Glycosylphosphatidylinositol-Anchored High-Density Lipoprotein-Binding Protein 1 Plays a Critical Role in the Lipolytic Processing of Chylomicrons

Anne P. Beigneux,1,* Brandon S.J. Davies,1 Peter Gin,1 Michael M. Weinstein,1 Emily Farber,1 Xin Qiao,1 Franklin Peale,2 Stuart Bunting,2 Rosemary L. Walzem,3 Jinny S. Wong,4 William S. Blaner,5 Zhi-Ming Ding,6 Kristan Melford,7 Nuttaporn Wongsiriroj,5 Xiao Shu,7 Fred de Sauvage,2 Robert O. Ryan,7 Loren G. Fong,7 André Bensadoun,8 and Stephen G. Young1,*

1 Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
2 Genentech, One DNA Way, South San Francisco, CA 94080, USA
3 Departments of Poultry Science and Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
4 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
5 Department of Medicine, Columbia University, New York, NY 10032, USA
6 Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
7 Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
8 Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
*Correspondence: abeigneux@mednet.ucla.edu (A.P.B.), sgyoung@mednet.ucla.edu (S.G.Y.)
DOI 10.1016/j.cmet.2007.02.002

SUMMARY

The triglycerides in chylomicrons are hydrolyzed by lipoprotein lipase (LpL) along the luminal surface of the capillaries. However, the endothelial cell molecule that facilitates chylomicron processing by LpL has not yet been defined. Here, we show that glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) plays a critical role in the lipolytic processing of chylomicrons. Gpihbp1-deficient mice exhibit a striking accumulation of chylomicrons in the plasma, even on a low-fat diet, resulting in milky plasma and plasma triglyceride levels as high as 5000 mg/dl. Normally, Gpihbp1 is expressed highly in heart and adipose tissue, the same tissues that express high levels of LpL. In these tissues, GPIHBP1 is located on the luminal face of the capillary endothelium. Expression of GPIHBP1 in cultured cells confers the ability to bind both LpL and chylomicrons. These studies strongly suggest that GPIHBP1 is an important platform for the LpL-mediated processing of chylomicrons in capillaries.

INTRODUCTION

Dietary fats in mammals are packaged by the intestine into chylomicrons, which are large triglyceride-rich lipoproteins (Havel and Kane, 2001). After reaching the bloodstream, the triglycerides within chylomicrons are hydrolyzed by lipoprotein lipase (LpL) along the luminal surface of capillaries, mainly in heart, skeletal muscle, and adipose tissue (Havel and Kane, 2001; Nestel et al., 1962). In those tissues, LpL is synthesized and secreted by the parenchymal cells (i.e., myocytes and adipocytes) and then translocated to the lumen of capillaries, where lipolytic processing of chylomicrons occurs (Goldberg, 1996). The liver also secretes triglyceride-rich lipoproteins called very low-density lipoproteins (VLDLs). The initial phase of VLDL metabolism closely resembles that of chylomicrons, with LpL-mediated hydrolysis of triglycerides in the heart, skeletal muscle, and adipose tissue (Havel and Kane, 2001; Nestel et al., 1962).

LpL is thought to bind to the surface of capillaries through the interaction of its positively charged heparin-binding domains (Sendak and Bensadoun, 1998) with negatively charged heparan sulfate proteoglycans (HSPGs) expressed on the surface of endothelial cells (Goldberg, 1996; Parthasarathy et al., 1994). This concept stems from the observation that LpL can be released from the capillary endothelium with an injection of heparin (Korn, 1955) and also from the fact that normal endothelial cells bind more LpL than endothelial cells depleted of HSPGs (Shimada et al., 1981). However, the precise endothelial cell molecules required for the lipolytic processing of chylomicrons have remained obscure (Goldberg, 1996).

A deficiency in LpL causes familial chylomicronemia, which is characterized by extremely high levels of triglycerides in the plasma (>2000 mg/dl) (Brunzell and Deeb, 2001). Familial chylomicronemia can also be caused by a deficiency in apolipoprotein CII, a cofactor for LpL (Bengtsson and Olivecrona, 1979; Breckenridge et al., 1978). No cases of chylomicronemia have yet been ascribed to defects in endothelial cells affecting the binding of either chylomicrons or LpL.
In the current study, we examined the functional importance of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) in plasma lipid metabolism. GPIHBP1 was initially identified by expression cloning in Chinese hamster ovary (CHO) cells as a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein that confers the ability to bind high-density lipoproteins (Ioka et al., 2003). GPIHBP1 contains a highly negatively charged amino-terminal domain (with 17 of 25 consecutive residues in the mouse sequence being glutamate or aspartate) followed by a Ly-6 motif containing multiple cysteines (Ioka et al., 2003).

Because GPIHBP1 was identified as an HDL-binding protein, Ioka and coworkers (2003) speculated that it might be involved in reverse cholesterol transport. Here, we show that GPIHBP1 is a protein within the lumen of capillaries that plays a critical role in the lipolytic processing of triglyceride-rich lipoproteins.

RESULTS

Generation of Gpihbp1-Deficient Mice
To investigate the biological role of GPIHBP1 in plasma lipid metabolism, we examined Gpihbp1-deficient mice (Gpihbp1^{−/−} mice). Gpihbp1^{−/−} mice were produced by replacing all of the exons and introns of Gpihbp1 with lacZ and neo cassettes (Figure 1A). Southern blots showing gene-targeting events are shown in Figure S1 in the Supplemental Data available with this article online. Northern blots confirmed a complete absence of Gpihbp1 expression in heart and brown adipose tissue (BAT) from Gpihbp1^{−/−} mice. (C) Western blot with GPIHBP1-specific rabbit antiserum showing GPIHBP1 in BAT and gonadal fat pad extracts from Gpihbp1^{+/+} mice, but not from Gpihbp1^{−/−} mice. As a control, extracts from HeLa cells transfected with an untagged or S protein-tagged GPIHBP1 construct were included.

