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SUMMARY

Neurogenesis and gliogenesis continue in discrete
regions of the adult mammalian brain. A fundamental
question remains whether cell genesis occurs from
distinct lineage-restricted progenitors or from self-
renewing and multipotent neural stem cells in the
adult brain. Here, we developed a genetic marking
strategy for lineage tracing of individual, quiescent,
and nestin-expressing radial glia-like (RGL) precur-
sors in the adult mouse dentate gyrus. Clonal
analysis identified multiple modes of RGL activation,
including asymmetric and symmetric self-renewal.
Long-term lineage tracing in vivo revealed a signifi-
cant percentage of clones that contained RGL(s),
neurons, and astrocytes, indicating capacity of
individual RGLs for both self-renewal and multiline-
age differentiation. Furthermore, conditional Pten
deletion in RGLs initially promotes their activation
and symmetric self-renewal but ultimately leads to
terminal astrocytic differentiation and RGL depletion
in the adult hippocampus. Our study identifies RGLs
as self-renewing and multipotent neural stem cells
and provides novel insights into in vivo properties
of adult neural stem cells.
INTRODUCTION

Stem cells are defined by two characteristic properties: the

capacity to renew themselves through mitotic cell division and

the capacity to differentiate into specialized cell type(s) (Gage,

2000; Weissman et al., 2001). Whereas capacity for self-renewal

and differentiation of various types of stem cells is generally

determined based on analysis of a population of cells, a bona

fide stem cell must exhibit both characteristics at the individual
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cell level. In contrast, lineage-restricted progenitors exhibit

limited potential for differentiation and self-renewal. Distinguish-

ing true stem cells from progenitors and understanding basic

properties of stem cells at the individual cell level are funda-

mental goals in stem cell biology and have significant implica-

tions for therapeutic application.

Neural stem cells are defined by their ability to self-renew and

generate different neural cell types, such as neurons, astrocytes,

and oligodendrocytes (Gage, 2000; Temple, 2001). In the devel-

oping cortex, neural stem cells first go through symmetric self-

renewal to expand the stem cell pool, followed by asymmetric

neurogenic cell division to generate neurons and, finally, asym-

metric gliogenic cell division to produce glia (Götz and Huttner,

2005; Kriegstein and Alvarez-Buylla, 2009). Elegant time-lapse

imaging studies have demonstrated both self-renewal and

differentiation of individual neural stem cells in vitro (Davis and

Temple, 1994; Noctor et al., 2001). Retroviral labeling also

showed that a single retinal progenitor can generate diverse

cell types in the postnatal rat retina (Turner and Cepko, 1987).

In addition, dye-labeled individual cells in the developing avian

neural crest can give rise to multilineage clones (Bronner-Fraser

and Fraser, 1991). Multipotent neural stem cells have also been

proposed to be the source of adult neurogenesis (Gage, 2000;

Kriegstein and Alvarez-Buylla, 2009; Ming and Song, 2011). In

the subventricular zone (SVZ) of the lateral ventricles, GFAP

and nestin expressing radial glia-like precursors produce new

interneurons for olfactory bulb and oligodendrocytes for corpus

callosum. In the subgranular zone (SGZ) of the dentate gyrus,

new granule neurons, and astrocytes are continuously gener-

ated. The current notion of self-renewing and multipotent adult

neural stem cells is largely defined by in vitro evidence that an

individual precursor isolated from the adult central nervous

system can respond to growth factors to generate neurospheres

or monolayer colonies and then can be induced to differentiate

into multiple neural lineages upon growth factor withdrawal

(Palmer et al., 1999; Reynolds and Weiss, 1992). Studies on

cell reprogramming have indicated that lineage-restricted neu-

ral progenitors, after exposure to growth factors, can display
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acquired properties that are not evident in vivo (Gabay et al.,

2003; Kondo and Raff, 2000; Palmer et al., 1999). Direct

evidence supporting the presence of endogenous adult neural

stem cells that are capable of both self-renewal and multilineage

differentiation at the clonal level in vivo is still missing.

Clonal analysis is particularly important for stem cell biology,

as cells with precursor properties are not always homogenous

(Snippert and Clevers, 2011). In relatively simple systems, such

as Drosophila and C. elegans, stem cells may be individually

identified by location and followed by in vivo lineage tracing (Li

and Xie, 2005). As a result, significant mechanistic insight and

many basic principles about stem cells have been learned from

clonal analyses in these model systems (Doe, 2008; Morrison

and Spradling, 2008). In contrast, little is known about clonal

properties of stem cells in mammalian systems in vivo. Almost

all studies on adult neurogenesis have been carried out at the

population level. Nucleotide analog BrdU and onco-retroviruses

have been commonly used for lineage tracing of proliferating

neural precursors in the adult brain as a population (Ming and

Song, 2005). Because neural stem cells in the adult brain are

believed to be largely quiescent (Doetsch et al., 1999; Morshead

et al., 1994; Seri et al., 2001), BrdU- and retrovirus-based

labeling approaches, which require active cell division, are not

effective for labeling these cells in vivo. In one previous attempt

using retroviruses and lentiviruses to target a small number of

Sox2+ neural precursors in the adult SGZ (Suh et al., 2007), no

cell clusters were found that indicate both self-renewal and

multilineage differentiation of labeled neural precursors. The

majority of labeled cell clusters contained only a single cell

(neuron, astrocyte, or Sox2+ precursor), suggesting a limited

capacity for self-renewal. In another study, adenovirus-mediated

Cre expression under the control of the GFAP promoter was

used to label a patch of radial glia-like cells in the adult SVZ of

the Z/EG reporter mice (Merkle et al., 2007). Along the rostrocau-

dal axis, these labeled precursors at different locations give rise

to different interneuron subtypes in the adult olfactory bulb, sug-

gesting the presence of a restricted and heterogeneous popula-

tion of neuronal progenitors. Genetically modified mice with

inducible Cre-ER recombination under different promoters

have also been used for in vivo fate mapping of adult neural

precursors, but all analyses so far were performed on the popu-

lation level (Dhaliwal and Lagace, 2011). These early studies

therefore leave a critical question unanswered: do endogenous

neural stem cells that display both self-renewal and multipoten-

tial differentiation at the single-cell level exist in the adult

mammalian brain? Alternatively, multilineage differentiation and

self-renewal capacity may represent an emergent property

derived from a mixed population of unipotent neural progenitors

that are either neurogenic or gliogenic and exhibit limited self-

renewal capacity under physiological conditions (Ma et al.,

2009).

