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Inter-individual differences in performance impairment from sleep
loss are substantial and consistent, as demonstrated and quantified here
by means of the intraclass correlation coefficient (ICC) in two laboratory-
based sleep deprivation studies. There is an urgent need, therefore, to
consider inter-individual variability in biomathematical models of fa-
tigue and performance, which currently treat individuals as being all the
same. Traditional regression techniques do not handle inter-individual
variability, but cutting-edge mixed-effects modeling techniques have
recently become available to deal with inter-individual differences in
the temporal dynamics of fatigue and performance. The standard two
stage (STS), restricted maximum likelihood (REML), and non-linear
mixed-effects modeling (NMEM) approaches to mixed-effects models
are compared here using data from a chronic partial sleep deprivation
experiment. Mixed-effects modeling can be incorporated in the two
distinct steps (the direct and inverse problems) of biomathematical
model development in order to deal with inter-individual differences.
This paper demonstrates that inter-individual variability accounts for a
large percentage of observed variance in neurobehavioral responses to
sleep deprivation, and describes tools that model developers will need
to produce a new generation of fatigue and performance models capa-
ble of incorporating inter-individual variability and useful for subject-
specific prediction.
Keywords: sleep deprivation, performance, inter-individual differences,
between-subject variance, within-subject variance, intraclass correla-
tion coefficient, ICC, mixed-effects models, standard two stage, STS,
restricted maximum likelihood, REML, nonlinear mixed-effects model-
ing, NMEM, biomathematical model development.

BIOMATHEMATICAL MODELS of fatigue and per-
formance are based in part on the changes in fatigue

and performance consistently observed as a conse-
quence of sleep loss. For fundamental neurocognitive
functions such as vigilance, working memory, situa-
tional awareness, and decision-making capability, deg-
radation has been documented to be a systematic con-
sequence of sleep loss (12,21). Across multiple days of
total sleep deprivation, increases in fatigue and decre-
ments in performance occur in response to increasing
homeostatic sleep drive in interaction with circadian
variation. This results in accumulation of deficits with
increased circadian modulation over time, making the
impairment worse during biological night (19,40). Even
when wakefulness is extended by chronic sleep reduc-
tion rather than total sleep deprivation, considerable
cumulative neurobehavioral deficits develop over time
(2,41).

Virtually every experiment on human sleep depriva-
tion has reported substantial inter-individual differ-
ences (often tenfold on the most sensitive performance
metrics) in the magnitude of performance deficits due
to sleep loss (12). These inter-individual differences can
be illustrated by categorizing subjects based on the
magnitude of their performance deficits from sleep loss.
Fig. 1 shows results from 40 h of sleep deprivation in
our laboratory (11). As measured by performance
lapses on a psychomotor vigilance task (13), some sub-
jects were found to have much greater impairment from
sleep loss than others (Fig. 1, left-hand panel). Thus,
some subjects seemed to be relatively vulnerable to
performance impairment due to sleep loss, while others
seemed to be relatively resilient. Interestingly, vulner-
able and resilient individuals did not differ significantly
in the amount of sleep they felt they needed or rou-
tinely obtained, as assured by surveys and daily diaries.
This suggests that inter-individual differences in vul-
nerability to sleep loss are not just determined by dif-
ferences in sleep need (42).

Inter-individual differences in vulnerability to perfor-
mance deficits from sleep loss are particularly problem-
atic since individuals may not be fully aware of their
susceptibility to impairment (41). Performance impair-
ment associated with loss of sleep appears to manifest
itself in the form of wake state instability (14). Individ-
uals may start well on a given task, with no indication
of vulnerability at that time, but their performance rap-
idly becomes more variable and unreliable as task de-
mands continue. Thus, subjects may have little a priori
insight into their capability to sustain optimal perfor-
mance under conditions involving sleep loss. This can
be illustrated by classifying the subjects in our 40-h
sleep deprivation experiment as either resilient or vul-
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nerable to neurobehavioral impairment from sleep loss.
When the subjects filled out the Stanford Sleepiness
Scale (22) prior to neurobehavioral performance testing,
no differences were observed between resilient and vul-
nerable subjects in the temporal profiles of their sleep-
iness self-ratings (Fig. 1, right-hand panel). Thus, their
differences in cognitive performance deficits were not
reflected in their subjective experiences of sleepiness.