Gpihbp1-Deficient Mice Manifest Severe Chylomicronemia
Both male and female Gpihbp1^{−/−} mice had milky plasma on a normal chow diet (Figure 2A). This phenotype appeared as early as 4 to 5 weeks of age and was invariably present by 14 weeks of age. Plasma triglyceride levels were significantly increased at all ages, with nearly all mice having plasma triglyceride levels over 1000 mg/dl.
by 7–10 weeks of age, and some having triglyceride levels as high as 5000 mg/dl (Figure 2B). Prior to weaning, the plasma triglyceride levels in Gphb1–/– pups were slightly but significantly elevated compared with wild-type mice (120 ± 12 versus 23 ± 16 mg/dl; p = 0.0023). Plasma triglyceride levels in Gphb1–/– mice were indistinguishable from those in Gphb1+/- mice (Figure 2B). Plasma cholesterol levels were also elevated in Gphb1–/– mice (Figure S3A).

The plasma lipoproteins of adult Gphb1–/– mice contained increased amounts of apo-B48 as judged by a Coomassie blue-stained SDS-polyacrylamide gel (Figure 2C) and a western blot with a mouse apo-B-specific monoclonal antibody (Nguyen et al., 2006) (Figure 2D). Fractionation of the lipoproteins by fast protein liquid chromatography (FPLC) revealed that the vast majority of the triglycerides in the plasma of Gphb1–/– mice was in large lipoproteins (i.e., in the “chylomicron/VLDL” peak; Figure 2E). Most of the cholesterol in the plasma was also in the chylomicon/VLDL peak (Figure S3B). HDL cholesterol levels in Gphb1–/– mice were low (Figure S3B), as is generally the case with hypertriglyceridemia (Brunzell and Deeb, 2001). The diameters of the triglyceride-rich lipoproteins in the plasma of Gphb1–/– mice were much larger than in wild-type mice as judged by laser light scattering (Figure 2F) and electron microscopy (Figure 2G).

The milky plasma in Gphb1–/– mice, the increased plasma levels of apo-B48, and the large lipoproteins suggested a defect in the lipolytic processing of chylomicrons. To determine whether the processing of chylomicrons was abnormal, a retinyl palmitate clearance study was performed. Following the oral administration of retinyl palmitate, retinyl esters are packaged into chylomicrons in the intestine and enter the circulation; the disappearance of these retinyl esters from the plasma indicates the rate of chylomicron clearance. In wild-type mice, plasma retinyl ester levels peaked after 1–3 hr and had largely disappeared by 10 hr (see inset in Figure 2H). In the Gphb1–/– mice, the peak retinyl ester levels were more than 10-fold higher than those in Gphb1+/- mice, and very high levels persisted for 24 hr (Figure 2H).

GPIHBP1 Is Expressed on the Luminal Surface of Capillary Endothelial Cells in Lipolytic Tissues

The finding of chylomicronemia in mice lacking a GPI-anchored protein led us to hypothesize that GPIHBP1 might be involved in the processing of triglyceride-rich lipoproteins by LpL at the surface of capillary endothelial cells. In support of this idea, the tissue pattern of GPIHBP1 expression closely resembled that of LpL and CD36 (a putative fatty-acid transporter; Greenwald et al., 1995). By northern blot analysis, all three genes were expressed at particularly high levels in adipose tissue and heart (Figure S4). In addition, immunofluorescence microscopy revealed that GPIHBP1 is expressed exclusively in endothelial cells, colocalizing with the endothelial cell marker CD31 (Figure 3A). Confocal immunofluorescence microscopy showed that GPIHBP1 was located on the luminal face of capillaries in both brown adipose tissue and heart (Figures 3B and 3C). GPIHBP1 was also expressed on the capillaries of skeletal muscle, but in multiple experiments was undetectable on the capillaries of the brain (Figure S5), a tissue that relies heavily on glucose uptake rather than on lipolysis of triglyceride-rich lipoproteins.

Postheparin Lipoprotein Lipase Activity Is Reduced in Gphb1–/–-Deficient Mice

We considered the hypothesis that GPIHBP1 might be the sole binding site for LpL in capillaries and that the amount of LpL bound to capillaries might be dramatically reduced in Gphb1–/– mice. To examine this possibility, we measured the levels of LpL and hepatic lipase (HL) in the plasma after an injection of heparin (which releases LpL from capillaries into the circulation). To avoid methodological problems associated with measuring lipase activity in lipemic serum, we separated LpL and HL in postheparin plasma by heparin-Sepharose chromatography and then quantified the HL and LpL activities (Figure 4). In four independent experiments with age- and sex-matched plasma samples, LpL activity was reduced by 53.3%, 27.2%, 16.6%, and 68.4% in Gphb1–/– mice when compared to wild-type mice, and the LpL:HL ratio in the Gphb1–/– mice was reduced by 71.3%, 36.1%, 56.6%, and 90.4% (p = 0.03). The HL activity tended to be higher in the Gphb1–/– mice, but these changes did not achieve statistical significance (p > 0.05).

We also measured LpL levels in whole plasma (i.e., not fractionated on a heparin-Sepharose column) following an injection of heparin. The postheparin LpL protein mass levels were lower in Gphb1–/– knockout mice than in control mice (175 ± 111 ng/ml versus 581 ± 98 ng/ml; n = 5 for each group; p = 0.00028). Levels of LpL mass in the preheparin plasma of wild-type and Gphb1–/– mice were very low and not different.

The fact that there was still some heparin-releasable LpL in Gphb1–/– mice suggested that other proteins, perhaps HSPGs, provide a reservoir for LpL binding. Nevertheless, the presence of GPIHBP1 within capillaries, along with the chylomicronemia in Gphb1–/– mice, strongly suggested that GPIHBP1 is likely an important platform for lipolysis. We hypothesized that GPIHBP1 might be capable of binding LpL, chylomicrons, or both. This hypothesis seemed plausible given that GPIHBP1 contains a strongly negatively charged domain and that both LpL and several apolipoproteins within chylomicrons contain positively charged domains that are known to mediate protein-protein interactions (Brown and Goldstein, 1986; Cardin et al., 1989).