Significant progress has been made toward understanding

mechanisms regulating adult neurogenesis (Ming and Song,

2011). A number of developmental signals, including Wnts,

Shh, FGFs, and BMPs, function as extrinsic factors to regulate

neural precursors in the adult brain. Several intrinsic factors,

such as Sox2, TLX, Pax6, Mash1, NeuroD, Mll1, DISC1, and

PTEN, regulate the proliferation of adult neural precursors and
their neuronal differentiation in vivo. However, little is known

about cellular and molecular mechanisms regulating the

behavior of quiescent neural precursors in the adult brain under

basal physiological conditions, largely due to a lack of specific

approaches to label and manipulate this population. In the

current study, we developed a noninvasive, genetic, and sparse

labeling approach for the analysis of individual quiescent nes-

tin+GFAP+ radial glia-like (RGL) precursors at the clonal level in

the adult mouse dentate gyrus. Our study has revealed

properties of RGLs as multipotent and self-renewing neural

stem cells in the adult brain. We have also identified different

modes of RGL self-renewal and novel roles of PTEN in regulating

the behavior and capacity of individual RGLs in vivo.

RESULTS

A Genetic Marking Approach for In Vivo Fate Mapping
of Individual Quiescent Nestin+ RGLs in the Adult Mouse
Hippocampus
Previous studies have shown that multiple neural precursor

subtypes express nestin (Figure 1A) and generate new granule

neurons in the adult mouse dentate gyrus (Dhaliwal and Lagace,

2011). To examine properties of nestin+ neural precursors at the

clonal level in the adult brain, we utilized a transgenic approach

in mice using the nestin-CreERT2 driver for inducible and sparse

labeling (Balordi and Fishell, 2007) (Figure S1A available online).

We first screened different reporter lines and identified a combi-

nation of nestin-CreERT2;Z/EG that did not display any leaky

GFP expression in the entire adult dentate gyrus in the absence

of tamoxifen injection (n = 8 animals). We next adjusted the dose

of tamoxifen to achieve sparse labeling. At the 13 dose (62 mg/

kg body weight; single i.p. injection; 2-month-old animals), there

were �8 GFP+ precursors within the entire SGZ in each dentate

gyrus at 2 days postinjection (dpi; Figure 1B). We used a set of

immunohistological markers and morphological criteria to

identify and quantify different cell types labeled with GFP in the

dentate gyrus (Figure S1B and Table S1). More than 70% of

GFP+ precursors in the SGZ exhibited radial glia-likemorphology

and expressed GFAP and nestin at 2 dpi (Figure 1C; referred to

as radial glia-like precursors [RGLs]). Importantly, no GFP+ RGLs

were positive for MCM2, a cell proliferationmarker (Maslov et al.,

2004) (n = 36 cells/6 animals; Figure 1D), consistent with a quies-

cent state (Seri et al., 2001). The remaining population of GFP+

cells in the SGZ were mostly Tbr2+ nonradial intermediate

progenitor cells (IPCs; Figures 1A and 1C), which were MCM2+

(Figure 1D). There were also occasional GFP+S100b+ mature

astroglia, which were distributed randomly across the whole

dentate gyrus (Movie S1). No GFP+ astrocytes were MCM2+

(n = 23 cells/3 animals at 2 dpi), and extremely few S100b+ astro-

cytes were positive for another cell proliferation marker, Ki67, in

the normal adult dentate gyrus (0.1% ± 0.1%; n = 2960 cells/3

animals), consistent with previous reports that mature astrocytes

mostly do not proliferate under basal conditions in the

adult hippocampus (Steiner et al., 2004). In contrast, injection

of the 4 3 dose of tamoxifen labeled a large number of precur-

sors in the SGZ at 2 dpi, the majority of which were MCM2+

IPCs (Figures 1B–1D). In addition, �20% of GFP+ RGLs were

MCM2+ (n = 53 cells/3 animals), whereas GFP+ astrocytes
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Figure 1. A Genetic Marking Strategy for

In Vivo Analysis of Individual Nestin+ Radial

Glia-like Neural Precursors in the Adult

Mouse Dentate Gyrus

(A) A schematic diagram indicating the current

view of lineage relationships and marker expres-

sion during adult hippocampal neurogenesis.

(B) Tamoxifen dose responses on the number of

labeled precursors in the dentate gyrus of adult

nestin-CreERT2;Z/EG mice. Shown is a sample

projected confocal image of GFP and DAPI. Scale

bar, 100 mm (10 mm for the insert). Also shown is

a summary of the number of GFP+ precursors in

each dentate gyrus. Values represent mean ± SD

(n = 5–12 dentate gyri).

(C and D) Characteristics of labeled cells 2 days

after induction with 13 or 43 dose of tamoxifen. In

(C), shown are sample confocal images of immu-

nostaining of GFP, GFAP, or nestin (for RGL); Tbr2

(for IPC); and S100b (for mature astrocyte), as well

as a summary of the percentage of GFP+ cells with

RGL characteristics among all labeled precursors

within the adult subgranular zone. Values repre-

sent mean ± SEM (n = 5; *p < 0.05; Student’s t

test). In (D), shown are sample confocal images of

immunostaining of MCM2 and the percentage of

GFP+ precursor subtypes that were MCM2+.

Values represent mean ± SEM (n = 3; *p < 0.05;

Student’s t test). Scale bar, 10 mm.

