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ABSTRACT 
Motivation: Describing and modeling biological features of 
eukaryotic promoters remains an important and challenging problem 
within computational biology. The promoters of higher eukaryotes in 
particular display a wide variation in regulatory features, which are 
difficult to model. Often several factors are involved in the regulation 
of a set of co-regulated genes. If so, promoters can be modeled with 
connected regulatory features, where the network of connections is 
characteristic for a particular mode of regulation.  
Results: With the goal of automatically deciphering such regulatory 
structures, we present a method that iteratively evolves an 
ensemble of regulatory grammars using a Hidden Markov Model 
(HMM) architecture composed of interconnected blocks representing 
transcription factor binding sites and background regions of 
promoter sequences.  The ensemble approach reduces the risk of 
over-fitting and generally improves performance. We apply this 
method to identify transcription factor binding sites and to classify 
promoters preferentially expressed in macrophages, where it 
outperforms other methods due to the increased predictive power 
given by the grammar. 
Availability: The software and the data sets are available from 
http://modem.ucsd.edu/won/eHMM.tar.gz 
Contact: krogh@binf.ku.dk 

1 INTRODUCTION  
One of the fundamental challenges in computational biology is to 
decipher the signals underlying transcriptional regulation (Stormo, 
2000; Wasserman and Sandelin, 2004). The goal of this is twofold: 
to minimize the number of experiments necessary in the 
laboratory, but also to understand the general mechanism 
underlying the precise selection of expressed genomic loci. 
Transcription of a typical gene by RNA Polymerase II is directed 
by DNA sequence signals, which are bound by specific proteins: 
transcription factors (TFs). These transcription factor binding sites 
(TFBSs) are often located in the region around the transcription 
initiation site (Smale and Kadonaga, 2003).  The TFBSs for a 
given TF usually show a constrained pattern of nucleotides, which 
can be represented by a position-specific scoring matrix (PSSM) 
(Stormo, 2000; Wasserman and Sandelin, 2004). While such 