GPIHBP1 Binds Both Lipoprotein Lipase and Chylomicrons

To test the hypothesis that GPIHBP1 binds to LpL and/or chylomicrons, we constructed a full-length mouse Gphb1 cDNA expression vector. Transient transfection of CHO ldlA7 cells with a Gphb1 expression vector yielded high levels of GPIHBP1 expression at the surface of cells as judged by confocal fluorescence microscopy.
Figure 2. Analysis of Gpihbp1 Knockout Mice
(A) Photograph of blood samples from three 2-month-old littermate chow-fed male mice (after low-speed centrifugation to sediment blood cells), revealing milky plasma in Gpihbp1+/− mice.
(B) Plasma triglyceride levels in Gpihbp1+/+, Gpihbp1−/−, and Gpihbp1−/− mice at different ages, showing higher triglyceride levels in Gpihbp1−/− mice (p < 0.0001 in each age group). Triglyceride levels in Gpihbp1+/+ and Gpihbp1−/+ mice were not different.
(C) Coomassie blue-stained SDS-polyacrylamide gel of the d < 1.006 g/ml lipoproteins of wild-type and Gpihbp1−/− mice.
(D) Western blot of mouse plasma (1.0 ml) with mouse monoclonal antibody specific for apo-B48 and apo-B100 (Nguyen et al., 2006), showing increased amounts of apo-B48 in the plasma of Gpihbp1−/− mice.
(E) Distribution of triglycerides in the plasma lipoproteins of Gpihbp1+/+ and Gpihbp1−/− mice. Plasma lipoproteins were separated by size on a Superose 6 FPLC column. Data are representative of two different experiments.
(F) Distribution of lipoprotein sizes in the d < 1.022 g/ml lipoproteins from Gpihbp1−/− and Gpihbp1+/+ mice as judged by dynamic laser light scattering. The median diameter of lipoproteins in Gpihbp1−/− mice (n = 3) was 157% larger than in Gpihbp1+/+ mice (n = 6). Shown here are representative data from a single Gpihbp1+/+ and Gpihbp1−/− mouse. Both Gpihbp1+/+ and Gpihbp1−/− mice had bimodal distributions of lipoproteins: the larger subpopulation of particles in Gpihbp1−/− mice, constituting 15.4% of the total particles, had diameters of 122–289 nm; the larger subpopulation of particles in Gpihbp1+/+ mice, constituting 2.9% of the total particles, had diameters of 94–204 nm. The smaller subpopulation of particles in Gpihbp1−/− and Gpihbp1+/+ mice had diameters of 39–111 and 33–86 nm, respectively.
(G) Electron micrographs of negatively stained d < 1.006 g/ml lipoproteins from the plasma of Gpihbp1−/− and Gpihbp1+/+ mice, showing the larger lipoproteins in Gpihbp1−/− mice. Representative images from two Gpihbp1−/− and two Gpihbp1+/+ samples are shown.
GPIHBP1 in Lipolysis

Figure 3. GPIHBP1 Is Located within the Lumen of the Capillary Endothelium of Brown Adipose Tissue and Heart

(A) Epifluorescence microscopy showing the binding of rat monoclonal antibody against mouse CD31 (red) and rabbit antiserum against GPIHBP1 (green) to brown adipose tissue of Gpihbp1+/+ and Gpihbp1−/− mice. Images were taken with a 40x objective.

(B) Confocal microscopy images showing the binding of antibodies against CD31 and GPIHBP1 to brown adipose tissue from a Gpihbp1+/+ mouse. Images were taken with a 100x objective. The arrow indicates the location of a capillary (shown at higher magnification in the insert; 100x objective with 4x digital zoom). The high-magnification micrograph shows a cross-section of a capillary, revealing that GPIHBP1 staining is particularly prominent on the luminal side of the capillary.

(C) Confocal microscopy images showing the binding of antibodies against CD31 and GPIHBP1 to heart tissue from a Gpihbp1+/+ mouse. GPIHBP1 staining is particularly prominent on the luminal face of the capillary endothelium. Images were taken with a 100x objective.

(Figure 5A). This GPIHBP1 could be released from the surface of cells with a phosphatidylinositol-specific phospholipase C (PIPLC) (Low, 1992) (Figure 5B). To assess the ability of GPIHBP1 to bind LpL, we examined the binding of LpL to a mutant CHO cell line (pgsA-745) that lacks the ability to synthesize HSPGs (Lugemwa and Esko, 1991).

(H) Delayed clearance of retinyl esters in Gpihbp1−/− mice. Retinyl palmitate (5000 IU in 50 µl of vegetable oil) was administered to mice by gavage, and retinyl esters in the plasma were measured over the next 24 hr. The inset shows retinyl ester levels in Gpihbp1−/− mice plotted on a smaller scale, showing that the levels in Gpihbp1−/− mice peaked between 1 and 3 hr and largely disappeared by 10 hr. Retinyl palmitate clearance studies were also performed in Gpihbp1+/− mice, with results indistinguishable from those of Gpihbp1+/+ mice. The retinyl palmitate clearance studies were performed in seven Gpihbp1+/−, six Gpihbp1+/+, and five Gpihbp1−/− mice. Shown here are representative curves for three Gpihbp1+/− and Gpihbp1−/− mice. When the retinyl ester measurements for all of the mice were analyzed, the differences between the Gpihbp1−/− mice and the other two groups were statistically significant at each time point (p < 0.001). There were no differences between Gpihbp1+/− and Gpihbp1+/+ mice.
CHO pgsA-745 cells stably transfected with Gpihbp1 bound 10- to 20-fold more LpL than cells transfected with empty vector, and the binding of LpL to cells was saturable, with nonspecific binding being negligible (Figure 5C). An analysis of LpL binding indicated that GPIHBP1 binds LpL tightly (calculated $K_d = 3.6 \times 10^{-8}$ M). The increased binding of LpL to Gpihbp1-transfected cells was eliminated by treating the cells with PIPLC (Figure 5D). Heparin was effective in releasing LpL from GPIHBP1 expressed on the surface of pgsA-745 cells (Figures 5E and 5F).

To determine whether GPIHBP1 binds to triglyceride-rich lipoproteins, we isolated the d < 1.006 g/ml lipoproteins (“chylomicrons”) from the plasma of Gpihbp1+/− mice, labeled them with the fluorescent dye 1,1'-diocadecyl-3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), and incubated them with CHO Idia7 cells stably transfected with the mouse Gpihbp1 cDNA or empty vector. The Gpihbp1-transfected cells bound chylomicrons avidly, whereas the cells transfected with the empty vector did not (Figure 6A). The binding of chylomicrons was dramatically reduced by treating the transfected cells with PIPLC (Figure 6A). In transient transfection experiments, ~10% of the cells expressed GPIHBP1 as judged by immunofluorescence microscopy, and only those cells bound chylomicrons (Figure 6B). In similar experiments, we found that Gpihbp1-transfected cells also bound apo-AV-phospholipid disks (Figure S6).