(E–G) Quantitative analysis of clonality at 1 and 2

mpi after induction with the 13 dose of tamoxifen.

Shown in (E) is the distribution of measured

distances between a GFP+ precursor and its

nearest GFP+ cell in the dentate gyrus at 2 dpi

(histogram) and data from a computer-simulated

distribution of distances (8 precursors and 14 as-

troglia; red line). Shown in (F) is a summary of

measured longest distance of a GFP+ cell to the

clone center at 1 and 2 mpi. Each dot represents

data from one clone. Also shown are box plots

(middle dot represents mean; middle line repre-

sents median; box represents 25th to 75th

percentile; whiskers are minimum and maximum

values). Shown in (G) is the calculated probability

as a clone (Pc) for each cell cluster based on

distance measurements in (F) and standard curves

in Figure S1C.

See also Figure S1 and Movie S1.
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were MCM2� (n = 169 cells/3 animals at 2 dpi). Thus, the

commonly used high doses of tamoxifen preferentially target

IPCs and activated RGLs in the dentate gyrus of adult nestin-

CreERT2 mice.

We next assessed the feasibility of lineage tracing at the clonal

level over the long term. We reconstructed individual dentate

gyri from serial sections for measurement of distance between

labeled cells in three-dimensional (3D) space (Movie S1). We

set uniform criteria to define an individual GFP+ clone based

on distance limits to the clone center (see Experimental Proce-

dures). To obtain a statistical assessment of whether a given

cell cluster was a clone, we developed a computational model

to simulate the cell distribution in the dentate gyrus depending

on the observed number of labeled precursors and mature

astrocytes under different experimental conditions (Figure S1C).

The simulation showed good agreement with the distribution of

the measured distance between any GFP+ precursor to the

nearest GFP+ cell at 2 dpi after induction with the 13 dose of

tamoxifen (Figure 1E). The probability of clonality (Pc) for each

cell cluster was then assessed using the simulation-derived

standard curves together with distance measurements and the

composition of cell types at 1 or 2 months postinduction (mpi;

Figure 1F). All clusters exhibited greater than 90% probability

as clones (Figure 1G). Importantly, this genetic labeling

paradigm exhibited small variability in both the number of

labeled precursors at 2 dpi and the number of given clones at

different time points after induction (Figure S1D). Taken

together, these results indicate that the sparse labeling

approach yields reproducible in vivo fate mapping of individual

quiescent RGLs, with a high confidence of clonality in the adult

mouse dentate gyrus.

Multiple Modes of Self-Renewal by RGLs in the
Adult Dentate Gyrus
We first quantified the activation rate of GFP+ RGLs in the adult

dentate gyrus using the 13 induction paradigm. The percentage

of clones that consisted of a single RGL gradually decreased

over time from induction (Figure 2A). To characterize RGL activa-

tion in detail, we monitored fate choices of individual RGLs

directly and unambiguously by focusing on pairs of GFP+ cells

that were in the process of cell division or had just divided and

remained in close proximity to one another (Pc R 99.8%). As

expected, we observed neurogenic asymmetric cell divisions

that gave rise to oneGFAP+RGL and oneGFAP� IPC (Figure 2B).

We also observed cases of cell clusters consisting of one

Sox2+GFAP+ RGL and one or more Sox2+GFAP� nonradial

precursors (Figure S2A), a cell type that is sometimes regarded

as the horizontal precursor (Lugert et al., 2010; Suh et al.,

2007). Interestingly, we observed the gliogenic asymmetric cell

division that generated one RGL and one GFAP+ bushy astroglia

(Figure 2C), suggesting that the glial fate choice can be made at

the level of the RGL. On the other hand, no oligogenic asym-

metric self-renewal of RGLs was observed (Figures S2B–S2E).

After the neurogenic cell division, the RGL returned to quies-

cence (MCM2�), whereas the IPC entered cell cycle (MCM2+;

Figure 2D). In contrast, after the gliogenic cell division, both the

RGL and astroglia became quiescent (MCM2�; Figure 2E).

Surprisingly, we observed cases of symmetric cell division
yielding two RGLs (Figure 2F), which have not been previously

reported in the adult brain. Taken together, these results demon-

strate at least three modes of RGL self-renewal in the adult

dentate gyrus (Figure 2G). Furthermore, RGLs can alternate

between active cell cycle and the quiescent state.

Long-Term Clonal Lineage Tracing of RGLs in the
Adult Dentate Gyrus
To determine the long-term fate of labeled RGLs, we character-

ized the composition of individual clones at 1 and 2 mpi using

immunohistological and morphological markers (Figure S1B

and Figure 3). A total of 54 clones were characterized at 1 mpi

using the nestin-CreERT2;Z/EG paradigm after induction with

13 tamoxifen. About 83% (45 out of 54) of clones contained at

least one RGL (Figure 4A). Among clones with RGL(s), �69%

(31 out of 45) of clones contained at least one RGL and one

more cell (Figure 4A), indicating active self-renewal. Among

these activated clones, �6% (2 out of 31) contained multiple

RGLswithout any other cell types (Figure 3A and Figure 4A), sug-

gesting symmetric self-renewal to expand the RGL pool without

differentiation. Importantly, �13% (4 out of 31) of clones con-

tained the neuronal lineage (e.g., Prox1+), bushy or stellate

astrocyte(s) (GFAP+ or S100b+), and at least one RGL (Figure 3B,

Figure 4A, and Movie S2), indicating both self-renewal and

multilineage differentiation of a single RGL within the 1 month

period. About 45% (14 out 31) of clones contained at least one

RGL and neuronal progeny without any astroglia (Figure 3C),

whereas �35% (11 out of 31) of clones contained at least one

RGL and astrocyte(s) without any neuronal progeny (Figure 3D),

indicating asymmetric self-renewal and unipotent differentiation.

The majority of clones contained less than six progeny (Fig-

ure 4B), with the three largest clones all containing a large

number of IPCs (Figure S4A).