PSSMs are adequate predictors of sites bound in vitro, the 
information content in the model is too small to make meaningful 
predictions at genomic scales. The binding preference of a TF 
alone is not sufficient to find its cognate functional sites. One of 
the principal methods used to solve this problem is to find 
combinations of sites. Such combinations of TFBS are known as 
cis-regulatory modules, which can direct tissue-specific expression 
of genes (Stormo, 2000; Wasserman and Fickett, 1998). 
In higher eukaryotes, it is challenging to model the interaction 
between TFs and TFBSs, as the location, composition and number 
of TFBSs varies greatly even in genes having similar expression 
patterns. A bottleneck in this type of analysis is the lack of data: 
there are only a handful of gene sets where the number of 
experimentally defined sites is sufficient for direct training of a 
predictive model. On the other hand, genome-wide data on both 
promoter locations (Carninci, et al., 2006) and expression patterns 
(Su, et al., 2002) are available. Thus, a commonly occurring 
situation in experimental biology is that a set of genes are found to 
be co-expressed, leading to the hypothesis that they are co-
regulated or at least share some regulatory features. In some of 
these cases, there are experimental indications on what type of 
features those might be (for instance, some particular TFs might be 
suspected to be involved in the regulation of most genes within the 
set). Many algorithms aimed at analyzing data originating from 
this type of situation have been presented. Most have focused on 
identifying regions in which predicted sites co-occur (Berman, et 
al., 2002; Markstein, et al., 2002; Rebeiz, et al., 2002). Others have 
suggested probabilistic models (Crowley, et al., 1997; Frith, et al., 
2001; Frith, et al., 2003; Frith, et al., 2002; Rajewsky, et al., 2002). 
Of particular interest are Cister and COMET, designed using two 
parallel strings of hidden Markov model (HMM) states to represent 
forward and backward reading of a PSSM (Frith, et al., 2001; 
Frith, et al., 2002). Background states are used to model spacing 
between PSSMs. Comet calculates E-values considering the score 
from the HMM and the gap between the putative TFs. A more 
recent program, Cluster-Buster, employed a quadratic-time 
algorithm to find clusters of pre-specified motifs in nucleotide 
sequences (Frith, et al., 2003). Similarly, Stubb is a program that 
uses correlation between motifs to model the coordinated TFBSs 
and also incorporate phylogenetic information (Sinha, et al., 2003). 
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Given a reasonable set of PSSMs as input, the applications using 
probabilistic models have adequate performance in the sense that 
they can successfully locate known clusters of motifs.  
However, these approaches do not consider the internal structure of 
the co-occurring TFBSs, just the proximity or co-localization of 
motifs. This is the motivation for our study: we focus on how to 
model the promoters of such a group of genes both to gain 
understanding of the mechanism of regulation and to be able to 
search for other genes that are regulated the same way. This can be 
viewed as an extension of the above approaches – not only do we 
want to find cis-regulatory modules; but to model the "grammar" 
of the promoters, by modeling both the binding sites, the order in 
which they appear, and the regions in between them. Thus, for a 
set of genes which are hypothesized to have similar promoter 
structures, we make a model by combining known PSSMs with 
models of the regions in between them: in effect, an HMM 
architecture based on smaller blocks which in turn also are HMMs. 
We use Genetic Algorithms (GAs) to automatically optimize the 
HMM architecture, starting from a simple network. This is similar 
to another evolutionary method for motif discovery, 
EMCMODULE (Gupta and Liu, 2005). Using an evolutionary 
Monte Carlo method, EMCMODULE updates the motifs and their 
locations in the sequences in each genetic cycle. It also has some 
similarity to Stubb (Sinha, et al., 2003), which uses inter-
correlations of motifs by constructing a ‘history-conscious HMM’, 
where a previous non-background motif is remembered. 
In this work, we search for multiple models, each of which 
represents one aspect of the underlying grammar.  The evolving 
strategy searches for possible motif grammars, while transforming 
the internal representation of the context. We use an evolutionary 
algorithm to optimize an HMM structure (Won, et al., 2007). The 
structure learning method has been successfully applied to 
prediction of protein secondary structure (Won, et al., 2007) and 
prokaryotic promoters (Won, et al., 2006) . The method we present 
here differs from the previous work in that we use a special block 
designed to model a PSSM. We also present a way of designing a 
promoter classifier using PSSM blocks. 
 
Below, we show that our method can find dense clusters of sites 
with performance equal to or better than other methods, and can 
successfully reconstruct known regulatory grammars at the same 
time. We also show that our method can be used as a classifier, 
where the modeled grammar gives additional predictive power 
compared to other approaches. 

2 METHODS 

2.1 Evolving an HMM 
We present an evolutionary strategy that evolves the structure of an HMM. 
The search space is restricted to interconnections of static sub-structures 
called blocks, which correspond to regulatory features or spacers (Won, et 
al., 2006). Such evolved HMMs we call e-HMMs. Four types of blocks 
were used (Figure 1): linear, self-loop, forward-jump blocks and zero 
blocks. A linear block consists of N states, where each state only has a 
transition to the next state. These linear blocks are used to model sites with 
a certain length (similar to a PSSM). Self-loop blocks are linear blocks in 
which each state has an additional transition to itself. They are used to 

represent a background distribution and model the length distribution 
between other blocks. A forward-jump block is a linear block where the 
first state is also connected to the last M states (with 1≤M<N) to model 
spacers of varying lengths up to a (small) maximum length. Zero blocks are 
empty blocks with no states, which are just place holders in the model 
structure and may change to another type of block at some point (through 
mutation or cross-over). In addition to the four types of blocks suggested in 
our previous work, we use a type that represents forward and backward 
reading of a PSSM for to model TFBSs (Figure 1e), since functional TFBS 
generally can occur on both strands. Each end of the PSSM block is a silent 
state that does not emit any symbols, but has transitions to other states and 
these transitions can capture possible directional preferences of the binding 
sites. Inside a PSSM block the emission probabilities are set according to 
the base frequencies of a known PSSM with a pseudo count of 1, and these 
probabilities are fixed. The number of states in a PSSM block is 2q + 2, 
where q is the length of the corresponding PSSM. 