Gpihbp1 Expression Levels in Muscle Change with Feeding Status

Lipolysis of triglyceride-rich lipoproteins is controlled at multiple steps, according to metabolic need. For example, LpL activity levels in muscle are controlled by feeding status (Lithell et al., 1978). We therefore tested whether Gpihbp1 expression in muscle changes with feeding status. Indeed, Gpihbp1 expression increased 2-fold in muscle during fasting ($p < 0.001$) (Figure 7).

DISCUSSION

In this study, we show that adult Gpihbp1−/− mice have severe hypertriglyceridemia associated with a marked delay in the clearance of retinyl palmitate from the plasma. Gpihbp1 is expressed at high levels in heart, adipose tissue, and skeletal muscle—the same tissues that express high levels of LpL. In these tissues, GPIHBP1 is located on the luminal face of the capillary endothelium. Expression of GPIHBP1 in cultured cells confers the ability to bind both LpL and chylomicrons. Together, these findings strongly suggest that GPIHBP1 is a key platform for the LpL-mediated processing of chylomicrons in capillaries.

We found a large difference in GPIHBP1 expression in different capillary beds. While GPIHBP1 was expressed highly on the capillaries of lipolytic tissues such as adipose tissue, heart, and skeletal muscle, it was virtually absent in the brain. These findings raise the possibility that differences in endothelial cell gene expression could play an active role in regulating the delivery of lipid nutrients to different tissues.

The ability of GPIHBP1 to bind both to LpL and chylomicrons favors the concept that GPIHBP1 serves as an important platform for lipolysis by drawing chylomicrons and LpL into close proximity. However, it is unlikely that Gpihbp1 deficiency completely eliminates LpL-mediated processing of lipoproteins. Lpl-deficient mice die shortly...
Figure 5. Generating Cell Lines Expressing a Gpihbp1 cDNA and Testing the Ability of GPIHBP1 to Bind LpL

In preliminary studies, we showed that the expression of Gpihbp1 was absent in wild-type CHO cells. GPIHBP1 was visualized with a FITC-conjugated goat antibody against the S protein tag (green), and DNA was visualized with DAPI (blue).

(A) Confocal immunofluorescence microscopy showing the expression of an S protein-tagged GPIHBP1 on the surface of CHO idIA7 cells. GPIHBP1 was visualized with a FITC-conjugated goat antibody against the S protein tag (green), and DNA was visualized with DAPI (blue).

(B) Western blot analysis of cell extracts and cell culture medium from HeLa cells transfected with a mouse Gpihbp1 cDNA, before and after treatment of the cells with PIPLC.

(C) Binding of LpL to pgsA-745 CHO cells stably transfected with a cDNA encoding mouse Gpihbp1 (pcDNA3-Gpihbp1; see Experimental Procedures) or empty vector. Cells were incubated for 2 hr with increasing amounts of avian LpL. Following the incubation, the amount of bound LpL was measured by ELISA. Each data point represents the mean of triplicates ± SD; the standard deviations are too small to be seen.

(D) Binding of avian LpL (2.5 μg/ml) to pgsA-745 CHO cells transfected with pcDNA3-Gpihbp1 or empty vector, before and after treatment with PIPLC. Each bar represents the mean of triplicates ± SD; in some cases, the standard deviations are too small to be seen. In parallel experiments, pgsB-761 CHO cells transfected with the Gpihbp1 cDNA also bound 10-fold more LpL than cells transfected with the empty vector. In wild-type CHO cells, LpL binding to nontransfected cells was greater (as a result of the expected binding of LpL to HSPGs), but we consistently observed a 70% increase in LpL binding to Gpihbp1-transfected cells.

(E) Binding of avian LpL (2.5 μg/ml) to pgsA-745 CHO cells transfected with pcDNA3-Gpihbp1 or empty vector, before and after treatment with heparin (1 U/ml).

(F) Western blot analysis of cell extracts and cell culture medium from pgsA-745 CHO cells transfected with a mouse Gpihbp1 cDNA (tagged and untagged) or empty vector, alone or in combination with a human LPL cDNA (with a C-terminal V5 tag), before and after treatment of the cells with heparin (1 U/ml).
after birth, with plasma triglyceride levels as high as 20,000 mg/dl (Weinstock et al., 1995), whereas Gpihbp1−/− mice survive and have far lower triglyceride levels. These differences between Gpihbp1− and Lpl-deficient mice strongly suggest that some LpL-mediated lipolysis occurs in the absence of GPIHBP1. Without question, LpL is present in Gpihbp1−/− mice; we clearly identified mouse LpL—with normal enzymatic activity—in the plasma of Gpihbp1−/− mice after an injection of heparin. The fact that LpL was identified in the postheparin plasma of Gpihbp1−/− mice indicates that, in vivo, there are additional binding sites for LpL aside from GPIHBP1. Cell culture experiments have shown, quite convincingly, that LpL binds to HSPGs on the surface of endothelial cells (Cheng et al., 1981). However, at this point, we do not know with certainty whether the heparin-releasable LpL in Gpihbp1−/− mice is attached to HSPGs or whether the LpL in Gpihbp1−/− mice that is mobilized by heparin is actually located within the lumen of capillaries. At this time, it is also not known with certainty how much of the LpL found in the bloodstream after an injection of heparin is actually released from the luminal surface of capillaries versus other sites (e.g., parenchymal cells, basement membranes, and subendothelial spaces). Furthermore, the percentage of postheparin LpL that arises from endothelial cells versus those other sites could differ in Gpihbp1−/− and Gpihbp1+/+ mice. In any case, since the postheparin plasma LpL levels are higher in wild-type mice than in Gpihbp1−/− mice, it seems possible that a significant fraction of the heparin-releasable LpL in wild-type

Figure 6. Binding of Chylomicrons to CHO-ldlA7 Cells Expressing Mouse GPIHBP1
(A) The binding of Dil-labeled chylomicrons (red) to nonpermeabilized CHO-ldlA7 cells stably transfected with a mouse Gpihbp1 cDNA (or empty vector) was measured at 4°C, before and after PIPLC treatment. GPIHBP1 expression was detected with rabbit anti-GPIHBP1 antiserum and a FITC-labeled anti-rabbit IgG antibody (green), and DNA was visualized with DAPI (blue).
(B) Binding of Dil-labeled chylomicrons (red) to CHO-ldlA7 cells transiently transfected with a mouse Gpihbp1 cDNA. GPIHBP1 expression was detected as described in (A).
mice is bound by GPIHBP1. In future studies, it will be of interest to determine the fraction of the total LpL pool on endothelial cells that is bound to GPIHBP1 and HSPGs and whether LpL bound to GPIHBP1 is catalytically more efficient than LpL bound to HSPGs.

