
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006 39

Evolving the Structure of Hidden Markov Models
Kyoung-Jae Won, Adam Prügel-Bennett, and Anders Krogh

Abstract—A genetic algorithm (GA) is proposed for finding the
structure of hidden Markov Models (HMMs) used for biological
sequence analysis. The GA is designed to preserve biologically
meaningful building blocks. The search through the space of
HMM structures is combined with optimization of the emis-
sion and transition probabilities using the classic Baum–Welch
algorithm. The system is tested on the problem of finding the
promoter and coding region of C. jejuni. The resulting HMM has
a superior discrimination ability to a handcrafted model that has
been published in the literature.

Index Terms—Biological sequence analysis, genetic algorithm
(GA), hidden Markov model (HMM), hybrid algorithm, machine
learning.

I. INTRODUCTION

H IDDEN MARKOV models (HMMs) are probabilistic fi-
nite-state machines used to find structures in sequential

data. An HMM is defined by the set of states, the transition prob-
abilities between states, and a table of emission probabilities as-
sociated with each state for all possible symbols that occur in
the sequence. They were developed for use in speech applica-
tions, where they remain the dominant machine learning tech-
nique [1]. Over the past decade, they have also become an im-
portant tool in bioinformatics [2]. Their great attraction is that
they allow domain information to be built into their structure
while allowing fine details to be learned from the data through
adjusting the transition and emission probabilities. The design
of HMM architectures has predominately been the province of
the domain expert.

Automatic discovery of the HMM structure has some signif-
icant attractions. By eliminating the expert, it allows the data
to “speak for itself.” This opens the possibility of finding com-
pletely novel structures, unfettered by theoretical prejudice. In
addition, automation of the design process allows many more
structures to be tested than is possible if every structure has to
be designed by hand. However, automation also comes at a cost.
Imposing a structure on the HMM limits the possible outcome
(probability distribution for sequences) that can be learned. In
the language of machine learning, imposing a structure reduces
the learning capacity of the HMM. This has the benefit of re-
ducing the estimation errors for the learned parameters given
the limited amount of training data. Provided that the structure

Manuscript received July 19, 2004; revised November 23, 2004.
K.-J. Won and A. Prügel-Bennett are with the School of Electronic and

Computer Science, University of Southampton, Southampton S017 1BJ, U.K.
(e-mail: j.won@ecs.soton.ac.uk).

A. Krogh is with the Bioinformatics Center, University of Copenhagen,
Copenhagen 2100, Denmark.

Digital Object Identifier 10.1109/TEVC.2005.851271

being imposed faithfully captures some biological constraints,
it should not significantly increase the approximation error. As
the generalization error is the sum of the estimation and approx-
imation error, imposing a meaningful structure on the HMM
should give good generalization performance. By automatically
optimizing the HMM architecture, we are potentially throwing
away the advantage over other machine learning techniques,
namely their amenability to incorporate biological information
in their structure. That is, we risk finding a model that “overfits”
the data.

The aim of the research presented in this paper is to utilize
the flexibility provided by genetic algorithms (GAs) to gain
the advantage of automatic structure discovery, while retaining
some of the benefits of a hand-designed architecture. That is, by
choosing the representation and genetic operators, we attempt
to bias the search toward biologically plausible HMM architec-
tures. In addition, we can incorporate the Baum–Welch algo-
rithm which is traditionally used to optimize the emission and
transition probabilities as part of the GA. GAs appear to be very
well suited to this application. The optimization of HMM ar-
chitectures is a discrete optimization problem which is easy to
implement in a GA. We can simultaneously optimize the contin-
uous probabilities by hybridizing the GA with the Baum–Welch.
Furthermore, GAs allow us to tailor the search operators to bias
the search toward biologically plausible structures. This would
be far harder to accomplish in a technique such as simulated
annealing, where the freedom to choose the move set is often
constrained by the wish to maintain detailed balance or some
similar condition.

HMMs have received little attention from the evolutionary
computing community. We are aware of only two other groups
that have used a GA to optimize HMMs, and neither has pub-
lished in evolutionary computing journals [3], [4] (we discuss
the relation of this work to our own in the next section). This
is, perhaps, surprising considering the large amount of work on
using GAs to optimize the structure of neural networks (see,
for example, the review [5]) and more recent work on graph-
ical models [6], [7]. We believe that GAs may be an important
tool for evolving HMM architectures. Furthermore, there may
be lessons about guiding search GAs to be learned from this
application.

The rest of this paper is organized as follows. In the next sec-
tion, we give a brief review of HMMs. We include this section to
make the paper self-contained for readers who are not familiar
with HMMs. It also serves to define the notation we use later
on in this paper. More detailed pedagogical reviews are given in
[1] and [2]. In Section III, we describe our GA for optimizing
HMMs. Section IV describes the experiments to test our GA.
We conclude in Section V.

1089-778X/$20.00 © 2006 IEEE

40 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

II. BACKGROUND

A. HMMs

An HMM is a learning machine that assigns a proba-
bility to an observed sequence of symbols. A sequence

consist of symbols belonging to some
alphabet . In biological sequence analysis, the alphabet might
be, for example, the set of four possible nucleotides in DNA,
“A,” “C,” “G,” and “T,” or the set of 20 amino acids that are the
building blocks of proteins. We denote the set of parameters
that define an HMM by . Given a sequence , an HMM
returns a “probability” , where

so it is a probability distribution over sequences of length (we
use to denote the set of all sequences of length). To un-
derstand the meaning of this probability, we can imagine some
process of interest (e.g., molecular evolution) that generates a
set of sequences of length with probability . Our aim
is to find an HMM such that is as close as possible
to . Of course, we usually do not know . Rather, we
have some training examples consisting of a set of sequences.
We can then use the maximum likelihood principle to estimate
the HMM, which corresponds to maximizing with re-
spect to (the probability is known as the likelihood,
when considered a function of).