 

Fig. 1.  HMM block types used. (a) linear block (b) self-loop block (c) 
forward-jump block (d) zero block (e) PSSM block. 

 

Fig. 2.  Example of an HMM architecture. The architecture is composed of 
two background blocks and one PSSM block. All the blocks are fully 
connected to each other. The blocks are divided by dotted lines 

All block types except the PSSM blocks are called background blocks as 
they are used to model background DNA sequence or spacing between 
TFBSs. 
An HMM consists of a fixed (preset) number of blocks, some of which may 
be zero blocks. Initially, block types are randomly allocated and the blocks 
are fully connected to form a complete HMM. In this context, fully 
connected means that the end state of each (non-zero) block is connected to 
the start states of all other blocks and itself. An example of an HMM 
composed of three blocks is shown in Figure 2.  States in background 
blocks are tied within blocks, meaning that their emission probabilities of 
the states inside a block are identical at all times. Thus, in the example 
depicted in Figure 2, the first three states are tied, and so are the last three 
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states, but emission probabilities of the states in the first and the last block 
are different.  
The method requires a set of PSSMs that are believed to be overrepresented 
in the input set of sequences. The aim of the method is then to find an 
optimal HMM architecture containing these PSSM blocks as well as 
evolving spacer blocks that explains the sequences. To do this, the genetic 
algorithm starts from a number of randomly chosen blocks to form a 
population. Inside the genetic cycle, genetic operators select members of 
the population (called parents) and evolve them to produce new members 
(called children). Children and parents are evaluated using a fitness 
function based on the likelihood. According to the fitness function, the 
selection procedure selects a number of members in the population for the 
next genetic cycle. Genetic operators (crossover, mutation) are applied to 
evolve the structure while retaining the properties of blocks. Crossover 
operations swap a number of blocks in two parents to create two children. 
Mutations change the number of transitions or states in the children. In 
each cycle, the best member in the population each cycle is stored. See 
Supplementary text for more detail.  

2.2 Genetic operators and training of e-HMMs 
Genetic algorithms evolve a population of solutions with genetic operators. 
Two genetic operators are used: crossover and mutation (Won, et al., 
2006). In crossover, two members are chosen through the selection 
procedure described below. A number of blocks are randomly selected and 
swapped to create two children. The number of blocks is constant, but the 
number of the states of an HMM can be changed. Fig S1 illustrates an 
example of the crossover scheme. Mutations can either change the block 
type or the state structure of a block. In a block-type mutation, another type 
is selected at random. Mutations to the state structure can happen inside 
any block of the HMM except the PSSM blocks (Fig S2). They change the 
number of states and the number of transitions in a block by randomly 
inserting or deleting a state.  By applying these operators, the e-HMM 
evolves the model.  To obtain suitable HMM architectures we tested 
various numbers of blocks between 25 and 40. Table S1 shows parameters 
used in the simulation. We have used a hybrid GA with traditional genetic 
operators to explore the space of HMM topologies in combination with 
Baum-Welch optimization of the transition and emission probabilities. 
After a number of iterations, most of the initial transitions converge to zero. 
The remaining transitions decide the grammar of the evolved HMM. The 
log likelihood of a model also tells us how well it fits the data. Given an 
HMM, we calculated the fitness value using the Akaike Information 
Criterion (AIC) (Akaike, 1973), which balances the likelihood and the 
model complexity (the number of parameters).  The fitness value is 
  

Eµ =
1

− −2 log(P(x i | Θµ )) + 2λfµ{ }
i
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where il  is the length of a sequence xi and µ labels the different HMMs 
(with parameters Θµ ) of the population. The number of free parameters in 
the HMM is called µf , and the parameter λ  balances the likelihood and 
the complexity of the HMM.   
A member of the population is selected with the Boltzmann probability 
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where σ is the standard deviation of the fitness in the population and s is a 
constant that controls the strength of the selection. In the work reported 
here, we used a value of s equal to 0.3 and λ  equal to 0.5. 

