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Abstract
Much of the current science on, and mathematical modeling of, dynamic changes in
human performance within and between days is dominated by the two-process model
of sleep–wake regulation, which posits a neurobiological drive for sleep that varies
homeostatically (increasing as a saturating exponential during wakefulness and
decreasing in a like manner during sleep), and a circadian process that neurobiologically
modulates both the homeostatic drive for sleep and waking alertness and performance.
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Endogenous circadian rhythms in neurobehavioral functions, including physiological
alertness and cognitive performance, have been demonstrated using special laboratory
protocols that reveal the interaction of the biological clock with the sleep homeostatic
drive. Individual differences in circadian rhythms and genetic and other components
underlying such differences also influence waking neurobehavioral functions. Both
acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep
drive and degrade waking neurobehavioral functions as reflected in sleepiness, atten-
tion, cognitive speed, and memory. Recent evidence indicating a high degree of stabil-
ity in neurobehavioral responses to sleep loss suggests that these trait-like individual
differences are phenotypic and likely involve genetic components, including circadian
genes. Recent experiments have revealed both sleep homeostatic and circadian effects
on brain metabolism and neural activation. Investigation of the neural and genetic
mechanisms underlying the dynamically complex interaction between sleep homeo-
stasis and circadian systems is beginning. A key goal of this work is to identify bio-
markers that accurately predict human performance in situations in which the
circadian and sleep homeostatic systems are perturbed.
1. INTRODUCTION

Sleep is a ubiquitous biological imperative that appears to be evolu-
tionarily conserved across species.1 Sleep of sufficient duration, continuity,

and intensity (depth) without circadian disruption is necessary to promote

high levels of attention and cognitive performance during the wake period,

and to prevent physiological changes that may predispose individuals to

adverse health outcomes.2 The evidence linking habitually short sleep or cir-

cadian desynchrony to conditions such as weight gain,3,4 obesity,5 diabetes,6

and hypertension,7 as well as to increased mortality,8 has accumulated over

the past decade. These negative cognitive and health consequences of sleep

restriction are provocative, given that current representative surveys indicate

35–40% of the adult US population report sleeping less than 7 h on weekday

nights,9 which has been experimentally demonstrated to result in cumulative

deficits in behavioral alertness and vigilant attention.10

A lifestyle of chronic partial sleep loss that is often paired with chronic

stimulant use (e.g., caffeine)11 may at least in part be explained by the fact

that humans frequently alter the timing and duration of sleep in exchange

for other activities. This altered behavior appears to be prevalent in current

industrialized societies, where the biological imperative to sleep adequately

often opposes the cultural imperative to spend more time awake.12 Sleep

may be perceived as a flexible commodity that is traded for other activities



157Circadian Rhythms, Sleep Loss, and Performance
considered more pressing or of greater value.13 Analyses of the American

Time Use Survey (ATUS) revealed that paid work time and commuting

to and from work were the two waking activities most often exchanged

for sleep time.14 Sleep time was lowest in the 45- to 54-year-old respon-

dents, shorter in men than in women, and shorter on weekdays compared

to weekends. An ATUS analysis on waking activities in the 2-h period

before retiring in the evening and after waking up in the morning showed

that watching TV was the dominant (>50%) activity in the 2 h before retir-

ing.15 Long work hours were associated with progressively earlier wake-up

times in the morning, while long-hour workers, short-hour workers, and

those who did not work did not differ in the times when they retired at

night.15 We speculate that some of this sleep-restriction behavior may be

explained by respondents with a late evening circadian phase preference,

who awaken early by alarm clock to commute for paid work. These indi-

viduals cannot easily advance their sleep onset, but they can use an alarm

clock to advance their sleep offset (for commuting and paid work), resulting

in a restricted sleep period. This misalignment of biological and social time

has been termed “social jet lag” by Roenneberg and colleagues.16 Individ-

uals with a late circadian preference thus often engage in chronic sleep

restriction during the work week, and try to pay off their sleep debt on

the weekend. Furthermore, shift work affects sleep and alertness of approx-

imately one out of five working Americans, with 15% of full-time salaried

workers usually working shifts that include nights.17 Shift work includes

working evenings, nights, or rotating shifts and is often associated with

shorter-than-normal and disrupted sleep periods at an adverse circadian

phase.18 The International Agency for Research on Cancer concluded in

2007 that shift work involving circadian disruption is probably carcinogenic

to humans.17,19

2. SLEEP–WAKE AND CIRCADIAN REGULATION:
TWO-PROCESS MODEL
The two-process model of sleep–wake regulation has been applied to

the temporal profiles of sleep20,21 and daytime vigilance.22 The model con-

sists of a homeostatic process (S) and a circadian process (C), which combine

to determine the timing of sleep onset and offset. The homeostatic process

represents the drive for sleep that increases as a saturating exponential during

wakefulness (as can be observed when wakefulness is maintained beyond

habitual bedtime into the night and subsequent day) and decreases as a
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saturating exponential during sleep (which represents recuperation obtained

from sleep).When the homeostat increases above a certain threshold, sleep is

triggered; when it decreases below a different threshold, wakefulness occurs.

The circadian process represents daily oscillatory modulation of these

threshold levels. It has been suggested that the circadian system actively pro-

motes wakefulness more than sleep.23 The circadian drive for wakefulness

may be manifested as spontaneously enhanced alertness and better cognitive

performance in the early evening after one night or multiple nights without

sleep24,25 (Figs. 7.1 and 7.2).

The endogenous circadian regulating system (i.e., biological clock) that

modulates the timing of both sleep and wakefulness is located in the sup-

rachiasmatic nuclei (SCN) of the anterior hypothalamus. Beyond gating

the timing of sleep onset and offset, the SCN modulates waking behavior

in a circadian manner, as reflected in subjective and physiological sleepiness,

behavioral alertness, and a number of fundamental cognitive functions, includ-

ing vigilant attention, psychomotor and perceptual cognitive speed, and

working memory.