Often, we are interested in how well a sequence fits the model.
To do this, we consider the log-odds of a sequence

odd for sequence (1)

where denotes the cardinality of the set of symbols .
The log-odds are positive if the sequence is more likely than a
random sequence. To use an HMM for classification, we can
set a threshold for the log-odds of a new sequence to belong to
the same class as the training data.

The HMM is a probabilistic finite-state machine which can
be represented as a directed graph in which the nodes corre-
spond to states and the edges correspond to possible transitions
between states. A transition probability is associated with each
edge with the constraint that the sum of the transition probabili-
ties for edges exiting a node must sum to one. A node may have
a transition to itself. In addition, there is an emission probability
table associated with each state which encodes the probability
of each symbol being “emitted,” given that the machine
is in that state. We define one state as the start state, which does
not emit a symbol but has transitions to the other states. To com-
pute probabilities from our HMM we consider an “event” to be
a path through the graph where we emit a symbol every time we
enter a state. The probability of the event is equal to the proba-
bility of the path times the probability of emitting that sequence
of observed symbols, given that we have taken that path through
the finite-state machine. The probability of a sequence is then
found by averaging over all possible paths.

To formalize the HMM, we denote the set of states by , the
transition probabilities from state to by , and the proba-
bility of emitting a symbol , given that we are in a state
by . Let be a sequence of states, then
the likelihood of a sequence is given by

(2)

and

(3)

Here, denotes the initial state. Naively, the computation of
the likelihood seems to grow exponentially with the length of
the sequence. However, all the computations we need can be
computed efficiently using dynamic programming techniques.
We can compute the likelihood using the “forward” algorithm.
The forward variable is defined as

(4)

Starting from , we can find for all states
for successive times using the recursion

(5)

This follows from the Markovian nature of the model. When we
have found we can compute the likelihood by marginal-
izing out the final state

(6)

Having an absorbing state (with no outgoing transitions) in
the model would result in a probability distribution over se-
quences of all possible lengths, but we use the first formulation
in the remainder of the theoretical part of the paper. There exists
an analogous backward algorithm that can also be used to com-
pute the likelihood. We define the backward variable to be
the probability of matching the sequence , given
that we are in state at time

(7)

Again, this can be obtained recursively using

(8)

with initial condition for all . The likelihood is
given by

More importantly, the backward variable can be used in combi-
nation with the forward variable to compute important quantities
needed for parameter estimation.

WON et al.: EVOLVING STRUCTURE OF HIDDEN MARKOV MODELS 41

B. HMM Parameter Estimation

The continuous parameters of the HMM can be estimated to
maximize the model likelihood on the given sequences.
This is achieved using the Baum–Welch algorithm which is an
example of an expectation maximization (EM) algorithm [8].
Because the state sequences are not directly observable, statis-
tical information is used to adjust the parameters. The model
parameters that maximize the likelihood value are calculated it-
eratively. The update rule of the transition probabilities are

(9)

where is the number of transitions from state to state
summed over the sequence, that is

(10)

The update rule of the emission probabilities can be obtained as

(11)

where is the number of times the symbol is emitted when
in state . Equations (9) and (11) are self-consistent equations
which are satisfied when the likelihood for the training data is
locally maximal. We satisfy the equation by iteratively updating

and according to the expected values for and ,
which are computed using the forward and backward algorithm.
If we train on a limited amount of data, this estimation of the
emission probabilities is liable to overfit the data. For example,
we may not have seen some symbol emitted at time in our
training data. If we build an HMM with a zero probability of
emitting a symbol at this time we would perfectly fit our training
data, but we may be reading more into a finite sample of data
than we should be. To avoid excessive overfitting we can add
some “pseudocounts,” to our estimate for and to
our estimate for . Our estimated transition and emission
probabilities are given by

(12)

and

(13)

Although, this appears to be an ad hoc fix, it can be motivated
from a Bayesian perspective. We can consider the training set
to be a sample from a multinomial distribution and assume a
Dirichlet distribution for the prior probability, then the pseudo-
counts drop out as the coefficients of the prior [9].

In the Baum–Welch algorithm, unknown transition and emis-
sion frequencies are replaced by their expected values and the
parameters re-estimated using the forward and the backward
variables. The parameters are updated according to

(14)

Fig. 1. Several types of HMM topologies: (a) ergodic model, (b) self-loop
model, and (c) left–right model.

(15)

The Baum–Welch algorithm acts as a local search algorithm and
is liable to become trapped at a local optimum. For more details
on the training of HMMs, see, e.g., [1], [2], and [10].

There are several ways of finding a state sequence in a given
observation sequence. The posterior decoding method is to
choose the states which are individually most likely

(16)

From (4) and (7), we get

(17)

This can be evaluated using the forward and backward
algorithms.