2.3 Parameter training using PSSM scores 
The evolved model is trained again considering the PSSM matches in a 
sequence and the distances to other matches. It is likely that a putative 
binding site with high matrix score and located close to other binding sites 
is a true binding site. To train with this additional biological information, 
we adopted the method for including database matches previously used for 
gene detection in Drosophila (Krogh, 2000).  We assigned a probability 
distribution over labels to each base in the sequence based on the PSSM 
score and the distance to other candidate TFBSs. A label is associated with 
a TF or background. An HMM state emits only a single label. The training 
algorithm with labels calculates a path where a state label matches with a 
sequence label. By assigning multiple labels to a sequence, multiple PSSM 
blocks or background can have a path through each base in the sequence. 
Firstly, putative binding sites are obtained by considering the PSSM score.  
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where Wx is the width of a PSSM and Pk (xk) is the probability of observing 
nucleotide xk  at position k of the PSSM, and P b (xk )  is the probability of 

observing nucleotide  xk  according to the background distribution.  
Non-binding sites are the sites with the PSSM score less than a cut-off. 
Secondly, the label probabilities are set for each base in the sequence. 
There is a distinct label for each PSSM and one for background, and a letter 
has one of those labels with some probability. For example, if a region of a 
sequence has a PSSM score s1 for transcription factor TF1 and s2 for TF2 
that are the only ones that score above the threshold, then pssm(TF1)= s1·z, 
pssm(TF2)= s2·z, pssm(TF3) = pssm(TF4) = … = pssm(background) = αs ·z, 

where z is a normalization factor and αs  is a pseudo count. Pseudo counts 
are used in order to avoid label probabilities of 0. Table S2 gives the value 
before normalization assigned to each label based on its PSSM score. The 
normalized distribution is scaled using a confidence.  Motifs are usually 
found clustered in real data. If any other putative binding sites are found 
within a certain distance, a confidence of 1 is used, and otherwise 0.1. We 
observed the performance with various distances D along with the decoding 
method. The scaled probability of the kth label at position l is  
 

][klp′   = (1-confidence)/(number of TFs+1) + confidence× ][klpssm .   (4) 

 
If the confidence is 0 it becomes a uniform distribution of labels. The 
probability of yielding a sequence ),...,2,1( Lxxx=x  along a path 

),...,2,1( Lπππ=π and a label ),...,2,1( Lyyyy =  in an HMM is 
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where ija  is a probability of making transition from state i to state j, and 

)( lxie  a probability of emitting a symbol 
lx  in a state l . )( lc π  is a label 

in the state 
lπ . δ  is the Kronecker delta function. It is 1 if )(

l
c

l
y π= , 

and 0, otherwise.  These probabilities are multiplied along a path, so the 
probability of not using a path with high label probabilities is heavily 
penalized. See Supplementary text for more details. 