In safety-sensitive operations, performance deficits
due to sleep loss elevate the risk of accidents (1,9).
Nevertheless, a relatively small portion of individuals
in populations at risk may be found to account for the
bulk of neurobehavioral impairment (29). As people
cannot be relied on to accurately assess their own risk
level (see Fig. 1), predicting which individuals are most
at risk for performance impairment at any given time
would be an important capability of biomathematical
models of fatigue and performance (10). Current mod-
els of fatigue and performance (28) do not address this
issue. Recent developments in statistical methodology,
driven by major increases in computer power, have
created new possibilities for handling inter-individual
differences in biomathematical models of the temporal
dynamics of fatigue and performance. This paper sum-
marizes evidence that substantial inter-individual dif-
ferences exist, and provides an introduction into some
techniques available to assess and handle inter-individ-
ual differences in temporal profiles of responses to
sleep deprivation.

Stable Inter-individual Differences in Vulnerability to
Sleep Loss

While inter-individual differences in vulnerability to
performance impairment from sleep loss could reflect
stochastic variance (i.e., noise), there is converging ev-
idence that they reflect more predictable variability. The
stability of inter-individual differences is apparent in
the five studies that have been done on repeated expo-
sure to sleep loss in the same subjects. The early studies

of Wilkinson (44) and Webb and Levy (43) both re-
ported substantial inter-individual differences in the
effects of sleep deprivation that appeared to reliably
reflect greater sensitivity of some subjects to the loss of
sleep. Wilkinson (44) studied 12 subjects under multiple
exposures to one night of total sleep deprivation. Based
on the subjects’ performance on a five-choice serial
reaction test, Wilkinson observed that “impairment var-
ied greatly. . . those men who showed a large effect of
lack of sleep in the first [2-wk period] did the same in
the second and third. This effect was significant. . . This
consistency suggests that there are indeed real differ-
ences in the extent to which individuals are affected by
lack of sleep” (44, p. 267). Webb and Levy (43) studied
six subjects under multiple exposures to one night of
total sleep deprivation. During each laboratory session,
the subjects underwent six extensive test bouts contain-
ing a variety of performance tests. Webb and Levy
noted that there were substantial individual differences
in the effect of sleep deprivation. Furthermore, the in-
dividual differences in performance decrements from
sleep loss appeared to be reliable: “examination of the
individual scores of these tests revealed that, in each
instance, they reflected greater sensitivity of some sub-
jects to deprivation” (43, p. 56). Neither the Wilkinson
study (44) nor the Webb and Levy study (43) actually
quantified the stability of inter-individual differences in
performance deficits from sleep loss.

Leproult et al. (25) studied eight subjects twice under
similar constant routine conditions. These conditions
entailed 27 h of continuous wakefulness with constant
bed rest, semi-constant light intensity, and controlled
caloric intake via intravenous glucose infusion. Contin-
uous wakefulness was verified post-hoc by investiga-
tion of waking electroencephalogram (EEG) recordings.
During the constant routine, subjects were tested
hourly on a selective attention task, a sustained atten-
tion task, and a visual analog scale for global vigor.
These measures were smoothed using a three-point

Fig. 1. Neurobehavioral performance lapses on a psychomotor vigilance task (PVT; left-hand panel) and subjective sleepiness score on the Stanford
Sleepiness Scale (SSS; right-hand panel) during 40 h of total sleep deprivation in a laboratory environment (11). Stars show PVT performance lapses
and SSS sleepiness scores for the eight subjects most resilient to sleep loss (type 1); dots show the data for the 7 subjects most vulnerable to sleep loss
(type 3). Despite the considerable difference in psychomotor performance impairment, there was no statistically significant difference in the profile
of sleepiness scores between these two groups.
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moving average, after which the minimum and maxi-
mum in the temporal profiles were determined. To
assess the magnitude of impairment in each of the two
exposures to sleep deprivation, the difference between
maximum and minimum in the temporal profile was
expressed as a percentage of the minimum (for the two
attention tasks) or the maximum (for global vigor).
Parametric and nonparametric correlations over sub-
jects between the magnitudes of impairment in the first
vs. the second exposure to sleep deprivation were used
as quantitative measures for the stability of inter-indi-
vidual differences in the response to sleep deprivation.
For minimum global vigor, the correlation coefficients
were reported to be 0.95 (parametric) and 0.90 (non-
parametric); for maximum reaction time on the atten-
tion tasks, the correlation coefficients were 0.93 (para-
metric) and 0.88 (nonparametric).

Although the Leproult et al. (25) investigation is in-
dicative of predictable inter-individual differences in
responses to sleep deprivation, the use of correlation
analysis is not optimal for evaluating the degree to
which responses to sleep deprivation reflect systematic
inter-individual variability. Correlation statistics only
implicitly recognize the partitioning of total variance
into between-subject variance and within-subject vari-
ance. Thus, it is often overlooked that the magnitude of
the correlation coefficient varies for populations with
different amounts of between-subject variance. More-
over, correlation statistics do not easily generalize to a
partitioning of total variance into multiple components,
each of which reflect a distinct source of variance, and
also do not readily distinguish between random effects
and those fixed by design within an experimental par-
adigm. If there are order effects or other systematic
changes over time in the data (which cannot be ruled
out in reference 25), correlation statistics can be consid-
erably inflated (cf. 26). Therefore, correlation statistics
cannot be relied on to quantify inter-individual vari-
ability. This is noteworthy because none of the three
studies discussed thus far (25,43,44) revealed whether
the inter-individual variability in the data is large
enough to be of concern for biomathematical models of
fatigue and performance.