C. Topologies of HMMs

The effectiveness of an HMM depends on the number of
states and the structure of the graph connecting the states. Tra-
ditionally, prior knowledge about a problem is encoded in this
structure. In choosing a structure, there is a tradeoff between
simplicity and complexity. A too simple model is unlikely to
be able to generate the data set with a high likelihood, while a
too complex model will easily learn the data set, but is unlikely
to generalize well. The complexity depends on the number of
states and the structure. The most complex structures are com-
pletely connected graphs, while the simplest are linear chains.
Fig. 1 shows several types of HMMs. In these examples, we
only allow one symbol to be emitted from each state (in gen-
eral, one state could emit any symbol from the alphabet, ,
with a probability given by the emission probabilities). The fully
connected model [Fig. 1(a)] can generate any sequence. The
self-loop model of Fig. 1(b) can generate sequences such as
AAATTTGCCC, while the left-right model can generate the

42 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

same sequence as the self-loop but can also jump states to pro-
duces sequences such as AATTCCC.

A common method to decrease the model complexity is to
“tie” states so they have the same emission and/or transition
probabilities [11]. States are tied if we believe that they model
similar parts of a sequence. This reduces the number of free
parameters that need to be learned and thus reduces the problem
of overfitting. Biological sequences often have approximately
the same biological functionality even though they are slightly
different in their characters. A way to incorporate the variant
feature of the biological string is to tie parameters. Parameter
tying is used in many HMM applications such as TMHMM [12].

D. Previous Work

There has been relatively little work in estimating the HMM
structure without any prior knowledge. In speech recognition,
state merging methods have been used to find a compact HMM
structure [13]. In this paper, an HMM architecture is built from
a large initial model, which is shrunk by merging states. In the
bioinformatics field, there has been an attempt to find HMM
structures using a local search that inserts or deletes states [14].
They used statistical information about the states to decide the
point to insert new states. These attempts have not been very
successful for designing the architecture for complex problems.
The use of GAs to find an HMM structure has been tried pre-
viously in speech recognition [4]. They considered a five-state
model and evolved strings which represented the transitions and
emissions of an HMM. We are aware of one other group that
has used GAs for optimizing HMM structures for biological se-
quence analysis [3]. An earlier attempt to hybridize GAs with
HMMs is described here [15]. In both cases, GAs were used to
insert and delete states and swap transitions. They could deal
with complex biological sequences, but the model produced is
hard to interpret because they allowed unlimited transitions be-
tween states. In a previous paper, we have attempted to build a
humanly interpretable HMM structure using a GA [16]. We used
a similar block structure to that described here, but the linking
between blocks was very limited. The structures we found were
too limited for more general applications.

HMMs are, in fact, a special subclass of graphical models
[17]. GAs have been used to find the structure for graphical
models (see, for example, [6], [7]). However, the structures
being learned in graphical models is the dependency graph. The
dependency graph for an HMM is shown in Fig. 2. The struc-
ture of the HMM determines the probability model between
the states rather than the dependency graph. Nevertheless, both
HMMs and graphical models aim to find a graph topology that
accurately represents a probabilistic process. Consequently,
there may be a crossover of ideas between these two domains.

E. Biological Background

The block models described in this paper are motivated by ap-
plications of HMMs in biological sequence analysis. Biological
sequences (DNA or protein) often contain “motifs,” which are
more or less conserved words with more or less homogeneous
intervening sequence, which is characterized by the composi-
tion of letters (amino acids or nucleotides). The motifs might,
for instance, correspond to binding sites for other molecules.

Fig. 2. HMM represented as dynamical Bayesian network.

Such a sequence can be modeled by an HMM containing sub-
models for the motifs (linear chains of states) and models for
the intervening sequences, each of which can be a single state or
multiple emmission tied states, if a length distribution is mod-
eled. Other types of sequences are changing between various
types of homogeneous sequences. An example is membrane
proteins that contain membrane helices 20–30 amino acids long,
which are dominated by hydrophobic amino acids and an inter-
vening sequence that is typically more hydrophillic [12]. Such
sequences can be modeled with a block of tied states, one block
for each type of sequence. Sometimes sequences contain peri-
odic patterns. The region of a gene that codes for a protein is
made up of codons, which are nucleotide triplets, each of which
codes for one amino acid. The first codon is a special start codon
(often the three bases ATG) and the last codon (which actually
does not code for an amino acid) is a stop codon (TAA, TGA,
or TAG). This gives rise to a three-periodic pattern, which can
be modeled with a model like the one shown in Fig. 3.

The block HMM has been tested on genomic DNA sequences
from Campylobacter jejuni (hereafter C. jejuni). C. jejuni is an
important human intestinal pathogen. Despite intensive study,
much is still not known about how to control and intervene in
the disease [18]. A better understanding of gene organization,
function, and regulation in C. jejuni is desirable to provide pos-
sible control strategies.

One test is on modeling the coding region of genes as de-
scribed above and the other in in modeling the promoter. A
promoter is a region of DNA located upstream from the tran-
scription start site of a gene. It contains binding sites for RNA
polymerase and regions that regulate the rate of transcription.
Predicting the promoter region has been one of the main chal-
lenges in bioinformatics because the promoter region regulates
the expression of the gene. There is still no general computing
algorithm for finding promoters with high precision.

In many bacteria, there is a conserved sequence of TTGACA
at around 35 base pairs (bp) before the transcription start site
(position “ 35”) and TAtAAT (where “t” indicates either T or
A) at around the 10 region, called the TATA box [19]. A ribo-
some binding site is located between the transcription start site
and the start codon of the gene, and it is typically AAGGA. In
the promoter region of C. jejuni, the TTGACA region is weakly
conserved, but a T-rich domain is a common upstream of the
TATA box [20]. The C. jejuni genome contains more Ts and
As than Gs and Cs. Although the ribosomal binding sites can
often be spotted, the sequence is not always in the same posi-
tion in relation to the coding region. In some cases, the sequence
AAGGA is highly mutated. It is difficult for nonexperts to figure
out which part of the sequence is the TATA box because most
part of the promoter region is composed of Ts and As.