The degree of hypertriglyceridemia in Gpihbp1−/− pups before weaning was milder than that in 4- to 6-week-old Gpihbp1−/− mice, which in turn was milder than that in 7- to 16-week-old Gpihbp1−/− mice. The explanation for this finding is not known with certainty, but we suspect that it relates to the fact that Lpl mRNA levels are much higher in the liver during the suckling phase (Langner et al., 1989). We have confirmed higher Lpl expression levels by quantitative RT-PCR: suckling C57BL/6 mice have hepatic Lpl mRNA levels 50 times greater than those of 10-week-old mice, and hepatic Lpl mRNA levels in 4-week-old mice are approximately double those in 10-week-old mice (Figure S7). Although we have not yet proven that the differences in hepatic expression of Lpl are responsible for the lower triglyceride levels in the younger mice, the time course of Lpl expression would be consistent with this possibility. In any case, we emphasize that the defect in LpL activity in adult Gpihbp1−/− mice is severe. When newborn Lpl knockout mice were injected with an LpL adenovirus, some survived the suckling period, owing to the adenovirus-mediated LpL expression in the liver (Strauss et al., 2001). However, this adenovirus-mediated LpL expression disappeared by 30 days of age. After the extinction of LpL expression, the plasma triglyceride levels in the rescued mice were 2000–5000 mg/dl—very similar to those in chow-fed Gpihbp1−/− mice in this study.

The plasma levels of apo-B48 were markedly elevated in Gpihbp1−/− mice. In the mouse, apo-B48 is synthesized by both the liver and the intestine (Hirano et al., 1996). Given the markedly delayed clearance of retinyl palmitate in Gpihbp1−/− mice, we suspect that much of the apo-B48 accumulation is due to delayed clearance of intestinal lipoproteins. However, the lipolytic processing of chylomicrons and hepatic VLDL are similar, and there is no reason to believe that the accumulation of apo-B48 is exclusively due to an accumulation of intestinal lipoproteins.

The molecular basis for chylomicron binding to GPIHBP1 requires further study. Chylomicrons contain several apolipoproteins (e.g., apo-B48, apo-E, and apo-AV) that have positively charged domains that bind to heparin sulfate and/or HSPGs (Cardin et al., 1984, 1986; Lookene et al., 2005), so it is easy to imagine that one or more of these apolipoproteins could mediate the binding of chylomicrons to the negatively charged domain of GPIHBP1. In particular, apo-AV would make a good candidate as a ligand for GPIHBP1, given that Apoav deficiency causes hypertriglyceridemia associated with decreased LpL-mediated lipolysis (Calandra et al., 2006; Grosskopf et al., 2005; Pennacchio et al., 2001). In support of this idea, our studies showed that apo-AV-phospholipid disks bind avidly to Gpihbp1−/−-transfected proteoglycan-deficient cells (Figure S6). Another interesting hypothesis is that GPIHBP1 could act as a receptor for apo-B48, a key structural protein of large triglyceride-rich lipoproteins. It would make sense if a receptor for apo-B48 were located in the capillary endothelium of muscle and fat, where lipolysis occurs. Also, this hypothesis is in line with evolutionary considerations. Both apo-B48 and chylomicrons (defined as intestinal lipoproteins that are secreted into the lymph) are unique to mammals (Teng and Davidson, 1992). Similarly, GPIHBP1—defined as a GPI-anchored Ly-6-motif protein with a very strong acidic domain—is present in all mammals but is absent in fish, amphibians, and birds.

Transfection of a Gpihbp1 cDNA into cultured cells promotes the binding of both LpL and chylomicrons, but it is not yet clear whether a single GPIHBP1 molecule is capable of binding chylomicrons and LpL simultaneously. If a single GPIHBP1 molecule binds only a single ligand, chylomicrons and LpL could still be drawn together if the GPIHBP1 molecules were clustered together on the cell surface. This possibility seems plausible given that other GPI-anchored proteins are concentrated within lipid rafts on the plasma membrane (Varma and Mayor, 1998). Also, GPIHBP1 could exist as a homodimer on the cell surface and therefore bind to more than one ligand. Of note, urokinase-type plasminogen activator receptor, a related GPI-anchored Ly-6-motif protein, exists as a dimer on the cell surface (Cunningham et al., 2003).

In summary, GPIHBP1 is crucial for the lipolytic processing of triglyceride-rich lipoproteins. It is located on the luminal surface of the capillary endothelium and binds both LpL and chylomicrons. It likely forms a platform for lipolysis and plays an important role in the delivery of lipid nutrients to cells.

EXPERIMENTAL PROCEDURES

Gpihbp1−/− Mice

Gpihbp1−/− mice were created with a sequence-replacement gene-targeting vector designed to replace all of the exons of Gpihbp1 with...
a lacZ reporter and a PGK-neo cassette. Targeted cells were identified by Southern blotting of genomic DNA with 5’- and 3’-flanking probes. The 5’ probe was amplified from genomic DNA with oligonucleotides 5’-GGTCTGTAGCAAGGCTCTC-3’ and 5’-GGTCTGCTCTGCGCAATCC-3’ (after cleaving genomic DNA with Hpal, the targeted band is 11.8 kb, and the wild-type band is 17.1 kb). The 3’ probe was amplified with oligonucleotides 5’-CATTGCTAGCAGCCCTTGTC-3’ and 5’-CCTGGGACCCGGAG-3’ (after cleaving genomic DNA with EcoRI, the targeted band is 7.1 kb, and the wild-type band is 8.5 kb). Routine genotyping was performed by PCR; the mutant allele was detected by PCR with oligonucleotides 5’-GAAGCAGAAGCCAG-3’ and 5’-GGAGGGCTACTAGAAGG-3’ (amplifying a 655 bp PCR product between the neo cassette and sequences 3’ to Gpihbp1). The wild-type allele was detected by PCR with oligonucleotides 5’-GGTGA TGGCCGACCGGAG-3’ and 5’-GTGGTCTAGATGGCAGTTCG-3’ (amplifying a 519 bp PCR product spanning intron 2). All mice had a mixed genetic background (<10% 129/Sv and >90% C57BL/6). The mice were fed a chow diet and housed in a virus-free barrier facility with a 12 hr light/dark cycle. All studies were approved by UCLA’s Committee on Animal Research.

