Predicting Neuroblastoma Sensitivity to 211AtMM4, an α-emitting PARP Inhibitor.

Background: Many cases of neuroblastoma are found to have MYCN amplification, which upregulates a variety of genes that participate in the low fidelity alternative NHEJ DNA repair pathway. PARP-1 is one of the proteins in this pathway, and can serve as a target for α-emitting small molecules, such as 211AtMM4. PARP-1 expression has already been shown to correlate to neuroblastoma patient prognosis, and may be used to predict sensitivity to 211AtMM4.

Methods: We investigated a panel of aggressive high-risk neuroblastoma cell lines including both MYCN amplified and non-MYCN amplified cells. Western blots were performed on cell lines to analyze protein levels of enzymes in the classical NHEJ pathway and the alternative NHEJ pathway at baseline and following 211AtMM4 treatment. 0.2 μCi 211AtMM4 and 2.0 μCi 211AtMM4 in cell media for 4 hours were the two treatment doses used. Proportion of PARP-1 fragments of a certain length measured by Western blot was used to quantify the apoptosis. γ-H2AX levels were used to measure DNA damage.

Results: Western blot of proteins involved in the alt-NHEJ and c-NHEJ pathway did not show a strong correlation with 211AtMM4 sensitivity. γ-H2AX levels were seen to show a persistent increase following 0.2 μCi 211AtMM4 treatment, while these levels initially increased then decreased following the 2.0 μCi 211AtMM4 treatment.

Conclusion: No individual protein expression was found to correlate directly to 211AtMM4 sensitivity, although further analysis of combinations of protein expressions might be useful. The increase in γ-H2AX levels at low 211AtMM4 dose indicates continual repair of accrued DNA damage, while the decrease in γ-H2AX levels at high 211AtMM4 dose indicates cell death. Apoptotic cleavage fragments of PARP-1 show an increase in apoptosis after 211AtMM4 treatment.