Petersen et al. suggested an HMM architecture for this
promoter region [21]. Their model includes the TATA box

WON et al.: EVOLVING STRUCTURE OF HIDDEN MARKOV MODELS 43

Fig. 3. Simple HMM coding region of a gene.

Fig. 4. Model for predicting promoter region of C. jejuni, adopted from [21] and modified. They modeled this structure with biological knowledge.

Fig. 5. HMM blocks that compose whole HMM structure: (a) linear block,
(b) self-loop model (tying is optional), and (c) forward-jump block (tying is
optional).

(TAtAAT) and a ribosomal binding site (AAGGA). During the
testing of various models, a periodic pattern was discovered
upstream of the TATA box, and this was included in the model.
This model is shown in Fig. 4. The forward transitions are used
to represent sequences with varying length. The states in the
background region are tied together to represent nonspecific
sequences with a small number of states.

III. BLOCK HMM

A. Biological Block Model

To constrain the search of HMM topologies to biologically
meaningful structures, we represent the HMM structure as a
number of blocks. The blocks we consider are one of three basic
structures that are frequently used in biological sequence anal-
ysis. These are: linear, self-loop, and forward blocks. The self-
loop and forward block can be either tied (we follow the conven-
tion of shading tied blocks) or untied. That is, all the emission
and transition probabilities are set equal. A forward block can
have a transition from the first block to the last blocks in the
chain. Examples of these block structures are shown in Fig. 5.

The linear block can model a particular pattern of a sequence,
the so-called conserved regions. The self-loop can be used to
model a sequence of any length, while the forward jump block
can be used to represent varying length subsequences up to some
fixed length. Tying can be switched on and off in the self-loop
and forward blocks.

The blocks are fully linked together to form the whole HMM
architecture. This is illustrated in Fig. 6. The last state of a block

Fig. 6. Example of HMM composed of blocks (block HMM). Three blocks
are used in model and all blocks are fully connected to each other.

has transitions to the first states of all the blocks. The resulting
HMM can be thought of as a fully connected graph consisting
of “super vertices” made up of blocks whose internal states are
not fully connected. We call this structure a block HMM. Spe-
cial patterns like periodic signals can be generated with a path
between blocks.

B. Genetic Operators for Block HMM

Each block is represented by a pair. The first element defines
the length of the block, while the second element gives the type
(a, b, or c corresponding to linear, self-loop, or forward-jump
block, respectively). The type also specifies whether the states
are tied or untied (t or u) and, in the case of forward blocks, the
number of forward connections. The full HMM is represented
as a string of pairs as shown in Fig. 7. For example, the HMM
in Fig. 6 would be represented by “((3,a),(2,bu),(3,ct1)).” As the
blocks are equivalent in their connectivity, there is no informa-
tion in the ordering of the blocks.

In crossover, two parent strings are chosen at random. Some
number of randomly chosen blocks are then swapped to create
two children. The children then replace the parents. When we
swap blocks, the transition probabilities leaving the block are
kept unchanged. Since the position of the blocks does not carry
any meaning, we do not impose any constraint on which blocks
are swapped. The number of blocks is kept fixed. However, as
the blocks can have variable lengths, the number of states is not
fixed. We also allow blocks consisting of no states (zero blocks),
which effectively allows us to have a variable number of blocks
up to some maximum. The evolution of a variable size struc-
ture is similar to the situation common in many applications of
genetic programming. This scheme in a way emulates natural

44 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

Fig. 7. String representation of block HMM. Information on lengths and types of blocks are stored.

Fig. 8. Crossover in block HMM. Crossover swaps HMM states without breaking property of HMM blocks.

evolution which can cross over DNA sequences with different
lengths. We chose a generational GA as a way to present the
DNA sequences crossed over as a block.

Fig. 8 shows an example of the crossover scheme. The last
block of the first child crosses with the first block of the second
child. To simplify the diagram, transitions between blocks are
not shown here. Under the crossover scheme, the properties of
the interpretable blocks are not broken. This allows us to ex-
change meaningful blocks without causing too much disruption.

Mutations can take place in any block of the HMM. There is
a variety of different mutations that we allow for. Mutations can
change the length of a block. For a forward-jump block, muta-
tions can change the number of transitions. For example, in the
case of a four-state forward-jump block, there are six different
types of mutations possible. These are illustrated in Fig. 9. The
mutation can add [Fig. 9(a)] or delete [Fig. 9(b)] a transition in-
side a block. To prevent losing the property of the block, deletion
of a transition is not allowed when there are only two transitions
(to the second state and the last state). In the same way, adding
a transition does not take place when the first state of the block
has transitions to all the other states. In Fig. 9(c) and (d), a state
is deleted from a block. The outcome depends on which block is
deleted. In Fig. 9(e) and (f), a state is added to the block. Again,

the outcome depends on which block is added. In the cases of
linear and self-loop blocks, there is only one way to add and
delete a state. These six different types of mutation supply the
block HMM with sufficient variation without changing the prop-
erties of the block.