Alternative approaches involving random-effects and
mixed-effects analyses of variance (ANOVA) and vari-
ance components analyses overcome these difficulties
(36). In the simplest case, an intraclass correlation coef-
ficient (ICC; 18) can be computed as the ratio of be-
tween-subject variance to the sum of between-subject
variance and within-subject variance. It thus provides a
direct assessment of the proportion of variance in the
data explained by inter-individual variability. As such,
the ICC is seen not as a fixed characteristic of a test or
measuring instrument, but as depending on the popu-
lation of subjects being sampled (16). This interpreta-
tion of the ICC as the proportion of total sample vari-
ance attributable to between-subject variance is often
useful as a summary measure. Mixed-effects ANOVA
can subsequently be employed to remove between-sub-
ject variance explainable by known sources, such as age
and gender, resulting in an adjusted ICC. The adjusted
ICC would be interpreted as the proportion of variance

attributable to between-subject variance after removing
the variance explained by differences in these known
sources of inter-individual variability. More general
variance components models can be specified and esti-
mated by restricted maximum likelihood (REML) meth-
odology (7,33) using widely available software (e.g.,
35).

In the next section, we present results using the ICC
to quantify the stability of inter-individual differences.
The only two studies to date using this statistic (38,39)
will be discussed as providing quantitative evidence of
trait-like inter-individual differences in vulnerability to
performance impairment from sleep loss.

Trait-Like Inter-Individual Differences Quantified by
Means of the Intraclass Correlation Coefficient

As introduced above, a statistically suitable approach
to assessing trait-like inter-individual variability in per-
formance impairment, over multiple exposures to sleep
loss per subject, involves considering two distinct com-
ponents of the variance in the data: within-subject vari-
ance and between-subject variance. The within-subject
variance reflects the changes in performance impair-
ment across the repeated exposures to sleep loss for
each of the individual subjects. The between-subject
variance reflects inter-individual differences in perfor-
mance impairment not accounted for by variability
within subjects; that is, the between-subject variance
reflects systematic inter-individual differences over the
repeated exposures to sleep loss. Inter-individual dif-
ferences are shown to be systematic over repeated ex-
posures to sleep loss, therefore, when the between-
subject variance is found to be relatively large and the
within-subject variance is found to be relatively small.
The variance in the data can be partitioned into the
between-subject and within-subject variance by way of
a random-effects ANOVA (36).

Based on the between-subject variance (�bs
2) and the

within-subject variance (�ws
2), the ICC is defined as

follows to quantify trait-like inter-individual variabil-
ity:

ICC �
�bs

2

�bs
2 � �ws

2

The greater the between-subject variance relative to the
within-subject variance, the closer to 1.0 the value of the
ICC is. Landis and Koch (24) defined benchmark values
characterizing ICC values in the following ranges,
which here reflect increasing stability of observed inter-
individual differences: 0.0–0.2 (slight); 0.2–0.4 (fair);
0.4–0.6 (moderate); 0.6–0.8 (substantial); and 0.8–1.0
(almost perfect). An F test or Wald Z test can be applied
to examine the statistical significance of ICC values
(relative to zero), although significance testing is usu-
ally only of passing interest as the salient issue is the
magnitude of between-subject variance relative to other
sources of variance.

The ICC proper is a statistically valid measure for
quantifying the stability of inter-individual differences
over repeated exposures to sleep loss. In order to inter-
pret ICC values, however, it is important to also con-
sider the within- and between-subject variances sepa-
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rately. The within-subject variance may encompass
measurement error, random fluctuations, as well as
systematic differences in the circumstances from one
sleep deprivation challenge to the next. The within-
subject variance may also include differential learning
curves for cognitive performance tasks, and changes in
sensitivity to sleep deprivation over repeated expo-
sures. On the other hand, the between-subject variance
represents trait-like variance, both in the vulnerability
to impairment from sleep loss as well as in potential
baseline differences such as aptitude differences. In ad-
dition to true trait variance, the between-subject vari-
ance may also reflect state differences among individ-
uals that remain constant over the repeated exposures
to sleep loss; these may include consistent differences in
sleep timing and duration prior to the repeated sleep
deprivation experiments, consistent differences in food
intake during each exposure to sleep deprivation, etc. In
order for the between-subject variance to reliably ap-
proximate the true trait variance, therefore, consistent
state variance must be minimized by standardizing de-
mand characteristics, controlling environmental factors,
and satiating any pre-existing sleep debt, in repeated
exposures to sleep deprivation.