Alertness and performance, sleep and sleeplessness are neurobehavioral

outputs that involve dynamic circadian variation. Recent forced desynchrony

protocols, which serve to experimentally reveal the variance in neuro-

behavioral functions attributable primarily to endogenous circadian control

and the variance attributable primarily to the sleep homeostatic drive, have

revealed that circadian dynamics can expose large neurobehavioral vulnerabil-

ity during chronic sleep restriction.26,27 These studies demonstrated that

sleep restriction induced decreased vigilant attention, as measured by the

Psychomotor Vigilance Test (PVT),25 most prominently during circadian

night, even with short prior wake duration. Another study found that time

of day modulated the effects of chronic sleep restriction, whereby the

build-up rate of cumulative neurobehavioral deficits across days was largest

at 0800 h and became progressively smaller across the hours of the day, espe-

cially between 1600 and 2000 h, indicating a late afternoon/early evening

period of relatively protected alertness.28

Thus, while the two-process model has been very successful in explaining

changes in neurobehavioral performance in acute total sleep deprivation

paradigms, it fails to adequately predict the escalating declines in vigilant atten-

tion observed under chronic sleep-restriction conditions.

The two-process model has proved to be most useful for generating

mathematical predictions of the dynamics of human alertness and perfor-

mance under varying conditions of sleep loss and circadian misalignment.29
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When these mathematical models are compared to emerging experimental

data on performance relative to sleep–wake dynamics, they often reveal new

deficiencies in the two-process model.30 An excellent example of this need

to continually improve the predictions of the two-process model can be

found in a mathematical modeling paper by McCauley and colleagues,31

who showed that the two-process model belongs to a broader class of models

formulated in terms of coupled nonhomogeneous first-order ordinary dif-

ferential equations. Their new model includes an additional component

modulating the homeostatic process across days and weeks, and better

reflects the neurobehavioral changes observed under both acute total and

chronic partial sleep loss than the original two-process model. The authors

speculate that adenosine receptor upregulation (wakefulness) and down-

regulation (sleep) constitute the underlying neurobiological mechanism.

Importantly, the model predicts a critical amount of daily wake duration

of 20.2 h. If daily wake duration is above ca. 15.8 h32 but below 20.2 h

(corresponding to a total sleep time of 3.8–8.2 h), the model, over a period

of weeks, converges to an asymptotically stable equilibrium (i.e., perfor-

mance deficits will stabilize at a certain level). If daily wake duration is above

20.2 h, the model diverges and, similar to acute total sleep deprivation, per-

formance impairments escalate.31 The model of McCauley et al.31 also
Figure 7.1 Circadian variation across a 40-h period of wakefulness in measures of sub-
jective sleepiness as assessed by visual analogue scale (VAS, note reversed scale direc-
tion); in cognitive performance speed as assessed by the digit symbol substitution task
(DSST); in psychomotor speed as reflected in the 10% fastest reaction times (RT)
assessed by the Psychomotor Vigilance Test (PVT); and in core body temperature
(CBT) as assessed by a rectal thermistor. Data shown are the mean values from five sub-
jects who remained awake in dim light, in bed, in a constant routine protocol, for 36 h
consecutively (a distance-weighted least-squares function was fitted to each variable).
The circadian trough is evident in each variable (marked by vertical broken lines).
A phase difference is also apparent such that all three neurobehavioral variables had
their average minimum between 3.0 and 4.5 h after the time of the body temperature
minimum. This phase delay in neurobehavioral functions relative to CBT has been con-
sistently observed. Although body temperature reflects predominantly the endogenous
circadian clock, neurobehavioral functions are also affected by the homeostatic pres-
sure for sleep, which escalates with time awake and which may contribute to the phase
delay through interaction with the circadian clock. Neurobehavioral functions usually
show a circadian decline at night as is observed in CBT, but they continue their decline
after CBT begins to rise, making the subsequent 2–6 h period (clock time approximately
0600–1000 h) a zone of maximum vulnerability to loss of alertness and to performance
failure.Reprinted with permission from Ref. 256.
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predicts that a single night of recovery sleep is inadequate to recover from a

prolonged period of sleep restriction, a finding we recently experimentally

confirmed.33 It is recognized that further model development is needed to

integrate more comprehensive mathematical models of the circadian com-

ponent and to account for sleep inertia and trait-like individual differences in

vulnerability to sleep loss.31

3. CIRCADIAN RHYTHMS OF PERFORMANCE

3.1. Subjective measures of sleepiness and alertness
Figure
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A variety of subjective measures of sleepiness and alertness reflect circadian

variation, as long as the scale requests ratings about the near immediate state

of the subject. These include visual analogue scales,34 Likert-type rating

scales such as the Stanford Sleepiness Scale35 and the Karolinska Sleepiness

Scale,36 and certain fatigue-related subscales of standard adjective checklists

such as the Activation–Deactivation Adjective Check List37 and Profile of

Mood States.38 Despite structural differences among these scales, all self-

reports of sleepiness are highly intercorrelated and because they are relative

psychometrics, they are subject to a number of sources of variance, including

different uses of the scale response range by different subjects. The effects of

cognitive performance testing on subsequent posttest subjective alertness

ratings are evident only when sleep loss has commenced and this effect is

modulated by circadian variation.28

3.2. Objective measures of cognitive performance
Many studies rely on objective performance measures to track the temporal

dynamics of endogenous circadian rhythmicity. Circadian variation in
7.2 Psychomotor Vigilance Test (PVT) performance parameters of healthy adults
an 88 h period of limited to no sleep in the laboratory. The open circles represent
jects undergoing 88 h of total sleep deprivation, and the filled squares represent
ntrol subjects given a 2-h time in bed nap opportunity once every 12 h
0445 h and 1445–1645 h) throughout the 88 h period (nap times are not
in the figure). Graph A: mean (SEM) PVT reaction times (RT), which as
00 ms are frank errors of omission and referred to as lapses of attention
sponding too slowly). Graph B: mean (SEM) PVT errors of commission, which
from premature responses and reflect impulsiveness (i.e., responding too fast).
C: mean (SEM) of PVT RT standard deviations for each test bout, reflecting the
tude of interindividual differences in performance. The subjects who underwent
ithout sleep showed clear circadian variation in both lapses of attention (A) and
ture responses (B), as well as interindividual differences in these effects (C).
adapted and modified with permission from Ref. 24.
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performance is most evident when sleep loss is present, and sleep loss has its