Northern Blots
Total RNA was prepared from mouse tissues with TRI Reagent (Sigma), size fractionated on a 1% agarose/formaldehyde gel, and transferred to a sheet of Hybond N+ membrane (Amersham) or Hybond-C-extra membrane (Schleicher and Schuell). The blot was hybridized to32P-labeled cDNAs for mouse Gpihbp1, human LPL, mouse Cx36, and mouse 18S ribosomal RNA.

Quantitative RT-PCR
Total RNA was prepared from mouse tissues with TRI Reagent (Sigma), treated with DNase I (Ambion), and reversed transcribed into cDNA with a mixture of random primers and oligo(dT) and SuperScript III (Invitrogen). Primers for each gene were designed with the Primer 3 program (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and assessed by DART-PCR (Peirson et al., 2003) to validate equivalent efficiencies between genes and the endogenous control gene (I2-microglobulin). Quantitative PCR analysis was performed on 50 ng cDNA, 200 nM of each primer, and 10 μl of SYBR Green PCR Master Mix (QIAGEN). PCR reactions were performed in triplicate on a 7500 Fast Real-Time PCR System from Applied Biosystems. The relative expression of all gene-specific mRNA was calculated by the comparative Ct method.

Rabbit Antiserum against Mouse GPHBP1
A segment of the mouse Gpihbp1 cDNA (spanning nucleotides 88–636, corresponding to amino acids 23–205) (NM_026730) was cloned into the BamHI and SalI sites of pQE-30 (QIAGEN) to create a bacterial expression vector for His6-tagged GPHBP1. This fragment was amplified from mouse adipose tissue cDNA with forward primer 5’-CC ATCCGGGTATGCAAGAAGAATGGTATGCGGAG-3’ and reverse primer 5’-GCTGCAQGTQGCAGCGGACTGATGTGATTCTGCC-3’ and reverse primer 5’-GCTGCAQGTQGCAGCGGACTGATGTGATTCTGCC-3’ (underlined sequences indicate restriction ends). The plasmid was transformed into E. coli Max 5xF’ cells. Bacteria from 1.0 l cultures were resuspended with 40 ml of lysis buffer (20 mM Na2HPO4 [pH 7.0], 250 mM NaCl, 6 M guanidinium chloride) and lysed by 15 successive 10 min periods of sonication (at a power of 50 W) alternating with 10 min incubations on ice. The lysate was stirred at room temperature for 30 min and then centrifuged at 4000 x g for 30 min in an SS34 rotor. The supernatant fluid was resuspended with 2 ml of TALON metal affinity resin (Clontech) with continuous stirring for 60 min at 4°C. The resin was sedimented by low-speed centrifugation, loaded onto a column, and washed overnight with 1 l of wash buffer containing 20 mM Na2HPO4 [pH 7.0], 250 mM NaCl, 8 M urea, and 5 mM imidazole. The recombinant GPHBP1 fragment was eluted with a 30 ml linear gradient of imidazole (5–300 mM) in wash buffer. Three milliliter fractions were collected, and aliquots were size fractionated on SDS-polyacryamide gels. Fractions containing the His6- GPHBP1 fragment (identified by Coomassie blue staining) were pooled and dialyzed against PBS containing 0.02% sodium azide. Two rabbits were immunized with the GPHBP1 fragment (75 μg/rabbit) in complete Freund’s adjuvant and then boosted with the GPHBP1 fragment (150 μg/rabbit) in incomplete Freund’s adjuvant 3 and 6 weeks later.

Analysis of the Plasma Lipoproteins
Plasma cholesterol and triglyceride levels were measured on nonfasted plasma samples with the Serum Triglyceride Determination Kit (Sigma) and Cholesterol E kit (Wako). Fractionation of mouse plasma lipoproteins was performed by FPLC (Cole et al., 1986). The diameters of lipoprotein particles in the d < 1.022 g/ml fraction of plasma were measured with a Nanotrac 250 particle analyzer (Microtrac) fitted with a flexible conduit-sheathed probe (Walzem et al., 1994). Lipoprotein particle diameters were recorded as frequency distributions of particles within a given diameter interval. Negatively stained lipoproteins (d < 1.066 g/ml fraction) from the plasma of Gpihbp1−/− and Gpihbp1+/− mice were imaged by electron microscopy (Hamilton et al., 1980). The protein composition of lipoproteins was analyzed by SDS-PAGE followed by Coomassie blue staining.

Western Blots
Proteins from tissue or cell culture extracts (20 μg) were size fractionated on 4%–12% Bis-Tris gradient SDS-polyacrylamide gels and then transferred to nitrocellulose membranes for western blots. The antibody dilutions were 1:500 for mouse monoclonal antibody against mouse apo-B48 and apo-B100 (Nguyen et al., 2006), 1:500 for rabbit antisera against GPHBP1, 1:500 for mouse antibody against V5 tag (Invitrogen), 1:500 for mouse monoclonal antibody against α-actin (Abcam), 1:5000 for HRP-labeled anti-mouse IgG (NA931V, GE Healthcare), 1:5000 for HRP-labeled anti-rabbit IgG (NA934V, GE Healthcare), 1:2000 for IRDye680-conjugated goat anti-rabbit IgG (Li-Cor), and 1:2000 for IRDye800-conjugated goat anti-mouse IgG (Li-Cor). Antibody binding was detected with the ECL Plus chemiluminescence system (GE Healthcare) and exposure to X-ray film. When the IRDye-conjugated secondary antibodies were used, binding was detected with an Odyssey infrared scanner (Li-Cor).