We next characterized the composition of 98 clones at 2 mpi

after induction with 13 tamoxifen (Figure 4A). Compared to

1mpi, there was a significant decrease in the frequency of quies-

cent clones and an increase in the frequency of clones without

RGLs (Figure 4C). The frequencies of clones indicating sym-

metric or asymmetric self-renewal were similar between 1 and

2 mpi. In particular, the frequency of clones displaying both

self-renewal and multipotent differentiation did not significantly

change over time. Interestingly, one clone contained three

RGLs and two IPCs (Figure 3H; Pc = 97.9%), suggesting three

rounds of self-renewal during the 2 month period (Figure S3A).

Another clone contained two nestin+ RGLs, one Prox1+ neuron

with elaborated processes, and one S100b+ astrocyte (Figure 3I;

Pc = 97.5%), suggesting that one RGL had gone through three

different modes of self-renewal—symmetric, neurogenic, and

astrogenic—within the 2 month period (Figure S3B). Overall,

the number of mature progeny in each clone at 1 or 2 mpi was

small, with less than three neurons or four astrocytes (Figures

S4B and S4C). No GFP+ clones contained any NG2+ oligoden-

drocyte progenitors or mature oligodendrocytes, although

numerous NG2+ cells were present in the surrounding area

(Figures S2B–S2E).

We also characterized some animals at 12 mpi after induction

with the 0.53 dose of tamoxifen to reduce the number of induced

cells and the probability of clone overlapping (Figure 1B and
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Figure 2. Different Modes of Self-Renewal by Individual RGLs in the Adult Dentate Gyrus
(A) Time course of activation of labeled RGLs in the adult dentate gyrus after induction with the 13 dose of tamoxifen. Shown is the quantification of clones

consisting of a single RGL, indicating quiescence. Values represent mean ± SEM (n = 3–8 animals).

(B–F) Sample confocal images of GFP+ cells in the process of or right after RGL cell division (Pc R 99.8%). Shown are samples of neurogenic asymmetric cell

division (B andD), astrogenic asymmetric cell division (C and E), and symmetric cell division (F). The potential lineage relationship is indicated in the insert. R, RGL;

N, neuronal lineage; A, astroglia. Note that, after cell division, the RGL and newborn astroglia returned to quiescence (MCM2�; D and E), whereas the IPC

re-entered the cell cycle (MCM2+; D). Scale bars, 10 mm.

(G) A schematic diagram of three modes of self-renewal made by an RGL in the adult dentate gyrus.

See also Figure S2.
Figures S4D and S4E). Compared to 2 mpi, there was little

decrease in the frequency of quiescent clones but a dramatic

increase in the frequency of clones without RGLs (Figure 4D).

Importantly, a significant percentage of clones contained both

RGL(s) and differentiated progeny, indicating maintenance of

activated RGLs up to 1 year (Figure 4D).

Taken together, these results demonstrate that a significant

percentage of RGLs display properties of both self-renewal

and multipotent differentiation within a 2 month window in the

adult dentate gyrus, and at least some activated RGLs were

maintained over a 12 month period, therefore identifying

RGLs as one type of endogenous multipotent adult neural

stem cell.
1146 Cell 145, 1142–1155, June 24, 2011 ª2011 Elsevier Inc.
MADM-Based Cell Lineage Tracing of RGLs in the
Adult Dentate Gyrus
To confirm our findings using a different genetic model, we

employed the MADM reporter (mosaic-analysis with double

markers; Figure S5A) (Zong et al., 2005). In addition to sparse

labeling, the MADM-based approach has the advantage of a

two-color system: G2-X phase recombination leads to GFP

and/or RFP labeling of two daughter cells and all their progeny

from a single mitotic event, whereas G1/G0 phase recombina-

tion only generates GFP+RFP+ clones (Figure 5A). Nestin-

CreERT2;MADMmice exhibited no leaky GFP or RFP expression

in the entire adult dentate gyrus in the absence of tamoxifen

injection (n = 5 animals). Within a range between 186 and
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consisted of a GFAP+ RGL (1) and a GFAP+ bushy astrocyte (2), indicating self-renewal and unipotential astrogenic differentiation. The Pc value for each clone is

also shown. Scale bars, 10 mm.

(E–G) Sample confocal images of differentiated clones without an RGL. The clone in (E) consisted of a mature neuron with prominent dendritic spines (scale bar,
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(H) Sample confocal images of a clone indicating multiple rounds of self-renewal within 2 months. The clone consists of three nestin+ RGLs (1, 2, and 3) and two

IPCs. Scale bars, 10 mm. The potential lineage relationship is illustrated in Figure S3A.

(I) Sample confocal images of a clone indicating multiple modes of self-renewal and multilineage differentiation within the 2 month period, including symmetric,

neurogenic asymmetric, and astrogliogenic asymmetric self-renewal. The clone consisted of two nestin+ RGLs (1 and 2), one Prox1+ mature neuron with

elaborate dendritic arborization (3), and one S100b+ stellate astrocyte (4). Scale bars, 10 mm. The potential lineage relationship is illustrated in Figure S3B.

See also Figure S3 and Movie S2.
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Figure 4. Summary of Clone Properties at Different Time Points after Labeling

(A) Quantification of the frequency of different types of clones at 1 and 2 mpi after induction with 13 dose of tamoxifen. Data represent the relative frequency

among a defined subgroup of clone categories. The number of a specific type and total number of clones within a subgroup are indicated in parentheses. R, RGL;

A, astroglia; N, neuronal lineage.

(B) A histogram of the number of progeny within each clone at 1 mpi.

(C) Quantitative comparison of the frequency of different clone compositions observed at 1 and 2 mpi. The frequency of each type among all clones per dentate

gyrus is plotted for comparison using the same dataset as in (A). R, RGL; A, astroglia; N, neuronal lineage. Values represent mean ± SEM. *p < 0.05; Student’s

t test; n = 7 and 13 dentate gyri for 1 and 2 mpi, respectively.