largest effects on attention, working memory, and cognitive throughput.39

Examples of such cognitive performance measures that have historically

been reported to display circadian variation include the following: search-

and-detection tasks40 and simple and choice reaction time tasks,41

sorting,42 logical reasoning,43 memory access,44 and real-world tasks such

as meter reading accuracy45 and school performance.46 Typically, response

speed and accuracy to a series of repetitive stimuli are analyzed, although the

sensitivity of the performance metric used to track circadian variation

depends on whether the task is work-paced versus subject-paced, on speed

versus accuracy trade-offs in performance metrics,47 on the rate and number

of responses acquired during the task, on whether the task metrics reflect

performance variability or mean performance, and on the overall technical

precision of the measurement. Even short-duration, work-paced tasks that

precisely measure variability in performance can be used to demonstrate cir-

cadian variation.48 It is likely that the modulatory effects the circadian system

has on speed and accuracy make many tasks sensitive to process C, more so

than any unique aspect of task demand.

Earlier studies concluded that different tasks49,50 and different task out-

comes51,52 may yield distinct peak phases of circadian rhythmicity, suggesting

that many distinct circadian rhythms utilizing different clock mechanisms

exist.53,54 Under strictly controlled laboratory conditions, most intertask

differences in circadian variation disappear.55,56 As illustrated in Fig. 7.1, under

controlled sleep deprivation conditions, the circadian rhythms of neuro-

behavioral performance variables covary with each other and with subjec-

tive sleepiness. Importantly, these rhythms mimic the circadian profile

of core body temperature, one conventional marker of the biological

clock.57,58 Under entrained conditions, higher and lower core body

temperature values typically correspond to good and poor performance,

respectively.56,59,60

3.3. Masking factors
Subjective measures of sleepiness and alertness are vulnerable to numerous

confounding influences that can “mask” their circadian rhythmicity. Mas-

king refers to the evoked effects of noncircadian factors on measurements

of circadian rhythmicity. The context in which such measurements are

taken (i.e., the environmental and experimental conditions) is a major

source of masking effects. Masking can alter or obscure a circadian rhythm,

or create the appearance of a circadian rhythm. Masking factors specifically
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affecting sleepiness and alertness include the following demand characteris-

tics of the experiment,61 distractions by environmental stimuli and noise,62

boredom and motivational factors,63–65 stress,66 food intake,67,68 posture

and activity,69,70 ambient temperature,64 lighting conditions,71,72 and

stimulant drug intake (e.g., caffeine, modafinil, amphetamine).73–75

Physical, mental, and social activities can represent masking factors that

interact with endogenous circadian rhythms in neurobehavioral functions.

The effects of performing cognitive tests on subjective estimates of alertness

are apparent at certain circadian phases during sleep deprivation. Subjects

report feeling less alert after they are challenged to perform. Thus, prior

activity can influence subjective estimates, and can interact with circadian

effects if not properly controlled when measuring the rhythmicity of subjec-

tive states.

Sleep and sleep loss can also be considered masking factors when mea-

suring circadian rhythmicity in certain neurobehavioral variables. There-

fore, neurobehavioral measures reflect to varying degrees a combination

of endogenous circadian rhythmicity, sleep homeostatic drive, and masking

effects interacting to produce behavioral outcomes.

4. PROTOCOLS TO ASSESS CIRCADIAN VARIATION IN
NEUROBEHAVIORAL FUNCTIONS
Considerable research has been devoted to unmasking circadian

rhythms, that is, eliminating sources of extraneous variance to expose the

endogenous circadian rhythms of variables of interest, including alertness

and cognitive performance. Two such experimental approaches are the

use of a constant routine protocol and the use of a forced desynchrony

protocol.

4.1. Constant routine
The constant routine procedure76 is generally regarded as the gold standard

for measuring circadian rhythmicity. By keeping subjects awake with a fixed

posture in a constant laboratory environment for at least 24 h, circadian

rhythms in a variety of physiologic and neurobehavioral variables can be

recorded without biases (Fig. 7.1). Indeed, the circadian rhythm of body

temperature is believed to be largely free of masking effects when derived

under a constant routine.

However, when neurobehavioral variables are considered, sleep depri-

vation and the stimuli used to sustain wakefulness can constitute masking
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factors. In constant routine experiments, these masking effects are evident in

subjective measures of sleepiness and alertness.57,77 Figure 7.1 shows the

somewhat reduced values for subjective alertness as well as cognitive and

psychomotor performance after 30 h awake in a constant routine, compared

with the values of these variables 24 h earlier (i.e., at the same circadian phase

but without sleep deprivation).