Measurement of Retinyl Esters
Mice were given 5000 IU of retinyl palmitate (all-trans) or vehicle alone (soybean oil) by oral gavage (50 μl). Blood samples were taken immediately after gavage and 1, 2, 4, 10, and 24 hr later. Plasma levels of retinyl esters were measured by HPLC on a 250 x 4.6 mm Beckman Ultrasphere C18 column (Mills et al., 1992; Redlich et al., 1996). Retinyl esters were separated in a mobile phase consisting of acetonitrile:methanol:dichloromethane (70:15:15 v/v) at a flow rate of 1.8 ml/min and detected by UV absorbance at 325 nm with a Waters 990 photo-diode array detector. Retinyl acetate was used as an internal standard. Retinyl ester standards were synthesized from authentic all-trans retinol and the corresponding fatty acyl chloride (Blian et al., 1994). The reported plasma retinyl ester concentrations represent the sum of individual retinyl ester concentrations (retinyl linoleate, retinyl oleate, retinyl palmitate, and retinyl stearate). All extraction and HPLC procedures were carried out under N2 and reduced light to prevent oxidation of the compounds. Plasma samples (25–200 μl) were denatured with an equal volume of absolute ethanol containing known amounts of retinyl acetate and then extracted into hexane. Following phase separation, the hexane extract was evaporated under a stream of N2, and the residue was resuspended in benzene for injection onto the HPLC column. The lower limit of detection for retinyl esters was 2 ng/ml (Burger et al., 1997).

Expression of Mouse Gpihbp1 in CHO Cells
Two independent strategies were used to express a mouse Gpihbp1 cDNA in cultured cells. In strategy 1, the complete coding sequence of Gpihbp1 (nucleotides 1–711) was amplified from a mouse adipose cDNA library with the primers 5’-CTGAAAGCCGGCGCCAGAA CAGCCTGAGCCAGT-3’ (underlined segment is a NotI site) and
deficient in the ability to synthesize heparan sulfate proteoglycans (Gpihbp1) CHO-K1 cells, Ldlr-deficient CHO cells (idA7 cells, a generous gift from M. Krieger) (Kingsley and Krieger, 1984), and CHO cells deficient in the ability to synthesize heparan sulfate proteoglycans (Gpihbp1) were transfected with pcDNA3-Gpihbp1 or empty vector using FuGENE 6 Transfection Reagent (Roche) according to the manufacturer’s instructions. Stably transfected cells were obtained following selection with G418 (0.5 mg/ml). The cells were then subjected to a second round of transfection with pcDNA3-Gpihbp1 and pcMV/ Bsd (Invitrogen) and selected with blasticidin (5 μg/ml). In strategy 2, an IMAGE clone (ID #30298145) containing the complete open reading frame of mouse Gpihbp1 in pDNR-LIB was purchased from Open Biosystems. An NcoI restriction site immediately upstream of the translational start site was created by site-directed mutagenesis (QuikChange Site-Directed Mutagenesis Kit, Stratagene). An NcoI-HindIII fragment containing the complete open reading frame was subcloned into the mammalian expression vector pTRiEx-4 (Novagen). To facilitate subsequent cloning steps, the Apal site in pTRiEx-4 was replaced with an SfoI restriction site by site-directed mutagenesis. An Apal site was subsequently created by silent mutation at nucleotide 66 of the Gpihbp1 cDNA (between the signal peptide and the acidic domain). A Gpihbp1 construct with an amino-terminal S protein tag was created by inserting the S protein coding sequence (5'-AAAGAACCGCTGCTGGGAATTTCGACCAGCACTTGAGACTG-3') into the newly created Apal site. The integrity of all constructs was verified by DNA sequencing.

Immunofluorescence Microscopy

For the detection of GPIHB1 in cultured cells, cells were plated on coverslips at ~25,000 cells per well in 24-well plates, fixed in 3% paraformaldehyde, blocked with 10% sheep serum, and incubated with the rabbit anti-GPIHB1 antisera diluted in blocking buffer (1:800). Detergents were omitted to facilitate the detection of only cell-surface GPIHB1 protein. Bound rabbit IgG was detected with a FITC-conjugated donkey anti-rabbit IgG (1:800, Jackson Immunoresearch). After washing, cells were stained with DAPI to visualize DNA. For cells transfected with the S protein-tagged GPIHB1 construct, the fusion protein was detected with a FITC-conjugated goat antibody against the S protein tag (1:400, Abcam). Images were obtained with an Axiovert 200 MOT microscope (Zeiss) with a 63x/1.25 oil-immersion objective and processed with Axiovision 4.2 software (Zeiss). Confocal fluorescence microscopy was performed with a Leica TCS-SP MP confocal inverted microscope equipped with an argon laser (488 nm blue excitation), a diode laser (561 nm green excitation), and a two-photon laser tuned at 780 nm for UV excitation. Individual images were captured sequentially with a 63x/1.32 plan apo objective, and merged images were generated with Leica Confocal Software (version 2.5).

For the detection of GPIHB1 in mouse tissues, 10 μm frozen sections were fixed with 4% formaldehyde and blocked with 10% donkey serum. The samples were incubated overnight with the rabbit antiserum against mouse GPIHB1 (1:200) and rat monoclonal antibody against mouse CD3 (1:50, BD Pharmigen). Samples were subsequently washed and incubated for 1 hr with FITC-conjugated antibody against rabbit IgG (1:200, Jackson Immunoresearch) and Alexa Fluor 568-conjugated antibody against rat IgG (1:800, Molecular Probes). After washing, the sections were stained with DAPI to visualize DNA. Microscopy was performed as described above.

Binding of Lipoprotein Lipase to Gpihbp1-Transfected CHO Cells

CHO pgsA-745 cells transfected with pcDNA3-Gpihbp1 or empty vector were grown to confluence in Ham’s F12 medium containing 5% fetal bovine serum. The cells were placed on ice, washed twice with ice-cold PBS, and incubated for 2 hr at 4°C with 1.0 ml of Ham’s F12 medium supplemented with 0.5% BSA and highly purified chicken LpL (Bensadoun et al., 1999). After this incubation, the cells were washed once with PBS supplemented with 0.5% BSA and lysed with 400 μl of CHAPS lysis buffer (4 mM CHAPS, 50 mM NH4Cl, and 3 U heparin/ml). The amount of LpL in the medium and cell lysates was measured by ELISA (Cisar et al., 1989).