(D) Quantitative comparison of the frequency of cloneswith quiescent RGLs (single R), cloneswith activated RGLs (R+X), and clones depleted of RGLs (No R) at 1,

2, and 12 mpi. The same data set as in (A) is used for 1 and 2 mpi. For 12 mpi, animals were induced with 0.53 dose of tamoxifen (n = 7 dentate gyri). Values

represent mean ± SEM. *p < 0.05; Student’s t test.

See also Figure S4.
373 mg/kg of tamoxifen (single i.p. injection; 2-month-old

animals), approximately two precursors were labeled in the

SGZ within the entire adult dentate gyrus at 2 dpi, representing

a much reduced labeling efficacy in comparison to the Z/EG

reporter (Figure 5B and Figure S5B). The majority of labeled

precursors in the dentate gyrus were RGLs (75%; n = 15 cells/

10 animals). Interestingly, all labeled cells were GFP+RFP+ at

2 dpi (Figure 5C), consistent with the notion that they were quies-

cent at the time of recombination. Thus, the MADM reporter

allows for even more stringent clonal analysis of quiescent

RGLs in the adult dentate gyrus.

At 2 mpi, distance measurements of labeled progeny to the

clone center showed a similar distribution between MADM and
1148 Cell 145, 1142–1155, June 24, 2011 ª2011 Elsevier Inc.
Z/EG reporters (Figure S5C), providing an independent valida-

tion of our criteria to define clones in this study. Importantly,

clone compositions at 2 mpi showed a similar frequency of

multipotent and self-renewing clones that contained the

neuronal lineage, astrocytes, and RGL(s) (Figures 5D and 5E;

Pc R 95%). All progeny were GFP+RFP+ (Figure 5E and Fig-

ure S5D). Quantitative analysis further showed that frequencies

of different types of clones, including those that were quiescent,

symmetrically self-renewed, asymmetrically self-renewed, and

differentiated, were similar between Z/EG and MADM reporters

(Figure 5F). Together, the convergence of results from two inde-

pendent reporters validates our clonal analysis approach and

provides strong evidence to support RGLs as endogenous
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Figure 5. MADM-Based Analysis of Nestin+ Radial Glia-like Neural Precursors in the Adult Brain

(A) A schematic diagram indicating potential color combinations from the MADM-based reporter depending on the timing of Cre-mediated recombination. G2-X

phase recombination leads to two-color labeling of two daughter cells and all of their progeny from a single mitotic event, whereas G1/G0 phase recombination

only generates GFP+RFP+ (yellow) clones.

(B) Tamoxifen dose responses on the number of labeled precursors in the dentate gyrus of adult nestin-CreERT2;MADMmice at 2 dpi. Values represent mean ±

SD (n = 3 dentate gyri).

(C) Sample projection confocal images of a single RGL labeled with both GFP and RFP in the adult dentate gyrus. Scale bars, 100 mm (10 mm for the insert).

(D) A summary of probability as a clone (Pc) for all labeled cell clusters in the MADM study. The probability was calculated based on the computational simulation

(in Figure S1C) and direct distance measurement of the longest distance from progeny to the clone center (Figure S5C).

(E) Sample confocal images of a clone indicating self-renewal and multilineage differentiation within the 2 month window. Shown are confocal images of a clone

consisting of a GFAP+ RGL (1), an immature neuron (2), a GFAP+ bushy astrocyte (3), and a cluster of IPCs (4) and diagrams of the potential lineage relationship.

Scale bars, 10 mm.

(F) Comparison of the frequency of clone compositions observed at 2 mpi between Z/EG (n = 98 clones; same as in Figure 4A) and MADM reporters

(n = 23 clones). The frequency of each type among clones from all animals is plotted. R, RGL; A, astroglia; N, neuronal lineage.

See also Figure S5.
self-renewing and multipotent neural stem cells in the adult

mouse hippocampus.

Role of PTEN on RGL Activation and Modes
of Self-Renewal in the Adult Dentate Gyrus
To investigate the molecular mechanism regulating behavior of

RGLs, we examined the role of PTEN, a tumor suppressor that

regulates several types of somatic stem cells (Hill and Wu,

2009). We generated nestin-CreERT2;Z/EG;Ptenf/f mice (Fig-

ure S6A; PTEN cKOmice) and used the same 13 dose of tamox-

ifen for induction. As in nestin-CreERT2;Z/EG (control) mice,
�73% of labeled cells were RGLs at 2 dpi in adult PTEN cKO

mice (n = 5 animals; Figure S6A). Immunostaining of PTEN

confirmed its deletion in GFP+ cells in PTEN cKO mice

(Figure S6B).

We next examined the short-term impact of targeted condi-

tional Pten deletion in individual RGLs. At 2 dpi, the percentage

of clones consisting of a single RGL was dramatically reduced

in PTEN cKO mice (Figure 6B). Strikingly, 21% of clones con-

tained RGLs dividing symmetrically, which was not observed

in control mice at 2 dpi (Figure 6B). Thus, PTEN functions cell

autonomously within RGLs to maintain quiescence and inhibit
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Figure 6. Roles of PTEN in Regulating Quiescence, Self-Renewal Modes, and Differentiation of RGLs in the Adult Dentate Gyrus

(A) Sample confocal images of a clone consisting of two RGLs with Pten deletion at 1 mpi. Scale bars, 10 mm.

(B) Rapid activation and symmetric self-renewal of RGLs after Pten deletion in individual RGLs. Shown is the quantification of quiescence and symmetric

self-renewal of RGLs in control (n = 6) and PTEN cKO mice (n = 5) at 2 dpi. Values represent mean ± SEM (**p < 0.01; *p < 0.05; Student’s t test).

(C and D) Quantitative comparison of the frequency of different clone types between control (n = 7) and PTEN cKO (n = 6) at 1 mpi. Shown are pie charts of the

relative frequency among each category (C) and the summary of the frequency of different types among all clones (D). The detailed analysis of differentiated

clones is shown in Figure S6G. R, RGL; A, astroglia, N, neuronal lineage. Values represent mean ± SEM (**p < 0.01; *p < 0.05; Student’s t test).