In addition to changing the length of the block and the tran-
sitions, we also allow another form of mutations, called type
mutations, that change the type of the block. For self-loop and
forward jump blocks, we can mutate between tied and untied
versions. We can also mutate the type altogether. Mutations to
a block of zero length are also allowed.

C. Fitness Evaluation

Very complex models are likely to fit the data well but to gen-
eralize badly. We, therefore, need a way to gauge the generaliza-
tion ability. To achieve this, we split the training data into two;
one half is used as a Baum–Welch training set and the other half
as a fitness evaluation set. We use the training set to find the
transition and emission probabilities using the Baum–Welch al-
gorithm and the evaluation set to measure the fitnesses used in
selecting members of the population. Although we could po-
tentially overfit on the evaluation set, this does not seem to be
a problem in practice. One explanation for this is that overly

WON et al.: EVOLVING STRUCTURE OF HIDDEN MARKOV MODELS 45

Fig. 9. Six possible types of mutations from four-state jump-forward block.

complex models will overfit the training data when we run the
Baum–Welch algorithm. They then perform badly on the fitness
evaluation set. Because we use the Baum–Welch at every itera-
tion, overly complex models will always be disadvantaged.

We take as fitness values the reciprocal of the negative log-
likelihood

(18)

where indicates the different members of the population.
A member of the population is selected with a Boltzmann
probability

(19)

where is the standard deviation in the distribution of fitnesses
in the population. The parameter controls the selection
strength. Stochastic universal sampling is used to reduce ge-
netic drift in selection [22].

D. Training Procedure

To test our HMM, we split our data into a training and test set.
The training data was further split into a Baum–Welch training
set and an evaluation set, as described above. The number of
blocks is chosen at the beginning of the training and kept fixed.
The length and type of blocks was randomly chosen so that there
were on average the same number of linear, self-loop, forward-
jump, and zero blocks.

At each iteration of the block HMM, we applied the
Baum–Welch training algorithm to all individuals. We then
evaluated the fitness of the population and performed selection
(with selection strength), mutation, and crossover. We
continued until there was no significant change in the structure
of the HMM.

TABLE I
BLOCK HMM PARAMETERS USED IN EXPERIMENT

Fig. 10. Result of block HMM with two blocks. (a) (ATG) .
(b) (AAGATGAGGACG) .

Fig. 11. Behavior of block HMM GA shown as a function of number of
iterations for four runs.

IV. EXPERIMENT ON BLOCK HMM

A. Experiment With Artificial Data

To test the performance of the block HMM, we conducted
three experiments with artificial data. The first two experiments
were to find an HMM to represent data generated from the lan-
guages ATG and AAGATGAGGACG where “+” means
any number of repetitions. We used a population composed of
HMMs with two blocks. Table I shows parameters used in these
toy experiments. That is, at each iteration we randomly choose
two individuals and performed crossover to create two children

46 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

Fig. 12. Result of block HMM for (AAGATGAGGACG) (ATGC) (a) with two blocks, (b) with three blocks (case 1), (c) with three blocks (case 2), and
(d) with three blocks (case 3).

which replace the two parent strings, one individual where we
mutate either the length or the number of transitions in a ran-
domly chosen block, and one individual where we mutate the
type of a randomly chosen block (in later experiments we per-
formed more crossovers and mutations each iteration). For this
simple problem, we did not allow tying. The solutions to these
two problems found by the GA are illustrated in Fig. 10. The re-
sulting HMMs are reasonable solutions to the problem although
probably not those that a human would have come up with.

The third test we carried out was to find an HMM to recog-
nize the language AAGATGAGGACG ATGC . The first
half of the sequence is the same as that used in the previous
experiment, while the second half is a repetition of four sym-
bols. The number of iterations used in this experiment is 600.
Fig. 11 shows a graph of the maximum log-likelihood value
versus the iteration for four different runs of the GA. In case
3 of the three block model, the GA has still not found a partic-
ularly good HMM after 600 iterations.

The best solutions found by the GA among the four runs are
shown in Fig. 12. Note that we have not shown transitions which
the Baum–Welch algorithm has driven to zero. In the first run
[Fig. 12(a)], we initiated the GA with two blocks, while in the
next three runs [Fig. 12(b)–(d)] we used a three-block model.

These toy examples show that a GA is capable of finding rea-
sonable structures that can be readily interpreted by humans.
However, the models are not the simplest that could solve the
problem nor do they always have an optimal structure. Never-
theless, they demonstrate that the GA can find reasonably parsi-
monious solutions which give a good approximation of the true
likelihood. To test the performance of the block HMM on more
complex sequences, we used biological sequences in the fol-
lowing experiment.

B. Coding Region Model of C. jejuni

To investigate the block HMM’s ability to find an HMM
structure for biological sequences, we performed an experiment
with 200 sequences from the coding regions of C. jejuni. The
sequence data comprises a start codon (ATG) at the beginning
of the sequence, some number of codons, and a stop codon
at the end. The length of these sequences ranges from around
200 to 2000. Fig. 3 shows a typical HMM that could be used
to represent the coding region [23]. Of the 200 sequences
available, 150 sequences are used for training and 50 sequences
for evaluation. From looking at the data alone, it is almost
impossible for nonspecialists to see that the data consists of
codons.

WON et al.: EVOLVING STRUCTURE OF HIDDEN MARKOV MODELS 47

Fig. 13. Result of block HMM. It searched three state loops with GAs.

TABLE II
BLOCK HMM PARAMETERS USED IN EXPERIMENT

WITH BIOLOGICAL SEQUENCES

We conducted the experiment twice, once using four blocks
and once with three blocks. The initial block lengths range be-
tween three and seven. The GA parameters used in the simula-
tions are shown in Table II.