Recently, the constant routine protocol has been used to examine

metabolites in saliva and plasma at different times of day to identify those

that are under circadian control and are independent of sleep.78,79 Remark-

ably, one study found that metabolites from blood taken every 2 h, which

were used to form a circadian timetable, could subsequently be used to pre-

dict internal time within a 3-h interval using only two blood samples.80

More recently, a constant routine was used to examine the effects of chronic

sleep restriction on circadian rhythmicity and amplitude of genes that were

upregulated or downregulated using a transcriptome analysis, highlighting

the critical interaction between sleep homeostasis and circadian rhythms

at the mRNA level.81

A progressive change associated with the time spent awake is typically

superimposed on the circadian rhythm of neurobehavioral variables.82,83

When total sleep deprivation is continued for several days (whether in a con-

stant routine procedure or an experimental design involving ambulation),

the detrimental effects on alertness and performance increase, and although

the circadian process can be exposed,84 it is overlaid on a continuing (nearly

linear) change reflecting increasing homeostatic pressure for sleep.85 This is

illustrated in Fig. 7.2 for PVT performance lapses—perhaps the most sensi-

tive waking measure of homeostatic sleep drive and circadian phase, and the

least masked by aptitude and learning.25,86 It is noteworthy that decreased

alertness during the circadian trough is associated with increased intra-

individual variability in performance. This is evidenced by intermittent laps-

ing (reaction times>500 ms)87 which reflects wake state instability.24,25 The

wake state instability hypothesis posits that sleep-initiating mechanisms may

interfere with wakefulness, making sustained performance unstable and

dependent on compensatory mechanisms.25

4.2. Forced desynchrony
The forced desynchrony protocol88,89 conducted in temporally and envi-

ronmentally isolated conditions, is an experimental procedure particularly

suitable for studying the interaction of the circadian and homeostatic pro-

cesses.55,90,91 In this protocol, a subject’s imposed timing and duration of
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wake and sleep (typically maintained in a 2:1 ratio) deviate from the normal

24-h day (e.g., 20- or 28-h days), such that the subject’s biological clock is

unable to entrain to this schedule. The subject experiences two distinct

influences simultaneously—the schedule of predetermined sleep and waking

times representing the homeostatic system and the rhythm of the subject’s

unsynchronized (i.e., free-running) circadian system. Neurobehavioral

functions are assayed during the waking periods. By folding the data over

either the free-running circadian rhythm or the imposed sleep–wake cycle,

the other component can be balanced out. Thus, the separate effects of cir-

cadian rhythms and wake duration (i.e., homeostatic drive for sleep) on neu-

robehavioral variables can be assessed.

Forced desynchrony studies have found that both the circadian and

homeostatic processes influence sleepiness and performance.26,27 The inter-

action of the two systems is oppositional during diurnal wake periods (from

approximately 0700 h until 2300 h), such that a relatively stable level of

alertness and performance can be maintained throughout the day.89,90 This

explains why in many studies of alertness and performance, very little tem-

poral variation is observed during the waking portion of a normal day, espe-

cially when there is no sleep deprivation24 (Fig. 7.2).

The interaction of the homeostatic and circadian processes is believed to

be nonlinear (i.e., nonadditive).90,92 Therefore, the separation of circadian

and homeostatic influences on neurobehavioral variables presents a concep-

tual andmathematical challenge, and it is difficult, if not impossible, to quan-

tify the relative importance of the two influences on neurobehavioral

functions. Moreover, their relative contributions may vary across different

experimental conditions55,90 and among subjects.93

5. INTERINDIVIDUAL VARIABILITY IN CIRCADIAN
RHYTHMS
Healthy adults show interindividual differences in the free-running cir-

cadian period (tau),94–98 which shows robust stability within individuals.97

Subjects also demonstrate interindividual differences in circadian ampli-

tude58,99 and circadian phase57,58,95,99 which are in part due to genetic influ-

ences.99 There are several standardized methods for assessing interindividual

differences in circadian rhythms. One newer method, using molecular tech-

niques, can determine individual differences in tau, amplitude, and phase-

resetting, which relate to diurnal phase preference, using cultured human
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fibroblasts from skin biopsies or blood samples.100–102 While these in vitro

skin fibroblasts can determine circadian rhythms and period, they do not

necessarily correlate with in vivo physiological rhythms,97 limiting the validity

andutility of this technique. Standard physiological estimates of circadian phase

include the dim light melatonin onset103 and core body temperature mini-

mum.57,58 These methods are important for characterizing interindividual

variation in circadian rhythmicity.

5.1. Chronotype (morningness–eveningness)
Chronotype or morningness–eveningness (i.e., the tendency to be an early

“lark” or a late “owl”) is perhaps the most frequently measured inter-

individual variation in circadian rhythmicity. Morning- and evening-type

individuals differ endogenously in the circadian phase of their biological

clocks.57,58 Self-report questionnaires, such as the Horne–Östberg

morningness–eveningness questionnaire104 and its variants,105 and the

Munich ChronoType Questionnaire,106,107 differentiate timing of activities

on workdays versus free days. They are the most commonly utilized mea-

sures of circadian phase preference, because of their convenience and cost

effectiveness.

Age affects morningness–eveningness as shown in laboratory studies108

and more naturalistic population-based settings.107,109 In addition, gender

influences morningness–eveningness with women showing a greater skew

toward morningness than men.107,110–112 Women also have been reported

to have a shorter average intrinsic circadian period than men,113 though

not consistently,114 and blacks have been reported to have a shorter

average intrinsic circadian period than whites.114 These differences in

circadian phase preference (and possibly in circadian period) appear to be

enduring traits, with a significant genetic basis across various diverse

populations.115–120 As such, chronotype is a phenotypic aspect of circadian

rhythmicity in humans.121

In line with the two-process model, the relationship of chronotype to the

regulation of sleep and neurobehavioral responses to sleep deprivation has

been investigated in laboratory studies. Chronotypes showed differences

in homeostatic sleep regulation122–124 and in homeostatic response to

sleep fragmentation.125 Moreover, chronotypes showed differences in

neurobehavioral responses to sleep fragmentation126 and to total sleep

deprivation,127 and to risk-taking propensity at baseline and following

total sleep deprivation.128
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5.2. Genetics of individual differences in chronotype and
circadian rhythms

Morningness–eveningness is estimated to be about 50% heritable.129 The

genetic basis of morningness–eveningness in the general population has been

investigated by targeting several core circadian genes, producing inconsistent

results.130 For example, the 3111C allele of theCLOCK gene 50-UTR region

has been associated with eveningness and delayed sleep timing in some stud-

ies131–133 but not others.98,134–138 Similarly, the variable number tandem

repeat (VNTR) polymorphism in PERIOD3 (PER3), another core clock

gene, has been linked to diurnal preference, but not consistently,135,139–148

thereby underscoring the need for further investigation on this topic. Both

the 111G polymorphism in the 50-untranslated region of PERIOD2 (PER2)

and theT2434CpolymorphismofPERIOD1havebeenassociatedwithmorn-

ing preference149,150 though not consistently.134 Since morningness–

eveningness represents a continuum, it is likely this trait is polygenic, influenced

byseveral genes, eachcontributingto thedeterminationofcircadianphasepref-

erence. Thus, further studies investigating other clock genes, as well as replica-

tion of the PER and CLOCK findings, are needed to establish precisely the

molecular components of behavioral circadian phase preference.