See also Figure S6.
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symmetric self-renewal of RGLs in the adult dentate gyrus under

basal physiological conditions.

Role of PTEN on Maintenance and Differentiation
of RGLs in the Adult Dentate Gyrus
Finally, we examined the long-term consequences of conditional

Pten deletion in individual RGLs. Assessment of clonality based

on distance measurements at 2 dpi and 1 mpi (Figures S6C and

S6D) and simulation showed > 90% Pc values (Figure S6E).

Compared to control mice at 1 mpi, PTEN cKO mice exhibited

decreases in the percentage of quiescent clones consisting of

a single RGL and in the percentage of unipotent or multipotent

clones (Figures 6C and 6D). This reduction was accompanied

by increases in the percentage of clones with multiple RGLs

and no differentiated cells (Figures 6A and 6D) and the

percentage of clones with no RGLs in PTEN cKO mice (Fig-

ure 6D). Because the increase in the frequency of RGL depletion

through differentiation was greater than that of expansion

through symmetric self-renewal, Pten deletion led to a net reduc-

tion of a heterogeneous RGL pool over the 1 month period

(Figure 6D).

To determine how Pten deletion in RGLs impacts their differ-

entiation, we examined the composition of clones without

RGLs at 1 mpi in detail. Notably, some GFP+ cells exhibited

morphological features similar to RGLs, such as multiple

branches in the granule cell layer, but lacked nestin expression

(Figure S6F). These cells may represent a transitional stage of

direct differentiation of RGLs into astrocytes (referred to as

transition astroglia; TAs), which has been observed during

astrocyte differentiation in the developing dentate gyrus

in vivo (Brunne et al., 2010). In PTEN cKO mice, there was a

dramatic increase in clones containing multiple TAs only and

in clones consisting of multiple astrocytes only (Figure S6G).

In addition to an increase in glia differentiation, the number of

neurons per neurogenic clone was increased in PTEN cKO

mice (1.2 ± 0.1 for control; 2.8 ± 0.5 for PTEN cKO). Further-

more, GFP+ dentate granule neurons without PTEN exhibited

increased soma size, ectopic primary dendrites, and increased

total dendritic length, as previously reported (Figure S6B) (Kim

et al., 2009).

Taken together, these results suggest that PTEN exerts

multiple functions in RGLs in the adult brain under basal physio-

logical conditions, including maintaining their quiescence and

multipotency through inhibition of symmetric self-renewal and

astrocytic terminal differentiation.

DISCUSSION

It has been decades since the initial discovery of postnatal

mammalian neurogenesis (Altman and Das, 1965) and in vitro

derivation of multipotent neural stem cells from adult mouse

brains (Reynolds and Weiss, 1992). Yet, a fundamental ques-

tion in neural stem cell biology has not been hitherto ad-

dressed: are multipotent and self-renewing neural stem cells

present in the adult mammalian brain? A number of cell types

have been proposed to serve as putative neural stem cells in

the adult brain, including GFAP+ radial precursors (Doetsch

et al., 1999; Seri et al., 2001), Sox2+ nonradial precursors
(Suh et al., 2007), and SVZ ependymal cells in response to

injury (Carlén et al., 2009). Here, we developed a noninvasive,

reproducible, and genetic sparse labeling strategy to determine

properties of individual nestin+GFAP+ radial glia-like pre-

cursors in vivo. Using two independent reporters, our study

demonstrates the existence of self-renewing and multipotent

endogenous neural stem cells in the adult mammalian brain

(Figure 7A). We also discovered multiple modes of self-renewal

and novel functions of PTEN in regulating the behavior and

potential of adult neural stem cells in vivo (Figure 7B). These

findings have important implications in defining the neural

stem cell lineage and understanding their homeostasis in the

adult brain.

Clonal Approach for In Vivo Analysis
of Neural Stem Cells in the Nervous System
Several approaches have previously been attempted for clonal

lineage tracing in mammalian systems (Snippert and Clevers,

2011). The classic retrovirus-based approach (Sanes et al.,

1986; Turner and Cepko, 1987) has not yet demonstrated

both self-renewal and multilineage differentiation from a single

precursor in the developing or adult brain in vivo (Morshead

et al., 1998; Suh et al., 2007). The MADM-based genetic

approach was recently developed for clonally tracing neuronal

lineages during development (Zong et al., 2005). Our study

represents a genetic effort to perform in vivo clonal analysis

on neural precursors in the adult brain. This approach may

be adapted for clonal analysis of precursors in and outside of

the nervous system. This system can be improved with better

Cre-driver lines for more specific targeting of a subtype of

precursors and more versatile reporters, such as the Confetti

(Snippert et al., 2010) and Brainbow systems (Livet et al.,

2007).

Our genetic labeling approach is highly reproducible and

provides a high spatial resolution for analysis of individual

precursor behavior in vivo with minimal perturbation. Further-

more, this approach targets quiescent RGLs, which have been

largely inaccessible due to technical limitations. Some early

studies have relied on the BrdU retention approach, which

remains controversial, to identify quiescent precursors (Snippert

and Clevers, 2011). Others have used antimitotic treatments to

eliminate rapidly proliferating precursors and select for the

quiescent population, which does not accurately represent

physiological conditions (Doetsch et al., 1999; Seri et al.,

2001). Our noninvasive genetic approach has led to several

surprising findings. First, the astroglial fate choice of neural

precursors appears to be underestimated in the adult mouse

dentate gyrus. Previous studies using BrdU and retroviruses

suggested that neurogenesis is ten times more frequent than

gliogenesis (Steiner et al., 2004). Instead, frequencies of astro-

glial and neuronal generation were similar in the clonal analysis

(Figure 4C). One potential reason for this difference is that

neurogenic asymmetric division of an RGL generates an IPC

that goes through several rounds of cell division (Figure 2D),

whereas gliogenic asymmetric cell division of an RGL generates

an astroglia that quickly exits the cell cycle (Figure 2E). Addition-

ally, astrocytes can be generated through direct differentiation of

RGLs without cell division (Figures S6F and S6G). Thus, BrdU
Cell 145, 1142–1155, June 24, 2011 ª2011 Elsevier Inc. 1151
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Figure 7. Models of Nestin+ Radial Glia-like Neural Stem Cell Behavior in the Adult Hippocampus under Basal Conditions and after Pten