Using the ICC, we quantified the stability of inter-
individual differences in neurobehavioral performance
responses to sleep loss in two different experiments
(38,39) involving repeated exposure to sleep depriva-
tion under strictly controlled laboratory circumstances.
In the first experiment (39), 10 subjects were subjected
to 40 h of total sleep deprivation on 2 occasions each.
Subjects were tested every 2 h on a 10-min psychomotor
vigilance task (13). For each of the two exposures,
which differed in the degree of environmental stimula-
tion subjects experienced (8), vigilance decrements
were computed as the number of psychomotor vigi-
lance lapses from 12:00 until 20:00 at the end of the 40-h
sleep deprivation period (i.e., response to sleep loss)
minus the number of lapses at the same clock times 24 h
earlier (i.e., baseline). The results are shown in Fig. 2.
Substantial inter-individual differences were observed
in vigilance decrements, while the response to sleep
deprivation was remarkably similar within subjects
across the two exposures. The value of the ICC was
0.58, indicating that a substantial portion of the variance
(i.e., 58%) in the data could be attributed to trait-like
inter-individual differences in the response to sleep
deprivation (F9,9 � 4.61, p � 0.016).

We further investigated the trait aspect of inter-indi-
vidual differences in vulnerability to neurobehavioral
performance deficits from sleep loss in a second labo-
ratory experiment, in which 21 subjects were exposed to
36 h of sleep deprivation on 3 occasions (38,42). The
level of comparability between the exposures to sleep
deprivation exceeded that of the first study, and in-
cluded laboratory isolation, strictly controlled food in-
take, restriction of light exposure to less than 50 lux,
fixed ambient temperature, and continuous waking be-
havioral monitoring. The study also required subjects to
satiate their sleep debt by staying in bed 12 h per day
(22:00–10:00) in the week prior to two of the three
exposures to sleep deprivation, and to restrict their

sleep to 6 h time in bed per day (04:00–10:00) in the
week prior to the remaining exposure to sleep depriva-
tion (in randomized, balanced order). Every 2 h during
wakefulness, subjects were tested on a 1-h neurobehav-
ioral performance battery, which included a 6.5-min
digit-symbol substitution task and a 20-min psycho-
motor vigilance task.

Neurobehavioral deficits on the performance tasks in
the second study were compared between the two iden-
tical sleep deprivation sessions (i.e., the two which were
preceded by sleep satiation in the week prior to depri-
vation). For each of the two sessions, subjects’ perfor-
mance deficits were computed as the average of the test
results during the last 24 h of the 36-h sleep deprivation
period. ICC values were computed while correcting for
any order effects in the exposures to sleep deprivation;
this was relatively easily accomplished in a mixed-
effects analysis of variance (ANOVA) used to calculate
the ICC. For the digit-symbol substitution task, the ICC
was found to be 0.82 (Z � 2.74, p � 0.003); and for the
psychomotor vigilance task, the ICC was 0.69 (Z � 2.40,
p � 0.008).

These results indicate that there are substantial trait-
like inter-individual differences in vulnerability to sleep
loss. It should be noted that performance aptitude dif-
ferences among individuals may have contributed to
the between-subject variance in addition to the true trait
variance. Therefore, the ICC estimates should be inter-
preted with care for cognitive tests, such as the digit-
symbol substitution task, which are particularly prone
to variability in aptitude. It would seem reasonable to
consider the ICC value of 0.69 found for psychomotor

Fig. 2. Relative performance decrement after 40 h of total sleep
deprivation for 10 subjects, on 2 separate occasions (circles vs. squares).
The 10 subjects are shown on the abscissa (numbered 1 through 10). The
ordinate shows the number of performance lapses on the psychomotor
vigilance task (PVT) from 12:00 until 20:00 after one night of sleep
deprivation, minus the baseline number of performance lapses at the
same clock times 24 h earlier. Note that the data for the second sleep
deprivation session of subject 9 are missing.
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vigilance, which involves virtually no aptitude differ-
ences among healthy individuals, as a good (i.e., lower-
limit) quantitative estimate of the trait-like inter-indi-
vidual differences in vulnerability to performance
impairment from sleep loss.