2.4 Decoding e-HMMS and interpreting e-HMM 
ensembles 

 
In each iteration of the genetic algorithm, new models are estimated. Many 
of these models are equally good, and choosing one "best" model in the end 
rarely yields the best results. Therefore we use an ensemble of models to 
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analyze the data, which is a well-known method for limiting over-fitting 
(Riis and Krogh, 1996). Depending on the problem, the way of decoding 
the e-HMM and interpreting an ensemble of e-HMMs differs. To find 
putative binding sites we used posterior state probabilities to calculate the 
most probable states for the given sequences (Durbin, et al., 1999). For 
each position in a sequence, the state with the highest probability is chosen, 
and if it is a state in a PSSM block, the position is predicted to be a binding 
site for the corresponding transcription factor. Associated with each site is a 
score of the sequence given a PSSM (3).  If a predicted site has a score 
below a chosen cut-off, it is discarded. Among the remained sites we only 
counted predicted sites that clustered. Any two sites were regarded as 
clustered if the gap between them was smaller than a certain size (D). We 
checked the performance while varying D from 80 to infinity.  When D is 
infinite, all predicted sites above the cut-off are kept.  We add up the 
number of times each site is predicted in an iteration of the GA: . If a site is 
predicted as a specific motif 10 times in 15 iterations, the ensemble method 
gives a score of 10/15 to the site. Consequently, this method locates signals 
surviving for a long period of genetic permutations.  

2.5  Constructing a classifier 
 
To design a classifier using e-HMMs we calculated the log-odds ratio 

log
P(x | Θ

+
)

P(x | Θ
−

)
  (6) 

where x is the sequence and  Θ  is a set of HMM parameters. The 
positive model ( Θ+ ) is an evolved e-HMM. To design the negative model 
( Θ− ) we took all PSSM blocks out of the positive model and used only 
background blocks. In the example shown in Figure 2, the negative model 
becomes a 2-block HMM, without the PSSM block in the middle. The 
negative model is trained using the Baum-Welch algorithm with a set of 
negative sequences believed not to share the same grammar or sites as the 
positive set. For an ensemble of N models, we used the averaged log-odds 
ratios for classification: 

  1
N

log
P(x | Θi

+ )

P(x | Θi
− )i

∑  (7) 

In this paper, we used a promoter set expressed in macrophage and 
conducted 3-fold cross validation. 

2.6  Data set construction 
2.6.1  Muscle-specific sequence set 
We used the muscle-specific promoter sequences as downloaded in the 
24.nonaligned.pos.train.fa.tar.gz file at http://bayesweb.wadsworth.org/ 
gibbs/module/ and extracted a 1000-1500 nt region from each included 
sequence that contained all the annotated TFBS.  The sequences are 
mostly 1000 nt long; in the few cases when this span did not cover all 
TFBS, a 1500 bp span was used 
 
2.6.2  Macrophage-specific sequence set 
For the macrophage promoter set construction, we used CAGE-derived 
promoters. CAGE is a method for sequencing the first 20-21 nucleotides of 
full-length cDNAs. A unique strength of the method is nucleotide 
resolution TSS detection coupled with a data depth enabling measuring the 
tissue specificity of core promoters and individual TSSs. CAGE tags were 
sequenced and mapped to the mouse genome (assembly MM5) as described 
in (Carninci, et al., 2006). 11,567,973 CAGE tags were sequenced from 
more than 20 tissues, using 144 distinct CAGE libraries. Tag clusters (tags 
mapped to the genome that overlap with at least one nucleotide on the same 
strand) with more than 30 tags from the libraries studied were used. We 
focused our analysis on tags from libraries derived from lipo-poly-
saccharide (LPS) induced bone marrow macrophages (Library IDs: CBV, 
CBW,CBX, CBY, CBZ, CCA, CCB,CDR, CDS, CDT, CDU, CDW, CDY) 
and used remaining tags for assessing how constrained expression was to 

macrophage regions.In total, 15717 tag clusters were analyzed. If a tag 
cluster had more than 60% of tags from the LPS-induced set (correcting for 
sample size), it was considered to be LPS-induced specific, otherwise the 
cluster was labeled negative. For each cluster, a sequence region of -300 to 
+50 in relation to the most used TSS in the cluster was extracted from the 
mm5 genome assembly for the testing. This resulted in a positive set of 503 
LPS-induced promoters and 15314 negative promoters. We conducted a 3-
fold cross-validation with this set of sequences. 

