ZIKV.

ZIKV envelope immunostaining exhibited the characteristic

intracellular ‘‘virus factory’’ pattern of flaviviruses (Romero-

Brey and Bartenschlager, 2014) (Figure 1A). We therefore tested

infectivity using supernatant from infected hNPCs and observed

robust infection of Vero cells (Figure 1D), indicating that produc-
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tive infection of hNPCs leads to efficient secretion of infectious

ZIKV particles.

We next determined the potential impact of ZIKV infection on

hNPCs. We found a 29.9% ± 6.6% reduction in the total number

of viable cells 66–72 hr after ZIKV infection, as compared to the

mock infection (n = 3). Interestingly, ZIKV infection led to signif-

icantly higher caspase-3 activation in hNPCs 3 days after infec-

tion, as compared to the mock infection, suggesting increased

cell death (Figures 2A and 2B). Furthermore, analysis of DNA

content by flow cytometry suggested cell-cycle perturbation of

infected hNPCs (Figures 2C and S2A). Therefore, ZIKV infection

of hNPCs leads to attenuated growth of this cell population that

is due, at least partly, to both increased cell death and cell-cycle

dysregulation.

To investigate the impact of ZIKV infection on hNPCs at the

molecular level, we employed global transcriptome analyses

(RNA-seq). Our genome-wide analyses identified a large number

of differentially expressed genes upon viral infection (Figure S2B

and Table S2). Gene Ontology analyses revealed a particular
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Figure 2. ZIKV-Infected hNPCs Exhibit Increased Cell Death and Dysregulated Cell-Cycle Progression and Gene Expression

(A and B) Increased cell death of ZIKV-infected hNPCs. Shown in (A) are sample images of immunostaining of hNPCs for ZIKVE (green) and cleaved-caspase-3

(Cas3; red) and DAPI (gray) 72 hr after ZIKV infection. Scale bars, 20 mm. Shown in (B) is the quantification. Values represent mean ± SEM (n = 6; *p < 0.01;

Student’s t test).

(C) Cell-cycle perturbation of hNPCs infected by ZIKV. Shown are sample flow cytometry analyses of distributions of hNPCs (from the C1-2 line) at different

phases of the cell cycle 72 hr after ZIKV or mock infection. For the mixture sample, mock and infected hNPCs were mixed at a ratio of 1:1 following propidium

iodide staining of each sample.

(D and E) RNA-seq analysis of hNPCs (C1-2 line) 56 hr after ZIKV or mock infection. Genes with significant differences in expression between infected and

uninfected hNPCs were subjected to GO analyses. The top 10 most significant terms are shown for downregulated (D) and upregulated (E) genes, respectively.

The �log10 p values are indicated by bar plots. An additional term of regulation of programmed cell death is also shown for upregulated genes (E).

See also Figure S2 and Table S2.
enrichment of downregulated genes in cell-cycle-related path-

ways (Figure 2D), which is consistent with our flow cytometry

findings (Figure 2C). Upregulated genes were primarily enriched

in transcription, protein transport, and catabolic processes

(Figure 2E). Consistent with increased caspase-3 activation

observed by immunocytochemistry (Figures 2A and 2B), RNA-

seq analysis revealed upregulation of genes, including cas-

pase-3, involved in the regulation of the apoptotic pathway

(Figure 2E). These global transcriptome datasets not only sup-

port our cell biology findings but also provide a valuable resource

for the field.

It is not known whether specific strains of ZIKV circulating in

geographically diverse parts of the world differ in their ability to

impact neural development, and the stain we used had been

discovered prior to the current reports of a potential epidemio-

logic link between ZIKV and microcephaly. Nevertheless, our re-

sults clearly demonstrate that ZIKV can directly infect hNPCs

in vitro with high efficiency and that infection of hNPCs leads

to attenuated population growth through virally induced

caspase-3-mediated apoptosis and cell-cycle dysregulation.

Infected hNPCs also release infectious viral particles, which pre-
sents a significant clinical challenge for developing effective

therapeutics to arrest or block the impact of infection. Future

studies using the hiPSC/hNPC model can determine whether

various ZIKV strains impact hNPCs differently and, conversely,

whether a single ZIKV strain differentially affects hNPCs from

hiPSCs of various human populations.

Flaviviruses tend to have broad cellular tropisms and multiple

factors contribute to pathogenic outcomes, including specific

cellular response and tissue accessibility. Dengue virus infects

cells of several lineages and hematopoietic cells play an essen-

tial role in the associated pathogenesis (Pham et al., 2012). West

Nile virus infects epithelial cells of multiple tissues and can be

neuroinvasive (Suthar et al., 2013).We note that ZIKV also infects

other human cell types, including skin cells and fibroblasts

(Hamel et al., 2015), and it remains unknown how ZIKV may

gain access to the fetal brain (Mlakar et al., 2016). The capacity

of ZIKV to infect hNPCs and attenuate their growth underscores

the urgent need for more research into the role of these cells in

putative ZIKV-related neuropathology. The finding that ZIKV

also infects immature neurons raises critical questions about

pathological effects on neurons and other neural cell types in
Cell Stem Cell 18, 587–590, May 5, 2016 ª2016 Elsevier Inc. 589



the brain, as well as potential long-term consequences. Intrigu-

ingly, an early animal study showed ZIKV infection of neurons

and astrocytes in mice and observed enlarged astrocytes (Bell

et al., 1971). Our study also raises the question of whether

ZIKV infects neural stem cells in adult humans (Bond et al., 2015).

In summary, our results fill a major gap in our knowledge about

ZIKV biology and serve as an entry point to establish a mecha-

nistic link between ZIKV and microcephaly. Our study also pro-

vides a tractable experimental system for modeling the impact

of ZIKV on neural development and for investigating underlying

cellular and molecular mechanisms. Of equal importance, our

hNPC model and robust cellular phenotype comprise a readily

scalable platform for high-throughput screens to prevent ZIKV

infection of hNPCs and to ameliorate its pathological effects dur-

ing neural development.
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