Deletion

(A) Amodel of the lineage relationship of RGLs in the young adult mouse hippocampus under basal conditions. There are at least three critical choice points: (1) an

RGL decides to remain in quiescence or to become activated and enter the cell cycle; (2) an activated RGL can undergo one of three modes of self-renewal: (i)

symmetric self-renewal to expand the RGL pool, (ii) neurogenic, or (iii) astrogliogenic asymmetric self-renewal to generate a differentiated progeny while

maintaining the RGL pool; and (3) The RGL makes a choice between returning to quiescence and maintaining stemness or differentiating into an astrocyte via

transition astroglia. It is also possible that a quiescent RGL can directly differentiate into an astrocyte without cell division. The thickness of the arrow indicates the

relative probability of each choice.

(B) A model on the role of PTEN in regulating RGLs in the young adult mouse hippocampus. Pten deletion in an RGL rapidly mobilizes it into cell cycle and

fosters symmetric self-renewal. Over the long term, PTEN loss promotes terminal differentiation of RGLs into astrocytes. PTEN loss in newborn neurons also

leads to increased soma size and dendritic complexity. Orange and blue arrows indicate increased and decreased probability, respectively.
and retroviral approaches are biased toward labeling IPCs,

leading to an underestimation of glial fate choice. Importantly,

our study provided direct evidence that the glial fate choice

can be made at the level of neural stem cells. Second, the

amplification capacity of IPCs and neuroblasts appears to be

underappreciated. Instead of an estimated one to two rounds

of cell division by transient amplifying cells (Seri et al., 2001),

an individual clone can contain up to 18 IPCs in a tight cluster

(Figure 3B andMovie S2), suggesting up to five cell cycles. Third,

each round of activation of an individual RGL produces a small

number of mature neurons and astrocytes under basal condi-

tions. Consistent with a recent finding of significant cell death

during the transition from IPCs to neuroblasts in adult hippo-

campal neurogenesis (Sierra et al., 2010), all large clones

observed in this study contained IPCs. These results suggest

that the hippocampal circuitry tightly regulates new cell

incorporation.
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Multipotent and Self-Renewing Neural Stem Cells
in the Adult Brain
Little is known about basic properties of putative stem cells at

the single-cell level in mammalian systems in vivo (Snippert

and Clevers, 2011). Consistent with previous observations

(Lugert et al., 2010; Seri et al., 2001; Suh et al., 2007),

nestin+GFAP+ RGLs were largely quiescent based upon MCM2

expression and MADM analysis. Once activated, a significant

percentage of RGLs display both self-renewal and multipotent

differentiation within 1 month in young adult mice. Some RGLs

went through three rounds of cell division and three different

modes of self-renewal within a 2 month period (Figures 3H and

3I). Though many RGLs were depleted over time, importantly,

a significant percentage of activated RGLs were maintained

over a 12 month period (Figure 4D). In more than 300 clones

that we have examined, no labeled cells from the oligodendro-

cyte lineage were observed, which is not due to the limitation



of reporters. A study using Z/EG mice for lineage tracing has

shown that NG2+ progenitors give rise to oligodendrocytes,

but not new neurons, in the adult dentate gyrus (Kang et al.,

2010). Together, these results suggest that neuron/astrocyte

and oligodendrocyte lineages are generated from separate

pools of precursors in the adult hippocampus under basal phys-

iological conditions.

Our results support the emerging notion of significant hetero-

geneity in stem cell and progenitor properties, even within the

same tissue (Li and Clevers, 2010). Some RGLs exhibited self-

renewal and multilineage differentiation, and a small number

weremaintained over a long duration. Others exhibited unipotent

differentiation and many differentiated over time without self-

renewal. Our result does not fit into a proposed ‘‘disposable

stem cell model’’ based on a recent lineage-tracing study at

the population level in the adult hippocampus, which suggests

that a nestin+ RGL irreversibly exits the quiescent state to rapidly

generate multiple neuronal progeny through asymmetric divi-

sions and subsequently convert into a mature astrocyte (Encinas

et al., 2011). Our study at the clonal level reveals a much more

complex picture and indicates significant heterogeneity in the

phenotypic expression of neural stem cell properties in the adult

brain. Whether such heterogeneity is due to differences in

intrinsic properties of RGLs and/or their local niche remains an

interesting question. Our results do not rule out the possibility

that other cell types can behave as self-renewing and multipo-

tent neural stem cells in the adult dentate gyrus under basal

conditions and/or after stimulation, such as Sox2+ nonradial

precursors (Lugert et al., 2010; Suh et al., 2007).

Diverse Modes of Self-Renewal by RGLs
in the Adult Brain
Our study reveals multiple modes of neural stem cell activation in

the adult brain and suggests a new model of lineage relationship

for neural stem cells in the adult hippocampus (Figure 7A).

Activated RGLs face at least four fate choices (Figure 7A). The

neuronal lineage begins with an RGL asymmetric cell division

to generate a highly proliferative IPC, after which the RGL returns

to quiescence. RGLs exhibit a low frequency of symmetric self-

renewal, suggesting a surprising capacity of the adult brain to

amplify the neural stem cell pool. In addition, there are two inde-

pendent routes for generating astrocytes in the adult brain: one

through asymmetric cell division and the other through direct

differentiation via transition astroglia (Brunne et al., 2010). Impor-

tantly, an individual RGL has the potential to make all of these

choices during multiple rounds of self-renewal, as indicated by

clones containing multiple RGLs and both neuronal and astro-

glial lineages (Figure 3I). The total RGL pool therefore reflects

a summation of RGL decisions over time: maintenance through

quiescence or asymmetric self-renewal, reduction through

terminal differentiation, and expansion through symmetric self-

renewal.