3 RESULTS 

3.1 E-HMM performance 
For testing the method, we constructed three test sets aimed to 
assess the performance of our e-HMMs to both classify promoters 
and find motifs;  

(1) Two artificial sets, where we first assess how well our 
method can find implanted motifs compared to other 
methods, and then whether it can rediscover the artificially 
constructed promoter grammar. 

(2) A well-annotated experimental set of muscle-specific 
promoters, where we assess how well-known motif clusters 
can be found compared with two other methods, and 
present some insights into the underlying regulatory 
grammar in these promoters. 

(3) An un-annotated set of core promoters preferentially 
expressed in macrophage cells involved in immunological 
response, where we test the ability to classify promoters 
with respect to tissue specificity. 

 
3.1.1  Reconstruction of a known grammar 
We generated 120 artificial sequences using an HMM with 5 
muscle specific PSSM(Wasserman and Fickett, 1998) blocks and 
some background blocks. This is equivalent to “knowing” the 
underlying grammar in these sequences. An important caveat with 
this study is that all the sequences were constructed with the same 
grammar, so there are no other grammars present.  The generated 
sequences have 501 TFBSs (121 MYODs, 120 MEFs, 120 SRFs, 
79 SP1s and 61 TEFs). For PSSMs we used V_$MYOD_Q6_01, 
V_$SRF_Q4, V_$MEF2_02, V_$TEF_Q6 and V_$SP1_Q6 
PSSMs from the TRANSFAC database (Matys, et al., 2003).  
Starting with 25 blocks, we evolved a population of HMMs using 
the artificial sequences and the same PSSMs without any prior 
information on the HMM that generated the sequences.  
First, we assessed how well the e-HMMs predict locations of 
motifs. Figure 3 compares the result of the e-HMM, COMET, and 
Cluster-Buster. COMET and Cluster-Buster are TFBS predictors 
given the sequence and PSSMs. We ran COMET and Cluster-
Buster while varying E-value and cluster threshold, respectively 
from 0 until it has a maximum number of predictions.  
 

http://bayesweb.wadsworth.org/
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Fig. 3.  Performance of e-HMMs as motif detectors on an artificial 
promoter set. True positives are plotted against the total number of 
predictions (true positive + false positives). For the e-HMMs, decoding of 
individual HMMs is used – the ensemble approach is not used. 
 

Fig. 4. Reconstruction of a known grammar. An artificial grammar (and 
corresponding sequences) using 5 known PSSMs was constructed using an 
HMM: the HMM graph is shown in a).  Background states used in 
modeling gaps between PSSM blocks are not shown in this diagram. Panel 
b) shows the inferred grammar by applying an e-HMM on the sequences 
using the same PSSMs but no other prior knowledge. Only transitions with 
P> 0.1 are drawn. The full diagram is found in Fig. S5. Note that the most 
prominent edges in the original HMMs are rediscovered by the e-HMM. 
Blocks describing the SP1 and MEF TFBS are duplicated, although one of 
the MYF blocks is not connected to any other block (not shown). 

We counted the number of correctly predicted TFBSs (TP) and 
incorrectly predicted TFBSs (FP) while changing the cutoff value 
of Cluster-Buster and COMET. As our algorithm is not 
deterministic, the performance of the e-HMMs fluctuates. 
Nevertheless, the e-HMMs perform substantially better than both 
Cluster-Buster and COMET on this set. Next, we investigated to 
what degree the evolved HMMs can reconstruct the original 
grammar (this is equivalent to the similarity of the HMM that 
constructed the artificial sequences). Figure 4a shows the HMM 
used for construction of the artificial sequences, while Figure 4b 
shows  the corresponding  remodeled directed graph acquired 
after decoding the sequence through one of the evolved HMMs. 
This particular model found 438 TPs among 607 predictions 
(TPs+FPs).  The figure shows that the evolved HMM 
approximates the original (correct) grammar quite well. For 
example, the transitions from ‘TEF’ are modeled well with high 
transition probabilities to ‘end’ and ‘SP1_1’, and other transitions 