Fig. 13 shows the resulting structures of the block HMM
found using the GA. In Fig. 13(a), the second state of the first
block is not used. In Fig. 13(b), the emission probabilities of
the state between 7 and 15 are tied. Although these are not the
most parsimonious solutions they do seem to have identified the
triplet nature of the sequences.

C. Promoter Model of C. jejuni

The block HMM was applied also to the promoter of C. jejuni
and compared to the results in [21]. We tested if the block HMM
could find the biologically meaningful regions without any prior
knowledge. The GA parameters are the same as those used in
the previous experiment. Of the 175 sequences available, 132
sequences are used for Baum–Welch training and 43 sequences
are used for the fitness evaluation. We conducted simulations
using nine, eight, and seven blocks.

The best structures found by the GA are shown in Fig. 14.
The block HMM could find the “AAGGA” and “TAtAAT” re-
gions with nine blocks [Fig. 14(a)] and eight blocks [Fig. 14(b)].
In addition, it found the presence of semi-conserved TGx up-
stream of TATA box which is characteristic of the C. jejuni pro-
moter region [21]. However, when the number of blocks is seven
[Fig. 14(c)], the block HMM could find only the AAGGA se-
quence. The TATA box was buried inside other states. Interest-
ingly, the nine-block model [Fig. 14(a)] also found the ten-base
periodicity just before the TATA box, which was discovered in
[21]. In Fig. 14, the emission probabilities of the states in the
shaded cells are tied.

To perform a quantitative test of the generalization per-
formance of structures found in the previous experiment, we
conducted a discrimination test. In order to collect a sufficient
amount of data we did a fivefold cross-validation experiment.

This replicates a test performed by Petersen et al. [21]. As the
structures generated in the previous test (shown in Fig. 14)
were found using all the training data, we retrained all the
emission and transition probabilities starting from random
values. However, to retain the main structure, we removed all
transition probabilities less than 0.002; to maintain the posi-
tions of TATA box and ribosomal binding site, we introduced
pseudocounts in these conserved regions. For example, if the
emission probabilities of one state is A:0.9 T:0.1 G:0.05 C:0.05,
then the pseudocount becomes 90, 10, 5, 5 for the A, T, G, C,
respectively. This ensures that these conserved regions occur
in the same place when we retrain the model in the cross-val-
idation procedure. We used the Baum–Welch to retrain the
weights using 140 out of the 175 sequences as training data.
The remaining 35 sequences were used as test data.

To perform a discrimination test, we require a background
sequence. To obtain this, we use a 500 000bp sequence gener-
ated by a third-order Markov chain that had been trained on the
C. jejuni genome. To test the discrimination, we set a log-odds
threshold so that there were ten or fewer false positives and then
measured the number of true and false positives. Table III shows
the total number of false positives (FP) and true positives (TP)
summed over all of the fivefold cross-validation tests.

We repeated this test on ten different HMM structures found
by using a GA. In all but one case, we could get approximately
seven to nine false positives and a true positives rate ranging
from 70% to 76%. Only in one simulation out of the ten did
the GA fail to find a TATA box. These results are superior to
those published for a handcrafted HMM [21], although we must
be slightly cautious in interpreting our results as the structures
were trained using the same data that it was tested on. We were
forced to do this because the dataset was small. We did take
the precaution of retraining all the weights to reduce the risk of
biasing our results, but the pseudocounts were influenced by the
whole data set. Although the results are not conclusive, they are
suggestive.

V. CONCLUSION

In this paper, we have described a GA which evolves the
structure of HMMs in a biologically constrained way. We have
performed a number of tests to illustrate that the resulting
HMMs are relatively easy to interpret. Furthermore, on the
problem of the promoter model of C. jejuni, the results are
competitive with an expert-designed HMM. This is quite

48 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

Fig. 14. Best structures found by GA for (a) nine, (b) eight, and (c) seven blocks. “AAGGA” sequence is found on every simulation and “TAtAAT” sequence is
found in (a) and (b). Each cell represents a state. Emissions of shaded cells are tied.

TABLE III
RESULT OF BLOCK HMM

remarkable given that our GA had no prior knowledge of
conserved regions such as the TATA box and ribosome binding
site as well as other structures which have been acquired by
experts over many years. These are promising results from early
work. There is a lot more that can be investigated. For example,
in order to reduce overfitting we have split our training data
into a Baum–Welch training set and an evaluation set used
in selecting members of the population. However, we could
still overfit the evaluation set. One method to control this is to
include a regularization term in the fitness term that punishes
more complex models. Such a scheme has been used by Yada
et al. [3]. However, in early experiments we found that this
involved setting a parameter which was difficult to do with the
limited amount of data. Nevertheless, this may be worth revis-
iting, particularly as we try to evolve more complex models.
Another method to regulate the HMM model complexity is
using minimal description length (MDL) [24]. The MDL-based
scoring metric can be used to evaluate the fitness of the model
balancing the complexity of the HMM with the degree of
accuracy. This is a possible future area of study.

The blocks introduced in this paper were adopted from fre-
quently used HMM topology. Beside these three blocks, other
topologies have been constructed in bioinformatics depending
on the applications [2]. And other possible block models can
be addressed. However, the three blocks used in this paper have
proven to be sufficiently powerful in this application. We believe
that they are likely to be able to model many different types of
sequences.