Our study also revealed unique features of neural stem cells in

the adult brain that appear to differ from those in development.

Putative neural stem cells in developing brains are continuously

proliferating and exhibit temporally segregated symmetric self-

renewal, neurogenesis, and gliogenesis in a sequential manner

(Temple, 2001). In contrast, adult neural stem cells mostly stay
in quiescence but can be activated to choose from three self-

renewal modes and then return to quiescence. Whether these

differences are due to intrinsic properties and/or their local niche

remains to be investigated.

Multiple Roles of PTEN in Regulating the Behavior
and Capacity of RGLs
PTEN is a tumor suppresser and a regulator of stem cell behavior

in multiple adult somatic tissues (Hill andWu, 2009). In our study,

PTEN loss in quiescent RGLs in the adult SGZ initiates a three-

step process (Figure 7B): RGLs are rapidly mobilized into the

cell cycle, undergo symmetric cell division, and preferentially

differentiate into astrocytes. Different from prolonged neurogen-

esis observed after PTEN removal in proliferating adult SVZ

cultures (Gregorian et al., 2009), PTEN deletion in RGLs reduced

rather than expanded the overall RGL pool in the adult hippo-

campus within a 1 month period. Interestingly, loss of PTEN in

hematopoietic stem cells also leads to loss of quiescence and

subsequent exhaustion in vivo (Yilmaz et al., 2006; Zhang

et al., 2006). Previous studies have shown that PTEN loss driven

by the mGFAP-Cre promoter during late embryonic develop-

ment increases cell proliferation and neuroblast number in the

young adult SVZ (Gregorian et al., 2009). It is unclear whether

these GFAP+ cells in the SVZ are precursors or niche astrocytes.

As an alternative hypothesis, PTEN may play different roles

among various neural cell types. Indeed, we observed that

PTEN deletion differentially promoted neuron survival in the adult

hippocampus while it abolished multipotency of RGLs analyzed

at 1 mpi. Furthermore, RGLs may be heterogeneous in their

response to PTEN deletion. In contrast to the overall decrease

in the RGL pool, some RGLs underwent symmetric self-renewal.

Together, these findings underscore the necessity to study stem

cell function at the single-cell level and indicate that PTEN is

a critical component in the maintenance of neural stem cell

capacity.

In summary, we have developed a genetic labeling approach

for clonal analysis of quiescent neural stem cells in vivo. Our

identification of self-renewing and multipotent endogenous

neural stem cells supports a new lineage model in the adult

hippocampus. Our findings provide a number of insights into

potential targets for intervention to enhance adult neurogenesis

during aging and in degenerative neurological disorders. The

presence of RGL symmetric cell division allows for possibilities

to amplify the neural stem cell pool in the adult brain. Given the

relatively small clone sizes, increasing the proliferation of IPCs

and survival of neuronal progeny could be an important strategy

to enhance neurogenesis. Furthermore, preventing aberrant loss

of PTEN signaling may offer a means of guarding against deple-

tion of the adult neural stem cell pool during aging.

EXPERIMENTAL PROCEDURES

Animals and Tamoxifen Administration

All mice used in the study were backcrossed to the C57BL/6 background to

ensure the reproducibility of clonal induction with specific doses of tamoxifen.

Animals were housed in a 14 hr light/10 hr dark cycle with free access to food.

All animal procedures were in accordance with institutional guidelines. A stock

of tamoxifen (62 mg/ml; Sigma; T5648) was prepared in a 5:1 ratio of corn oil to

ethanol at 37�C with occasional vortexing. A single tamoxifen or vehicle dose
Cell 145, 1142–1155, June 24, 2011 ª2011 Elsevier Inc. 1153



was i.p. injected into 8- to 10-week-old mice at various concentrations:

31–248 mg/kg for the Z/EG reporter and 186–373 mg/kg for the MADM

reporter.

Immunostaining, Confocal Imaging, and Processing

Coronal brain sections (45 mm in thickness) through the entire dentate gyrus

were maintained in the serial order, and immunostaining was performed as

described (Ge et al., 2006). Antibodies used in this study are listed in Table

S1. Confocal images were used to confirm GFP+ cell identity according to

immunohistological and morphological properties (Figure S1B). For 3D recon-

struction, optical stacks from the entire dentate gyrus were serially aligned

using Reconstruct 1.1.0 (John C. Fiala, the National Institutes of Health). These

images were refined using an in-house MATLAB script (The MathWorks, Inc.).

Clonal Analysis

Analyzed dentate volume included the molecular layer, stratum granulosum

(granule cell layer), SGZ, and hilus but excluded the polymorphic layer (CA4)

protruding into the posterior dentate gyrus. Serial sections were first screened

for candidate clones, which were defined as possessing at least (1) an RGL, (2)

neuronal cell(s) in close spatial proximity, or (3) astroglia in close spatial

proximity to other astroglia or neuronal cells. Distance measurements were

performed in Imaris (Bitplane), and an in-house MATLAB script was used to

determine the distances among every spot. A ring with a radius of 150 mm

from the clone center was used to determine the clone composition for 1

and 2 mpi analysis. Clones were categorized according to the presence or

absence of an RGL and the type of progeny (Figure 3 and Figure 4). A compu-

tational simulation was used for statistical assessment of the probability of

whether each cell cluster was a clone. Precursors and astroglia were randomly

placed in a model dentate gyrus for distance measurements in MATLAB, and

this procedure was repeated 5000 times to generate a distribution of distance

measurements (Figure 1E and Figure S6C, red lines) and reverse cumulative

distribution plots (Figure S1C). Each putative clone was assigned a probability

as a clone (Pc) equal to 1 minus the probability that two cells could have been

induced at 2 dpi within the clone’s radius of each other (3 100%).
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