Interindividual differences in morningness–eveningness are believed to

manifest into extreme cases classified as primary circadian rhythm sleep dis-

orders (CRSDs), with altered phase relationships of the biological clock to

the light–dark cycle, including alterations in sleep timing.151,152 Thus,

extreme eveningness is thought to result in CRSD, delayed sleep phase type

(usually referred to as a disorder and abbreviated as DSPD152), while extreme

morningness can manifest as CRSD, advanced sleep phase type (usually

referred to as a disorder and abbreviated as ASPD).151,152 The extent to

which these phase-displacement disorders reflect differences in endogenous

circadian period, amplitude, coupling, entrainment, or other aspects of clock

neurobiology has been the focus of recent research.

The genetic basis of DSPD and ASPD related to phenotypic chronotype

has been investigated in recent years, both demonstrating links to core clock

genes.130,153,154 DSPD, themost commonCRSD in the general population,

is characterized by an inability to fall asleep at the desired and “normal” time

of day; the average onset of sleep in DSPD occurs in the early morning

(0300–0600 h), and the average wake-up time occurs in the late morning

to early afternoon (1100–1400 h).152 DSPD also may be characterized by

a longer than normal tau (e.g., �25 h).155 The VNTR polymorphism in

PER3 is associated with DSPD in large sample studies,139,140,142 and the
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3111C allele of the CLOCK gene 50-UTR region also has been related to

DSPD.131 In addition, a specific haplotype of PER3, which includes the

polymorphism G647, is associated positively with DSPD,142 while the

N408 allele of casein kinase I epsilon protects against DSPD in a Japanese

population156 but not in a Brazilian population.157

ASPD is a rarer disorder than DSPD and is characterized by 3- to 4-h

advanced sleep onsets and wake times relative to desired, normal

times.152,158 It may be associated with a shorter-than-normal tau (e.g.,

<24 h).159 In one study, ASPD was shown to be associated with a mutation

in PER2,160 although a later study failed to replicate this finding.161 Another

report implicatedmutations in casein kinase I delta in ASPD.162 Future stud-

ies on additional core clock genes are needed to determine other mutations

that may underlie this disorder.

Morningness–eveningness and differences in circadian phase preference

are reflected in the diurnal time course of neurobehavioral variables163—

some people perform consistently better in the morning, whereas others

are more alert and perform better in the evening.

How genetic variants underlying morningness–eveningness and chro-

notype disorders affect performance and alertness under normal and

sleep-deprived conditions remains an emerging and important field of inves-

tigation. Two studies have shown that the longer, 5-repeat allele of

the VNTR polymorphism in PER3, a clock gene linked to diurnal prefer-

ence and DSPD, may be associated with higher sleep propensity both at

baseline and after total sleep deprivation, and worse cognitive performance

following sleep loss.143,144 However, a study from our laboratory found that

this polymorphism related to individual differences in sleep homeostatic

responses, but not performance responses to chronic sleep restriction.148

The role of other core clock gene polymorphisms in response to total sleep

deprivation or chronic sleep restriction remains unknown.

A number of core clock genes have been associated with interindividual

differences in diurnal preference or its extreme variants. This area of research

has promising implications for objectively detecting differential vulnerability

to circadian disorders and lifestyles that adversely affect alertness, perfor-

mance and sleep duration, and homeostasis.

6. SLEEP DEPRIVATION AND PERFORMANCE

Sleep deprivation induces a variety of physiological and neuro-
behavioral changes.164 Both objective and subjective measures of sleep
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propensity increase with sleep deprivation. Sleep deprivation affects a wide

range of cognitive domains (including attention, working memory, abstrac-

tion, and decision making) and results in decreases in both the encoding of

new information and memory consolidation.165 Vigilant attention perfor-

mance and psychomotor speed, as assessed with the PVT, are affected early

and progressively more severely by sleep deprivation.86,166 Although

sustained attention seems a prerequisite for high levels of performance on

more complex cognitive tasks, several studies have shown that the latter

are less affected by sleep loss than attention, probably because they are more

challenging and engaging than sustained attention tasks that unmask fatigue

by their limited evocation of additional neural processing areas.39,167 In

addition, some of the differences among tasks in sensitivity to sleep depriva-

tion may be explained by practice effects confounding the effects of sleep

deprivation on more complex tasks. At the same time, the ability of stimu-

lants to counteract the effects of sleep deprivation seems to depend on the

cognitive domain studied.168

The neurobehavioral effects of chronic sleep restriction are less severe

than those observed after acute total sleep deprivation, but the former can

reach levels of deficit equivalent to total sleep loss when the sleep restriction

is severe enough (i.e., the consecutive days of restricted sleep continue long

enough).10,32 Chronic sleep-restriction experiments suggest that the neuro-

biology underlying the neurobehavioral deficits can continue to undergo

long-term changes. This is supported by a study investigating recovery after

a period of chronic sleep restriction that suggests a single recovery night of

up to 10 h time in bed is insufficient for some behavioral functions to return

to prerestriction levels.33 Evidence of longer time constants in homeostatic

sleep pressure manifesting in waking neurobehavioral functions was

reported by Rupp et al.169 who varied the amount of baseline nightly sleep

prior to chronic sleep restriction and found that it affected both the rate at

which alertness was degraded and the rate at which deficits were reversed by

repeated nights of recovery sleep.