Experiments were also performed to determine whether the binding of LpL to cells could be prevented by treating cells with a phosphatidyl-inositol-specific phospholipase C (PIPLC). CHO-pgsA-745 cells transfected with either pcDNA3-Gpihbp1 or empty vector were grown to confluence in 35 mm dishes. The cells were incubated in 2 ml of Ham’s F12 in the absence or presence of 10 U of PIPLC at 37°C for 1 hr. Cells were then placed on ice and incubated in Ham’s F12 supplemented with 0.5% BSA and 1.5 μg of avian LpL for 2 hr. Cells were then washed once with PBS/0.5% BSA and lysed with CHAPS buffer. Bound LpL was determined by ELISA (Cisar et al., 1989). Recombinant PIPLC was purified from the media of Bacillus subtilis transfected with a PIPLC gene from B. thuringiensis (a generous gift from M. Low) (Low, 1992). The enzyme was purified from media by ion-exchange chromatography on Amberlite CG-50, followed by ammonium sulfate precipitation, gel filtration on Sephadex G-75, and a final anion-exchange chromatography step on MonoQ. PIPLC activity was determined with L-3-phosphatidyl(1,2-3H)inositol (GE Healthcare) (Low, 1992). The final PIPLC preparation had an activity of 199 units/ml.

Measurements of LpL and Hepatic Lipase Activities

To estimate LpL and HL activities in postheparin plasma, mice were injected intraperitoneally with 0.5 μg heparin sodium/g body weight, and blood was collected under anesthesia from the retro-orbital sinus 15 min later. To avoid the possibility of the elevated plasma triglyceride levels interfering with the lipase assays, the lipases were partially purified from the plasma samples by heparin-Sepharose chromatography. Postheparin plasma (200 μl) was loaded onto 1.0 ml heparin-Sepharose HiTrap columns (GE Healthcare) equilibrated with 0.25 M NaCl, 20% glycerol, 1% BSA, 10 mM sodium phosphate (pH 6.5). The columns were washed with 10 ml of the equilibration buffer and eluted with a 30 ml NaCl gradient (0.25–1.5 M) in 20% glycerol, 1% BSA, 10 mM sodium phosphate (pH 6.5). Fractions were assayed for lipolytic activity with [3H]triolein as described previously (Hocquette et al., 1998). The activities in fractions corresponding to the HL and LpL peaks were added together to calculate the lipase activities per ml of plasma.

Binding of Dil-Labeled Chylomicrons to Cells

Dil (1,1'-dioctadecyl-3,3',3'-tetramethylindocarbocyanine perchlorate) was purchased from Invitrogen. Dil was dissolved in DMSO (3 mg/ml), and 10 μl of this solution was added to 70 μl of serum (from a Gpihbp1-/- mouse) and 250 μl of human lipoprotein-deficient serum. This mixture was then incubated at 37°C overnight. The d < 1.006 g/ml lipoproteins (“chylomicrons”) were isolated by centrifugation at 100,000 rpm in a Beckman TLS 100,3 rotor for 6 hr at 4°C. The Dil-labeled chylomicrons were harvested and dialyzed against PBS containing 5.0 μM EDTA.

To evaluate the binding of the Dil-labeled chylomicrons to GPIHB1, transfected CHO idA7 cells were incubated with 1 μg/ml of Dil-labeled chylomicrons in PBS containing 1.0 mM CaCl2, 1.0 mM MgCl2, and 0.5% BSA for 2 hr at 4°C. The cells were then washed five times in the same buffer and fixed in 3% paraformaldehyde, and chylomicron binding was detected by fluorescence microscopy. Cells expressing GPIHB1 on the cell surface were detected by immunofluorescence microscopy as described above.

Binding of Apolipoprotein AV-Phospholipid Disks to Cells

An apo-AV-FLAG expression vector was constructed by replacing the apo-AV coding sequence in the apo-AV/pET vector (Beckstead et al., 2003) with sequences encoding apo-AV-FLAG. Recombinant apo-AV with a carboxy-terminal 60 residue FLAG extension was expressed and purified as described (Beckstead et al., 2003). To generate apo-AV-FLAG-phospholipid complexes, dimyristoylphosphatidycholine
(DMPC) was dissolved in chloroform:methanol (3:1 v/v), and the solvent was evaporated under a stream of nitrogen. The sample was then incubated in vacuo for 16 hr to remove residual solvent. DMPC was resuspended in a solution containing 50 mM sodium citrate and 150 mM NaCl (pH 7.0), followed by the addition of apo-AV-FLAG (6:1 DMPC:apo-A-V w/w). The mixture was sonicated until clear; dialyzed against 50 mM phosphate (pH 7.4), 150 mM NaCl; and filter sterilized (0.22 μm). Protein concentration was determined with the BCA Protein Assay Kit (Pierce), and the phospholipid content was determined with an enzyme-based colorimetric assay (Wako). To evaluate the binding of the apo-AV-DMPC disks to GPIHBP1, pgsA-745 CHO cells were transiently transfected with the S protein-tagged Gpihbp1 cDNA and incubated with 5 μg/ml of apo-AV-DMPC disks in PBS containing 1.0 mM CaCl2, 1.0 mM MgCl2, and 0.5% BSA for 2 hr at 4°C. Apoprotein binding was detected with mouse anti-FLAG antibody (and Cy5-conjugated goat anti-mouse antibody), and the S protein-tagged Gpihbp1 was assessed as described above.

Supplemental Data

Supplemental Data include seven figures and can be found with this article online at http://www.cellmetabolism.org/cgi/content/full/5/4/279/DC1.

ACKNOWLEDGMENTS

This work was supported by a Beginning Grant-in-Aid from the American Heart Association, Western States Affiliate (to A.P.B.), NIH grants HL077228-01 (to S.G.Y.) and HL073061 (to R.O.R.), and BayGenomics (grants HL66261 and HL66600 from the National Heart, Lung, and Blood Institute) (to S.G.Y.). We thank Jennifer A. Beckstead for discussions and advice.

Received: December 20, 2006

Revised: February 5, 2007

Accepted: February 12, 2007

Published: April 3, 2007

REFERENCES

glycosylphosphatidylinositol-anchored high density lipoprotein-bind-
Korn, E.D. (1955). Clearing factor, a heparin-activated lipoprotein li-
pase by site-directed mutagenesis. J. Lipid Res. 39, 1310–1315.
creases very low density lipoprotein diameter and causes the appearance of a unique lipoprotein particle in association with failed yolk de-