The between-subject variance for psychomotor vigi-
lance, corrected for order effects, was 286.09. This be-
tween-subject variance (and hence the value of the ICC)
is specific for our sample of healthy adults (age 29.5 �
5.3; nine women) and may vary for other populations.
The within-subject variance corrected for order effects
was 131.27. The within-subject variance is theoretically
dependent only on the experimental design and not the
population from which the sample was obtained. The
within-subject standard deviation (which was 11.46)
may be interpreted as the standard deviation around
the known expected value of an individual, and so has
potential for use in individualized predictions. In con-
trast, the standard deviation for predictions made for
randomly selected individuals (from our population) is
equal to the square root of the sum of the variance
components (i.e., 20.43). Thus, prediction error variance
conditional on subject-specific expected values is much
smaller than prediction error variance in the population
at large.

In summary, the ICC and its associated variance com-
ponents can be used to quantify the stability of inter-
individual differences in repeated experiments. Our
two studies (involving a total of 31 subjects) confirmed
that the inter-individual differences in vulnerability to
performance impairment from sleep loss are substantial
and trait-like. The ICC values, which are measures of
the systematic inter-individual variability relative to the
total variability in the data set, revealed that (much)
more than 50% of the variance in the neurobehavioral
response to sleep deprivation is due to systematic inter-
individual differences. Ignoring these inter-individual
differences would mean ignoring the larger portion of
the variance in the data. Thus, it is important to take
inter-individual differences into account in biomath-
ematical models of fatigue and performance. In the next
section, therefore, we discuss statistical techniques to
deal with inter-individual differences in time series.

Statistical Modeling of Time Series with Trait-Like Inter-
Individual Differences

The classical approach to the analysis of longitudinal
data involves the use of repeated-measures ANOVA
(45). Both the univariate approach with and without
adjustment for unequal variances and covariances (23)
and the often preferred multivariate approach to re-
peated measures (30) suffer from the same limitation in
that they ignore inter-individual variability in time tra-
jectories. They both provide explicit models for popu-
lation expected values; however, all deviations around
the expected values are assumed in residual error dis-
tributions. As a consequence, when inter-individual
variability exists, these methods result in confounded
estimates of standard errors, providing unreliable
claims regarding statistical significance.

If inter-individual differences are not of primary in-
terest, investigators may be tempted to fit responses to

time using simple or multiple linear regression models
in order to obtain population mean response curves, or
to compare population mean responses over time
among two or more experimental conditions. However,
such an approach can lead to confounded results threat-
ened by both inflated Type I (false positive) and Type II
(false negative) errors (17). Ignoring the inter-individ-
ual variability can increase Type I error because within-
subject variability is pooled with between-subject vari-
ability, falsely reducing the estimate of residual error
that is used in statistical tests. This problem is particu-
larly acute when there are relatively few subjects with
many time points. Type II error can be inflated when
consistent within-subject trends are undetected and not
accounted for after pooling across subjects. This kind of
Type II error inflation is analogous to that occurring
when a two-sample t-test is used when a paired-sam-
ples t-test should be used. Thus, when data from dif-
ferent groups of subjects or different experimental con-
ditions are compared, it is critical to take inter-
individual variability into account.

There is a relatively recent but well-developed liter-
ature concerning mixed-effects modeling of longitudi-
nal data, explicitly accounting for inter-individual dif-
ferences (5,27,47). A conceptually simple and, in
approximation, valid approach for analyses of changes
over time is two-stage (random-effects) regression anal-
ysis or “standard two stage” (STS; 17,20). The first stage
consists of obtaining least-squares estimates of simple
linear regression slopes and intercepts for each subject
independently. The slopes are interpreted as subject-
specific estimates of the average change per unit time.
The intercepts are interpreted as smoothed estimates of
baseline values. The need for intercept estimation may
be eliminated by modeling changes from time zero. The
derived slopes are used in a subsequent analysis, the
second stage, that can take a variety of forms. For
example, mean slopes can be compared among experi-
mental conditions with or without adjusting for base-
line values and other factors (e.g., age and gender) in an
analysis of covariance (ANCOVA).

A more efficient approach is to estimate all individual
subjects’ slopes simultaneously using restricted maxi-
mum likelihood (REML) estimation in an explicit
mixed-effects model. The efficiency arises by partition-
ing between-subject variance and within-subject vari-
ance during the estimation procedure. REML estima-
tion is preferred over standard maximum likelihood
(ML) estimation for mixed-effects models because ML
produces biased estimators of variance components (7).
The magnitude of the bias increases as the number of
fixed effects increases relative to the number of data
points. This phenomenon is analogous to the well-
known bias in the ML estimate of population variance
(15). In essence, the REML method deals with this prob-
lem by considering linear combinations of the observed
values whose expectations are zero. These “error con-
trasts” are free of any fixed effects in the model. Thus,
REML estimates of variances and covariances are unbi-
ased in balanced experimental designs. REML estimates
of variance components have the same asymptotic dis-
tributional properties as their ML counterparts. In prac-
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tice, therefore, unless there are many fixed effects,
REML and ML produce very similar estimates of the
variance components in the data.