6.1. Phenotypic and genotypic differences in response to
sleep deprivation

We have repeatedly demonstrated that there are large and highly replicable,

trait-like individual differences in the magnitude of fatigue, sleepiness, sleep

homeostatic, and cognitive performance vulnerability to acute total sleep

deprivation170,171 and to chronic sleep restriction.32,148,172,173 Some indi-

viduals are highly vulnerable to neurobehavioral performance deficits when
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sleep deprived, others demonstrate remarkable levels of neurobehavioral

resistance to sleep loss, and others show intermediate responses.171,174 Thus

far, studies from our laboratory and others indicate these phenotypic

responses occur as a normal distribution,170,175 which suggests the pheno-

type, like chronotype, may be polygenetic.

It remains unclear, however, whether the same individuals vulnerable to

the adverse neurobehavioral effects of chronic sleep restriction are also vul-

nerable to acute total sleep deprivation. Some studies have reported differ-

ences in behavioral, sleep homeostatic and/or physiological responses to

both types of deprivation.32,176,177 Moreover, only a few experiments

have systematically examined the same subjects in both types of depriva-

tion.167,175,178–180 These studies reported inconsistent results, likely due

to small sample sizes, different populations, varying doses of sleep restriction,

and different outcome measures.

The reasons for differential neurobehavioral vulnerabilities to sleep loss

are unknown, and thus far have not been accounted for by demographic

factors, IQ, or sleep need. Moreover, psychometric scales have not reliably

identified cognitively vulnerable individuals.181 The stable, trait-like inter-

individual differences observed in response to acute total sleep deprivation—

with intraclass correlation coefficients accounting for 50–90% of the

variance in neurobehavioral measures170,171—point to underlying genetic

components. In support of this statement, a recent study by Kuna et al.182

conducted in monozygotic and dizygotic twin pairs, found substantial dif-

ferences in individual neurobehavioral responses to total sleep deprivation—

56.2% of the total variance in the monozygotic twins was due to variance

between pairs whereas only 14.5% of the total variance in dizygotic twins

was due to variance between pairs (Fig. 7.3), indicating that the response

to acute total sleep deprivation is a highly stable, genetically determined trait.

Indeed, data from unrelated individuals further indicate that common

genetic polymorphisms involved in sleep–wake, circadian, and cognitive

regulation may underlie these large interindividual differences in neuro-

behavioral vulnerability to sleep deprivation in healthy adults.164,181,183

Because of reported differences in behavioral, sleep homeostatic, and

physiological responses to chronic sleep restriction and acute total sleep dep-

rivation, specific candidate genes may play different roles in the degree of

vulnerability and/or resilience to the neurobehavioral and homeostatic

effects of acute total sleep deprivation and chronic sleep restriction. Two

examples—one from a genetic variation involved in circadian regulation

and one from a genetic variation involved in a cognitive regulation—



Figure 7.3 The individual linear slopes of the change in Psychomotor Vigilance Task
(PVT) transformed lapses during 38 h of total sleep deprivation in monozygotic
(MZ; A) and dizygotic (DZ; B) twin pairs. Data for each MZ and DZ twin pair are plotted
together on the abscissa. In each panel, the pairs are ordered by the magnitude of their
impairment (averaged over each pair), with the most resistant twin pair on the left and
the most vulnerable twin pair on the right. The panels reveal substantial differences in
individual responses to sleep deprivation. The intraclass correlation (ICC) revealed
greater similarity within MZ twin pairs than within DZ twin pairs. There was 56.2% of
the total variance in the MZ twins due to variance between pairs whereas only
14.5% of the total variance in DZ twins was due to variance between pairs. Reprinted
with permission from Ref. 182.
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illustrate this point. As mentioned previously, the PER3 VNTR polymor-

phism has been associated with individual differences in sleep homeostatic

and executive performance responses to acute total sleep deprivation.143,144

We showed that this polymorphism related to individual differences in sleep

homeostatic responses, but not cognitive performance responses to chronic

sleep restriction.148 By contrast, two recent studies,167,184 which used
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different sleep-restriction paradigms than that of Goel et al.,148 claimed that

the PER3 VNTR polymorphism was related to individual differences in

neurobehavioral responses to chronic sleep restriction. Notably, one of

these184 failed to include subjects from the critical PER35/5 putatively vul-

nerable genotype, and thus its findings must be interpreted cautiously and

replicated in the appropriately inclusive genotypes. As another example,

we found that the catechol-O-methyltransferase Val158Met polymorphism

predicted individual differences in sleep homeostatic responses to chronic

sleep restriction,173 but such prediction has not been shown to acute total

sleep deprivation.185 Clearly, more studies are warranted to investigate

potential genotypic markers of phenotypic vulnerability to sleep loss and

the differential role they might play in response to different types of

sleep loss.
6.2. Neuroimaging of sleep deprivation and circadian
variations in brain metabolism and neural activity

With few exceptions, the influences of sleep deprivation and circadian var-

iations on brain metabolism and neural activity have been studied separately

in the past two decades using various neuroimaging methods, particularly

positron emission tomography (PET) and functional magnetic resonance

imaging (fMRI).

PET studies of sleep deprivation have consistently reported significant

reductions in metabolic rates in the thalamic, parietal, and prefrontal regions

after sleep loss, which correlated with declines of cognitive performance and

alertness.186–189 An early PET study examined the effects of time of day (a

surrogate for circadian phase) on the cerebral metabolic rate of glucose and

observed a trend toward increased whole brain glucose metabolism from

the morning to the afternoon scans.190 A more recent PET study found

increased relative glucose metabolism in the brainstem and hypothalamic

arousal systems and decreased relative metabolism in the posterior cortical

regions during evening wakefulness compared with morning wakeful-

ness.191 Moreover, variations in regional brain glucose metabolism have

been reported to differ across morning and evening scans in depressed

and healthy adult subjects.192 New PET studies on neurotransmitter recep-

tors have shown downregulation of striatal dopamine receptors193 but

increases in cerebral serotonin receptor binding with sleep loss,194 which

may reflect a complex adaptive brain response to sleep deprivation. How-

ever, due to its invasiveness and the rapid decay of radioactive tracers, further
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utility of PET in imaging human brain metabolism variations associated with

sleep deprivation and time-of-day effects is limited.