Unrestricted crossover is likely to be very disruptive in this
application. To prevent this, we only allow crossover to occur
between blocks. Since the blocks are connected to every other
block, the structure is much less disrupted. Within a block the
structure is evolved using mutation. This is analogous to the
evolution of DNA in nature where crossover can exchange genes
with different length.

Evolving HMM structures is a time-consuming process since
training and evaluating the likelihoods for long sequences takes
many operations. At present, this is a weakness for automatic
structure finding. However, as computers get faster and the
number of applications grow with the exponential rise in the
amount of sequencing data, we expect that the automatic HMM
structure search will become increasingly important. GAs
seem to be ideally placed to play an important part in this
development.

Data Availability: The biological data used in the tests dis-
cussed in this paper can be obtained from [25]. In addition, this
site contains all the details of the HMM structures found by the
GA.

WON et al.: EVOLVING STRUCTURE OF HIDDEN MARKOV MODELS 49

ACKNOWLEDGMENT

The authors would like to thank L. Petersen for her help with
the sequence data and the model.

REFERENCES

[1] L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286,
Feb. 1989.

[2] R. M. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Se-
quence Analysis. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[3] T. Yada, M. Ishikawa, H. Tanaka, and K. Asai, “DNA sequence analysis
using hidden Markov model and genetic algorithm,” Genome Inform.,
vol. 5, pp. 178–179, 1994.

[4] C. W. Chaw, S. Kwong, C. K. Diu, and W. R. Fahrner, “Optimization of
HMM by a genetic algorithm,” in Proc. Int. Conf. Aucoustics, Speech,
Signal Processing, 1997, pp. 1727–1730.

[5] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no.
9, pp. 1423–1447, Sep. 1999.

[6] I. Poli and A. Roverato, “A genetic algorithm for graphical model selec-
tion,” J. Italian Statist. Soc., vol. 2, pp. 197–208, 1998.

[7] I. Inza, P. Larrañaga, and B. Sierra, “Feature subset selection by
Bayesian networks: A comparison with genetic and sequential algo-
rithms,” Int. J. Approximate Reasoning, vol. 27, no. 2, pp. 143–164,
2001.

[8] A. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Roy. Statist. Soc. B, vol. 39, pp.
1–38, 1977.

[9] K. Sjolander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I. S. Mian,
and D. Haussler, “Dirichlet mixture: A method for improved detection of
weak but significant protein sequence homology,” Proc. Comput. Appl.
Biol. Sci. (CABIOS), vol. 12, pp. 327–345, 1996.

[10] A. Krogh and S. K. Riis, “Hidden neural networks,” Neural Computa-
tion, vol. 11, pp. 541–563, 1999.

[11] L. R. Bahl, F. Jelinek, and R. L. Mercer, “A maximum likelihood ap-
proach to continuous speech recognition,” IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI–5, pp. 179–190, 1983.

[12] A. Krogh, B. Larsson, G. von Heijne, and E. Sonnhammer, “Predicting
transmembrane protein topology with a hidden Markov model: Appli-
cation to complete genomes,” J. Molecular Biol., vol. 305, no. 3, pp.
567–580, 2003.

[13] A. Stolcke, “Bayesian learning of probabilistic language models,” Ph.D.
dissertation, Univ. California, Berkeley, CA, 1994.

[14] Y. Fujiwara, M. Asogawa, and A. Konagaya, “Motif extraction using an
improved iterative duplication method for HMM topology learning,” in
Proc. Pacific Symp. Biocumputing, 1995, pp. 713–714.

[15] K.-J. Won, A. Prügel-Bennett, and A. Krogh, “Training HMM structure
with genetic algorithm for biological sequence analysis,” Bioinformat.,
vol. 20, pp. 3613–3619, 2004.

[16] , “The block hidden Markov model for biological sequence ananl-
ysis,” Lecture Notes Artificial Intell., vol. 3213, pp. 64–70, 2004.

[17] M. I. Jordan, Learning in Graphical Models. Cambridge, MA: MIT
Press, 1999.

[18] C. R. Friedman, J. Neimann, H. C. Wegener, and R. V. Tauxe, Epidemi-
ology of Campylobacter jejuni Infection in the United States and Other
Industrialized Nations. Washington, DC: ASM, 2000, pp. 121–139.

[19] J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 5th ed. San
Frasncisco, CA: Freeman, 2002.

[20] M. M. Wosten, M. Boeve, M. G. Koot, A. C. van Nuene, and B. A. van
der Zeijst, “Identification of Campylobacter jejuni promoter sequence,”
J. Bacteriaol., vol. 180, pp. 594–599, 1998.

[21] L. Petersen, T. S. Larsen, D. W. Ussery, S. L. W. On, and A. Krogh,
“RpoD promoters in Campylobacter jejuni exhibit a strong periodic
signal instead of a �35 box,” J. Molecular Biol., vol. 326, no. 5, pp.
1361–1372, 2003.

[22] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,”
in Proc. 2nd Int. Conf. Genetic Algorithms, Hillsdale, 1987, pp. 14–21.

[23] A. Krogh, An Introduction to Hidden Markov Models for Biological
Sequences, ser. Computational Methods Molecular Biol. Amsterdam,
The Netherlands: Elsevier, 1998, ch. 4, pp. 45–63.

[24] J. Rissanen, Stochastic Complexity in Statistical Inquiry. New York:
World Scientific, 1999.