The STS and the REML approaches have advantages
and disadvantages. Aside from conceptual and compu-
tational simplicity, the STS approach often permits the
use of valid small-sample statistics. Thus, STS can be
relied on, whereas REML cannot, to produce accurate
p-values when there are very few subjects, so long as
the assumptions of the small-sample model (e.g., nor-
mality) are met. Furthermore, STS may be more robust
than REML when particular subjects have extreme
slopes or extreme residual errors. However, STS fails to
account for the covariance between slopes and inter-
cepts. Also, it assumes equal weighting of subjects’
slopes in the second stage, which is not appropriate if
the number of data points or the layout of the time
values varies widely among subjects. Finally, STS dis-
guises residual error, pooling it with between-subject
variance and biasing the latter upward. If residual vari-
ance is small or the numerical values of variance com-
ponents are not themselves of interest, however, this is
not usually a problem. The primary drawback of REML
is slow or difficult numerical convergence when some
of the variance components are small. When both ap-
proaches are applied to balanced data sets, mean slope
values are found to be identical. However, the standard
deviation of subject-specific slopes tends to be a bit
smaller for REML analysis than for STS analysis, since
in REML analysis any extreme slopes are assumed to be
due to both extremities in subject-specific effects and in
residual error effects. This reduction in the standard
deviation of slopes over subjects results in incremen-
tally more statistical power in, for example, group com-
parisons of mean slopes in REML analysis.

The assumption of linear changes using both the STS
and REML approaches is not as restrictive as it appears.
Individual changes from baseline may be characterized
using a model that allows for curvilinear changes, for
instance, by introducing a curvature parameter � for
time. Consider the following model:

�it � Bi � t� � �it

where i represents the different subjects, t denotes time,
and the residual errors �it are assumed to be mutually
independent and normally distributed with zero aver-
age. The changes �it in the response over time are
modeled, rather than the response over time itself, to
remove the necessity of estimating regression inter-
cepts. The Bi values reflect subject-specific growth rates
(slopes) assumed to arise from normal distributions
with condition-specific mean values. In this model, the
time exponent � represents curvature in the growth
curves. If � is equal to 1, the model for each subject
reduces to simple linear regression (with no intercept).
If 0 � � � 1 or � � 1, then the growth curves are
decelerating or accelerating over time, respectively. For
any response variable, an optimum curvature � may be
obtained by finding the value that minimizes average
mean square error (MSE). For example, the optimum
value of � may be obtained from a grid search in which
� is systematically varied from 0.1 to 3.0 in increments
of 0.1. For each value of �, the MSEs for the subject-

specific regressions are then averaged in STS, or the
residual variance is examined in REML. The key point
is that conditional on establishing the value of �, the
mixed-effects model remains linear permitting applica-
tion of STS or REML as described above.

Alternatively, nonlinear mixed-effects modeling
(NMEM; 6) may be performed. This method is de-
scribed in sufficient detail in Olofsen et al. (32) and will
not be further explicated here. In the NMEM approach,
the optimum curvature parameter � is estimated simul-
taneously with the subject-specific slopes using maxi-
mum likelihood estimation. The chief challenge of this
approach is to obtain numerical convergence in the
maximum likelihood optimization routine. However,
the NMEM method is more flexible than the REML and
STS methods with regard to the types of (nonlinear)
equations it can handle.

To illustrate and compare the three approaches, STS,
REML, and NMEM, we consider data from an experi-
ment in which a total of 35 healthy subjects (age 27.7 �
5.4) spent 20 d inside a laboratory. After 3 baseline days
with 8 h time-in-bed (23:30–07:30), sleep was restricted
over 14 d to 4 h time-in-bed per day (03:30–07:30) for 13
subjects; to 6 h time-in-bed per day (01:30–07:30) for 13
subjects; and to 8 h time-in-bed per day (23:30–07:30)
for 9 subjects. Neurobehavioral performance was tested
every 2 h during wakefulness, and included a 10-min
psychomotor vigilance test (PVT; 13). Daily averages
(09:30–23:30) were computed for the number of PVT
lapses (reaction times � 500 ms) per test bout (41).