The vast majority of sleep deprivation and time-of-day or circadian neu-

roimaging studies are based on the blood oxygenation level-dependent

(BOLD) fMRI. Compared with PET, BOLD fMRI is noninvasive, more

cost effective, and easier to apply, thus making it the most widely used imag-

ing method for localizing regional brain function. BOLD studies typically

compare fMRI signals during a specific cognitive task with those during

a control or baseline condition to obtain task-related brain activation.

A large number of BOLD studies have investigated the effects of acute total

or partial sleep deprivation on brain activation during performance on

a broad range of neurocognitive tasks, including arithmetic calculation,195

attention,196–208 decision making,209–211 emotional processing,212 episodic

memory,213–215 inhibition control,216 logical reasoning,217 spatial

navigation,218 verbal learning,219,220 visuomotor adaptation memory,221

and working memory tasks.222–230 Many BOLD fMRI studies have found

changes in neural activity after sleep deprivation. For example, a reproduc-

ibility study showed that brain activation patterns were highly correlated

across test–retest sessions and the magnitude of decreased activation in pari-

etal regions was preserved and reproducibly correlated with behavioral

decline after acute total sleep deprivation.228 Reduced frontoparietal activa-

tion was found during lapses on a visual, selective attention task in addition

to decreased overall activation after total sleep deprivation.199 However,

robust interindividual differences in brain responses to sleep loss have also

been reported. Individuals cognitively vulnerable to sleep deprivation

showed reduced frontoparietal activation, while resilient individuals showed

increased parietal activation associated with lapses of attention during total

sleep deprivation201 suggesting a potential neurobiological compensatory

mechanism in some individuals.

Far fewer neuroimaging studies have been conducted to examine either

time-of-day or circadian phase effects on brain activation. One study used

functional near-infrared spectroscopy to examine circadian variability of

the hemodynamic response in visual cortex throughout the day from

0800–1800 h, reporting no significant time-of-day influences on visual acti-

vation.231 However, BOLD fMRI studies have shown significant time-of--

day effects on brain activation when subjects performed various

neurocognitive tasks. For example, Gorfine and Zisapel232 found that left

hippocampal activation was reduced during an autobiographic memory task
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at 2200 h compared with 1600 h, indicative of diurnal variation. Vimal and

colleagues233 showed significantly increased BOLD activation in response to

light stimuli in the suprachiasmatic nucleus at night compared with midday,

while Peres and colleagues234 demonstrated systematic BOLD signal differ-

ences across the day in the motor areas during a self-paced finger-tapping

task. Significant time-of-day effects were also observed in the brain orienting

attentional system including the inferior parietal and frontal eye field regions

during a Stroop-like task, suggesting that bottom-up attention orientation

may be vulnerable to circadian factors.235

Importantly, a few recent BOLD fMRI studies have demonstrated sig-

nificant interindividual differences in circadian variation of brain activation

and the complex interactions between sleep homeostasis, circadian phase,

and genotype. For example, using an auditory 3-backworkingmemory task,

Vandewalle and colleagues236 showed no changes in brain responses during

the normal sleep–wake cycle for the putatively less-vulnerable PER34/4

genotype, while reduced activation in the posterior prefrontal area was

found in the putatively vulnerable PER35/5 genotype when comparing eve-

ning and morning activation during a normal sleep–wake cycle. These

authors also reported that blue light increased brain responses in the

frontoparietal regions only in PER34/4 individuals in the morning after

one night of normal sleep, while blue light increased brain responses in

the thalamic and frontoparietal regions only in PER35/5 individuals in the

morning after one night of total sleep deprivation.237 In addition, Schmidt

and colleagues238 showed that morning and evening chronotypes differed in

brain activation in the suprachiasmatic area at night during PVT perfor-

mance. They further found that brain activation associated with conflict

processing and inhibition function were maintained or increased in evening

chronotypes from the subjective morning to the subjective evening but

decreased in morning chronotypes under the same conditions.239

While the above findings are informative, one major limitation of task-

related BOLD fMRI is that it can only measure relative signal changes and

lacks absolute quantification of brain activity. Therefore, it is difficult to

determine whether the observed BOLD activation changes are due to

changes at baseline or changes during performance of specific tasks, or both.

It is also difficult for task-related BOLD fMRI to dissociate the effects of

sleep loss, time-of-day, or circadian phase onbrain function per se andonbehav-

ioral performance that subsequently confounds brain activation. In contrast to

BOLD, arterial spin-labeled (ASL) perfusion fMRI—a relatively new imaging
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technique—cannoninvasivelymeasureabsolutecerebralbloodflow(CBF) that

is tightly coupled to regional brain function,240,241 providing a method for

imaging variations of brain function at different time of day or circadian phases

or after sleep loss.ASLhas been increasinglyused to assesswakingbrain function

at task-free resting states as well as during different cognitive tasks.242,243

We successfully used ASL to quantify CBF changes after prolonged cog-

nitive workload without sleep loss.244 Currently, only one published study

has used ASL and measured resting CBF changes after one night of sleep

restriction.245 This study reported significantly reduced frontoparietal

CBF following sleep loss, but only in participants with significant signs

of drowsiness, while nondrowsy participants maintained CBF in the

frontoparietal regions and increased CBF in basal forebrain and cingulate

regions. These findings also suggest a potential neurobiological mechanism

to compensate for drowsiness after sleep loss. Ongoing studies in our group

as well as others are using ASL to quantify regional neural activity changes

associated with time-of-day variation and sleep deprivation.246 Our prelim-

inary data from scans during PVT performance in the morning and after-

noon in two independent groups also showed significant time-of-day

effects. Bothmorning and afternoon scans showed similar sensorimotor, cin-

gulate, and frontoparietal activation while subjects performed the PVT.