[25] http://www.ecs.soton.ac.uk/~kjw02r/data.htm

Kyoung-Jae Won received the B.S. and M.S.
degrees in electronics from Chung-Ang University,
Korea, in 1996 and 1998, respectively. Currently, he
is working towards the Ph.D. degree at the School
of Electronics and Computer Science, Southampton
University, Southampton, U.K.

Under the volunteer program of the Korean
government, he worked at the College of Science,
National University of Hanoi, Vietnam, from 1999
to 2001. His research interests include the areas
of bioinformatics, hidden Markov models, and

evolutionary algorithms.

Adam Prügel-Bennett received the B.Sc. degree in
physics from Southampton University, Southampton,
U.K., and the Ph.D. degree in theoretical physics
from Edinburgh University, Edinburgh, U.K.

He worked in research jobs in Oxford, U.K.,
Paris, France, Manchester, U.K., Copenhagen,
Denmark, and Dresden, Germany, before finally
returning to the School of Electronics and Com-
puter Science, Southampton University, as a Senior
Lecturer. His research interests include evolutionary
algorithms, machine learning, and computer vision.

Anders Krogh received the Ph.D. degree in theo-
retical physics from the Niels Bohr Institute, Copen-
hagen, Denmark, in 1991.

He worked at the University of California, the
Sanger Centre, Cambridge, U.K., the Center for
Biological Sequence Analysis, Technical University
of Denmark, and other places before joining the
University of Copenhagen, in 2002, where he heads
the Bioinformatics Centre. Originally, he studied
neural networks theoretically, but he is now mainly
working on probabilistic methods for biological

sequence analysis, including the application of hidden Markov models in gene
finding and protein modeling.

	toc
	Evolving the Structure of Hidden Markov Models
	Kyoung-Jae Won, Adam Prügel-Bennett, and Anders Krogh
	I. I NTRODUCTION
	II. B ACKGROUND
	A. HMMs
	B. HMM Parameter Estimation

	Fig.€1. Several types of HMM topologies: (a) ergodic model, (b)
	C. Topologies of HMMs
	D. Previous Work
	E. Biological Background

	Fig.€2. HMM represented as dynamical Bayesian network.
	Fig.€3. Simple HMM coding region of a gene.
	Fig.€4. Model for predicting promoter region of C. jejuni, adopt
	Fig.€5. HMM blocks that compose whole HMM structure: (a) linear
	III. B LOCK HMM
	A. Biological Block Model

	Fig.€6. Example of HMM composed of blocks (block HMM). Three blo
	B. Genetic Operators for Block HMM

	Fig.€7. String representation of block HMM. Information on lengt
	Fig.€8. Crossover in block HMM. Crossover swaps HMM states witho
	C. Fitness Evaluation

	Fig.€9. Six possible types of mutations from four-state jump-for
	D. Training Procedure

	TABLE€I B LOCK HMM P ARAMETERS U SED IN E XPERIMENT
	Fig. 10. Result of block HMM with two blocks. (a) $({\hbox{ATG}}
	Fig.€11. Behavior of block HMM GA shown as a function of number
	IV. E XPERIMENT ON B LOCK HMM
	A. Experiment With Artificial Data

	Fig. 12. Result of block HMM for $({\hbox{AAGATGAGGACG}})^{+}({\
	B. Coding Region Model of C. jejuni

	Fig.€13. Result of block HMM. It searched three state loops with
	TABLE€II B LOCK HMM P ARAMETERS U SED IN E XPERIMENT W ITH B IO
	C. Promoter Model of C. jejuni
	V. C ONCLUSION

	Fig.€14. Best structures found by GA for (a) nine, (b) eight, an
	TABLE€III R ESULT OF B LOCK HMM
	Data Availability: The biological data used in the tests discuss
	L. R. Rabiner, A tutorial on hidden Markov models and selected a
	R. M. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological
	T. Yada, M. Ishikawa, H. Tanaka, and K. Asai, DNA sequence analy
	C. W. Chaw, S. Kwong, C. K. Diu, and W. R. Fahrner, Optimization
	X. Yao, Evolving artificial neural networks, Proc. IEEE, vol. 8
	I. Poli and A. Roverato, A genetic algorithm for graphical model
	I. Inza, P. Larrañaga, and B. Sierra, Feature subset selection b
	A. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood fr
	K. Sjolander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I. S. M
	A. Krogh and S. K. Riis, Hidden neural networks, Neural Computat
	L. R. Bahl, F. Jelinek, and R. L. Mercer, A maximum likelihood a
	A. Krogh, B. Larsson, G. von Heijne, and E. Sonnhammer, Predicti
	A. Stolcke, Bayesian learning of probabilistic language models,
	Y. Fujiwara, M. Asogawa, and A. Konagaya, Motif extraction using
	K.-J. Won, A. Prügel-Bennett, and A. Krogh, Training HMM structu
	M. I. Jordan, Learning in Graphical Models . Cambridge, MA: MIT
	C. R. Friedman, J. Neimann, H. C. Wegener, and R. V. Tauxe, Epid
	J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 5th ed.
	M. M. Wosten, M. Boeve, M. G. Koot, A. C. van Nuene, and B. A. v
	L. Petersen, T. S. Larsen, D. W. Ussery, S. L. W. On, and A. Kro
	J. E. Baker, Reducing bias and inefficiency in the selection alg
	A. Krogh, An Introduction to Hidden Markov Models for Biological
	J. Rissanen, Stochastic Complexity in Statistical Inquiry . New

	http://www.ecs.soton.ac.uk/~kjw02r/data.htm