Table I displays summary statistics of the (nonlinear)
slopes Bi for daily average PVT lapses over the 14 d of
sleep restriction. These were computed using STS,
REML, and NMEM for each subject in the three condi-
tions; the value of � that minimized average MSE was
0.7753. The substantial inter-individual variability in
the response to the experiment is evident in the table—
notice the range (minimum to maximum) and standard
deviation of Bi values within each condition of chronic
sleep restriction. There is considerable agreement in the
subject-specific Bi values, as well as the mean slope
values for each condition, among the three approaches.
There is a slight difference in the means for the 8-h
time-in-bed condition between the STS method and the
REML and NMEM methods. This is caused by a single
missing value in the temporal profile for one subject in
the 8-h time-in-bed condition that the STS does not
properly weigh. The standard deviations from the STS
method are slightly greater, as the statistical theory
predicts. It is noteworthy that both maximum and min-
imum extreme values for Bi obtained using STS are
farther removed from the within-group mean values
than are those obtained using REML and NMEM. The
extreme values obtained using STS are slightly biased
upwards due to intertwining of between-subject vari-
ance and error variance. For REML and NMEM, the
extremes are attenuated appropriately toward the with-
in-group mean values, as a consequence of partitioning
between-subject and within-subject variance in these
approaches.

Table I provides evidence that the use of an optimal
value for time curvature � permits the application of
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linear mixed-effects models that properly account for
inter-individual variability in non-linear changes over
time. Alternatively, nonlinear mixed-effects models can
be used to accomplish this. Mixed-effects model ap-
proaches may have great utility in the development of
predictive biomathematical models of fatigue and per-
formance, as discussed in the next section.

Predictive Biomathematical Modeling of Inter-Individual
Differences in Temporal Profiles

The development of biomathematical models to pre-
dict temporal changes in fatigue and performance in-
volves two conceptually distinct steps (4): mathematical
simulations to identify and verify the dynamic proper-
ties (i.e., equation types) of the biomathematical model
(“direct problem”); and statistical fitting to assess the
static properties (i.e., model parameters) of the bio-
mathematical model (“inverse problem”). In an appli-
cation of the Box iterative scheme for statistical model
building (3), these two steps would be alternated to
iteratively improve the biomathematical model as new
data become available. Although this scheme may not
have been used frequently in the development of exist-
ing models of fatigue and performance, it is essential to
include the inverse problem in the development proce-
dures. Without this step, the uncertainty in inferences
based on the biomathematical models, and these mod-
els’ sensitivity to errors in model specification and er-
rors in parameter estimation cannot be properly evalu-
ated (4). Both the direct problem and the inverse
problem are more challenging when the phenomenon
to be modeled displays large inter-individual differ-
ences. As demonstrated in the present paper (see also
10,42), models of fatigue and performance must take
inter-individual differences into account in order to
accurately describe and predict individuals’ responses
to sleep loss.

Mixed-effects models, and the NMEM approach in
particular, are useful in the direct problem and in the
inverse problem of biomathematical model building.
For the inverse problem, the NMEM method can be
applied to estimate model parameters more accurately

as well as more informatively, because the population
distributions of the model parameters are estimated
explicitly*. An enticing example of NMEM methodol-
ogy applied to the direct problem is found in Olofsen et
al. (32), where it is described how the NMEM paradigm
can be employed for subject-specific one-day-ahead
predictions of performance deficits. In this kind of ap-
plication, prior knowledge about the population distri-
butions of parameter estimates (established using
NMEM in the inverse problem) is incorporated in the
biomathematical model and integrated with sequen-
tially accumulating subject-specific information in or-
der to individualize predictions of performance deficits
in an on-going manner. Powerful computers and des-
ignated software (31,34,46) have recently become avail-
able for the computation of nonlinear mixed-effects
models. Thus, the next generation of fatigue and per-
formance models may take full advantage of mixed-
effects modeling to deal with inter-individual differ-
ences.

Conclusions

In two experiments, we have demonstrated and
quantified (using the intraclass correlation coefficient)
the substantial, trait-like inter-individual differences in
performance deficits resulting from up to 40 h of sleep
loss. These inter-individual differences are so important
(explaining more than 50% of total variance) that it is
not reasonable to consider all individuals to be equal in
their responses to sleep loss; thus, biomathematical
models of sleep loss must be revised to include inter-
individual differences. We have shown that for analyz-
ing and modeling longitudinal data, inter-individual

*The NMEM approach for the inverse problem is also featured in
Van Dongen (37), but in this work by necessity the models are treated
as black boxes with fixed parameters. Thus, the statistical evaluations
in Van Dongen provide an informative overview of current models’
capabilities, but do not give direct insight into the models’ sensitivi-
ties to model specification and parameter estimation errors, nor do
these evaluations reveal precisely how the model equations and pa-
rameter estimates can be improved.

TABLE I. SUMMARY STATISTICS FOR THE SUBJECT-SPECIFIC REGRESSION COEFFICIENTS Bi ESTIMATED WITH THREE MIXED-
EFFECTS MODELING METHODS.