However, thalamic activation was observed only in the morning PVT scan,

while increased activation in the right frontal eye field was observed in the

afternoon PVT scan (Fig. 7.4).

Another emerging imaging method for studying sleep deprivation and

time-of-day or circadian phase effects on brain activity is resting-state func-

tional connectivity fMRI (FC-fMRI), which usually uses low frequency

fluctuations of resting-state BOLD signal to examine intrinsic and spontane-

ous neural activity in the absence of external stimuli or tasks.247,248 Con-

verging evidence from resting-state fMRI studies has indicated an

organized mode of resting brain function and identified a number of

brain networks associated with different domains of neurocognitive func-

tioning.249–252 Two recent studies have used FC-fMRI to investigate the

effect of one night of either total or partial sleep deprivation on functional

connectivity.253,254 Both studies found that sleep deprivation reduced

resting functional connectivity within the default mode network (DMN)

and between DMN and its anticorrelated network, suggesting that reduced

brain functional connectivity may be a precursor to behavioral impairments

from sleep loss. In addition, one recent study used FC-fMRI to



A Morning PVT

B Afternoon PVT

Figure 7.4 Time-of-day effects on absolute cerebral blood flow (CBF) activation during
the Psychomotor Vigilance Test (PVT). Twenty healthy adults performed the PVT in the
morning (between 0700– and 0900 h) and a separate group of 15 healthy adults per-
formed the PVT in the afternoon (between 1400– and 1700 h)—both groups did so dur-
ing ASL perfusion fMRI scanning. Brain scans at both times of day showed significant
activation in the sensorimotor, cingulate, and frontoparietal regions. However, thalamic
activation (indicated by the arrows in A) was only observed in the morning scan while
increased activation in the right frontal eye field (indicated by the arrow in B) was
observed in the afternoon scan (Hengyi Rao, unpublished data).
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examine daily variations in resting brain functional connectivity and found

that the DMN and sensorimotor network showed highly rhythmic connec-

tivity patterns while the executive control network was most stable across

the day.255

Almost all published neuroimaging studies to date have focused on acute

total sleep deprivation or time-of-day effects—very few studies have exam-

ined the dynamic effects of chronic partial sleep loss and recovery on brain

function and their interactions with circadian timing. Findings from the few

available ASL and resting-state FC-fMRI studies already provide some

important new insights. However, application of these newmethods to sleep

deprivation and circadian research is still in the early stages and studies are

needed to further elucidate the dynamic effects of both acute and chronic

sleep loss as well as circadian timing on neural activity.
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7. CONCLUSIONS

The circadian drive for wakefulness, the homeostatic drive for sleep,
and masking factors simultaneously interact to affect neurobehavioral func-

tioning. Moreover, interindividual differences in circadian parameters,

especially phase, and differential vulnerability to sleep loss also markedly

affect neurobehavioral responses, suggesting genetic underpinnings. The

sleep homeostat and neurobehavioral performance are affected by acute

total sleep deprivation and chronic sleep restriction, although the two forms

of sleep loss likely differentially affect neural and behavioral responses. Iden-

tification of biomarkers that accurately predict alertness and performance via

the complex interactions of the sleep homeostatic and circadian systems is of

high priority and will aid in predicting performance deficits and

implementing countermeasures in a variety of situations in which these

two processes are dynamically covarying, such as shift work, jet lag, and

imposed acute, chronic, or intermittent sleep loss.
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93. Lenné MG, Triggs TJ, Redman JR. Interactive effects of sleep deprivation, time of day,
and driving experience on a driving task. Sleep. 1998;21:38–44.

94. Czeisler CA, Duffy JF, Shanahan TL, et al. Stability, precision, and near-24-hour
period of the human circadian pacemaker. Science. 1999;284:2177–2181.

95. Smith MR, Burgess HJ, Fogg LF, Eastman CI. Racial differences in the human endog-
enous circadian period. PLoS One. 2009;4:e6014.

96. Lázár AS, Santhi N, Hasan S, et al. Circadian period and the timing of melatonin onset
in men and women: predictors of sleep during the weekend and in the laboratory.
J Sleep Res. 2013;22:155–159.

97. Hasan S, Santhi N, Lázár AS, et al. Assessment of circadian rhythms in humans: com-
parison of real-time fibroblast reporter imaging with plasma melatonin. FASEB J.
2012;26:2414–2423.

98. Chang AM, Buch AM, Bradstreet DS, Klements DJ, Duffy JF. Human diurnal prefer-
ence and circadian rhythmicity are not associated with the CLOCK 3111C/T gene
polymorphism. J Biol Rhythms. 2011;26:276–279.

http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0380
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0380
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0385
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0385
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0390
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0390
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0390
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0395
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0395
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0400
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0400
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0405
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0405
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0405
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0410
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0410
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0415
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0415
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0420
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0420
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0425
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0425
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0430
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0430
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0435
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0435
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0440
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0440
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0445
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0445
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0450
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0450
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0455
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0455
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0460
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0460
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0460
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0465
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0465
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0470
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0470
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0475
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0475
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0480
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0480
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0480
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0485
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0485
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0485
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0490
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0490
http://refhub.elsevier.com/B978-0-12-396971-2.00007-5/rf0490


183Circadian Rhythms, Sleep Loss, and Performance
99. Burgess HJ, Fogg LF. Individual differences in the amount and timing of salivary mel-
atonin secretion. PLoS One. 2008;3:e3055.

100. Brown SA, Fleury-Olela F, Nagoshi E, et al. The period length of fibroblast circadian
gene expression varies widely among human individuals. PLoS Biol. 2005;3:e338.

101. Brown SA, Kunz D, Dumas A, et al. Molecular insights into human daily behavior. Proc
Natl Acad Sci USA. 2008;105:1602–1607.

102. Yang S, Van Dongen HPA, Wang K, Berrettini W, Bućan M. Assessment of circadian
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