Condition* Method Mean SD Min Max

4 h TIB STS 1.9269 1.3493 0.0638 3.8784
4 h TIB REML 1.9269 1.3245 0.0981 3.8425
4 h TIB NMEM 1.9268 1.3255 0.0965 3.8440

6 h TIB STS 1.2897 1.6999 �0.5383 5.5608
6 h TIB REML 1.2897 1.6686 �0.5046 5.4822
6 h TIB NMEM 1.2896 1.6700 �0.5062 5.4855

8 h TIB STS 0.3345 0.6851 �0.3228 2.0517
8 h TIB REML 0.3353 0.6721 �0.3107 2.0201
8 h TIB NMEM 0.3352 0.6726 �0.3113 2.0215

* There were 35 subjects exposed to 14 d of sleep restriction. The subjects were randomized to one of three conditions: 4 h time-in-bed per day
(4 h TIB), 6 h time-in-bed per day (6 h TIB), or 8 h time-in-bed per day (8 h TIB). Daily averages of psychomotor vigilance performance lapses
were subjected to mixed-effects modeling using three different methods: standard two stage (STS), restricted maximum likelihood (REML), and
nonlinear mixed-effects modeling (NMEM). For each experimental condition, the mean, standard deviation (SD), minimum (Min), and
maximum (Max) are shown for the regression coefficients Bi (as per day increases in lapses per test bout). There are clear inter-individual
differences within each condition, the the three methods yield very similar subject-specific results.
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differences can be dealt with by means of mixed-effects
models. It is feasible, therefore, to take inter-individual
differences into account in predictive biomathematical
models of fatigue and performance. New research aim-
ing to identify predictors of inter-individual differences
in the effects of sleep loss is urgently needed to support
this task. In the meantime, development of a new gen-
eration of biomathematical models should begin to ac-
commodate inter-individual variability.
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1. Åkerstedt T. Consensus statement: Fatigue and accidents in trans-

port operations. J Sleep Res 2000; 9:395.
2. Belenky G, Wesensten NJ, Thorne DR, et al. Patterns of perfor-

mance degradation and restoration during sleep restriction
and subsequent recovery: A sleep dose-response study. J Sleep
Res 2003; 12:1–12.

3. Box GEP. Robustness in the strategy of scientific model building.
In: Launer RL, Wilkinson GN, eds. Robustness in statistics.
New York: Academic Press; 1979:201–36.

4. Brown EN, Luithardt H. Statistical model building and model
criticism for human circadian data. J Biol Rhythms 1999; 14:
609–16.

5. Burton P, Gurrin L, Sly P. Extending the simple linear regression
model to account for correlated responses: An introduction to
generalized estimating equations and multi-level mixed mod-
eling. Stat Med 1998; 17:1261–91.

6. Davidian M, Gallant RA. The nonlinear mixed effects model with
a smooth random effects density. Biometrika 1993; 80:475–88.

7. Diggle PJ, Liang K-Y, Zeger SL. Analysis of longitudinal data.
Oxford, England: Clarendon Press; 1996:64–8.

8. Dijkman M, Sachs N, Levine E, et al. Effects of reduced stimula-
tion on neurobehavioral alertness depend on circadian phase
during human sleep deprivation. Sleep Res 1997; 26:265.

9. Dinges DF. An overview of sleepiness and accidents. J Sleep Res
1995; 4:4–14.

10. Dinges DF, Achermann P. Future considerations for models of hu-
man neurobehavioral function. J Biol Rhythms 1999; 14:598–601.

11. Dinges DF, Douglas SD, Zaugg L, et al. Leukocytosis and natural
killer cell function parallel neurobehavioral fatigue induced by
64 hours of sleep deprivation. J Clin Invest 1994; 93:1930–9.

12. Dinges DF, Kribbs NB. Performing while sleepy: Effects of exper-
imentally-induced sleepiness. In: Monk TH, ed. Sleep, sleepi-
ness and performance. Chichester, England: John Wiley &
Sons; 1991:97–128.

13. Dinges DF, Powell JW. Microcomputer analyses of performance
on a portable, simple visual RT task during sustained opera-
tions. Behav Res Methods Instr Comp 1985; 17:652–5.

14. Doran SM, Van Dongen HPA, Dinges DF. Sustained attention
performance during sleep deprivation: Evidence of state insta-
bility. Arch Ital Biol 2001; 139:253–67.

15. Dudewicz EJ, Mishra SN. Modern mathematical statistics. New
York: John Wiley & Sons; 1988.

16. Dunn G. Design and analysis of reliability studies. Stat Methods
Med Res 1992; 1:123–57.

17. Feldman HA. Families of lines: Random effects in linear regres-
sion analysis. J Appl Physiol 1998; 64:1721–32.

18. Fleiss JK. The design and analysis of clinical experiments. New
York: John Wiley & Sons; 1986.
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