have p < 0.1. Thus, in this example of a “known” grammar, with 
no additional grammars present, our model is better at finding the 
locations of the grammar elements and can reconstruct the 
grammar at the same time. In supplementary text, we describe a 
more generalized test using a graph where all TFs are connected, 
and transitions are randomly assigned (Fig. S6, Table S4 and 
supplementary text); the correlation between assigned and 
predicted transition probabilities is generally successful 
 
3.1.2 Analysis of an annotated set  
Above, we observed that the HMM method has the power to model 
the existing grammar of motifs.  The grammar of real data is 
composed of many rules – either variants of the same grammar or 
multiple grammars that are different. To model this, rules that are 
evolved in each stage are collected and the most conserved 
(“stable”) grammar during the artificial evolution are evaluated 
(see Methods).  
 
To assess the performance with real data, we used the 48 human 
and mouse sequences (Wasserman, et al., 2000) containing 166 
experimentally verified TFBSs from muscle-specific promoters. It 
is commonly assumed that these sequences share a transcriptional 
logic. For this simulation we used 5 TF models: MYF, MEF2, 
SRF, TEF and SP1 from the JASPAR database. As above, we 
compared the result of COMET, Cluster-Buster and our method to 
first see if the known TFBSs can be detected, and then assess the 
hypothesized underlying grammar. Figure 5 shows the correct 
predictions (TP) vs. the total number of predictions (TP+FP) of 
COMET, Cluster-Buster and e-HMMs. The performance of 
individual e-HMMs (Figure 5) is consistently better than Cluster-
Buster and overall, the performance of individual e-HMMs is 
comparable to that of COMET.  As discussed above, our 
algorithm can also construct an ensemble of e-HMMs to include 
prediction information from individual e-HMMs(see methods). 
The ensemble models perform better than individual e-HMMs in 
almost all instances, and is generally closer to the performance of a 
perfect predictor, although in the range of 60-150 total predictions 
(x axis), the COMET method has comparable performance (See 
Figure S3).  When the number of predictions is larger (>150), the 
ensemble method outperformed the other methods. Figure S4 
compares the receiver operator characteristic (ROC) curve of the 
three methods: the eHMM method performed better than the other 
methods. 
For clarity, the above test only measures if the known TFBS are 
found, and not the underlying grammar. The HMM structure is 
only used to weight sites higher if they cluster – we explore the 
effect of changing these settings in the Supplementary text.  As a 
summary, the e-HMMs are generally comparable or better than 
COMET and Cluster-Buster for finding the known sites.  
However, this is not the main attraction with the model: what sets 
e-HMMs apart from the other methods is that we can assess the 
grammar to form a hypothesis of the underlying biology.  Table 
S3 shows strong edges between motifs in two evolved HMMs 
(resulting from iteration 100 and 120, respectively). We counted 
the number of grammars of the HMM at the 100th and 120th 
iteration and found 78 grammar and 72 grammar respectively after 
decoding.  Among the grammar ‘MYF→MEF’ is well preserved.  
‘SP1’ is not frequently found in the HMM at 100th iteration, but 
new rules from ‘SP1’ are emerged during the evolution, as new 
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edges from SP1 are present in the HMM from the 120th iteration.  
Conversely, the ‘TEF→MEF’ edge decreased significantly.  

 

Fig. 5.  Performance of e-HMMs as motif detectors on an annotated 
promoter set. True positives are plotted against the total number of 
predictions (true positive + false positives).  The performance of e-HMM 
is compared with Comet and Cluster-buster.  An extended variant of this 
plot is shown in figure S3 and figure S4.  

3.1.3  Classification of macrophage-specific core promoters  
Most interesting data sets are not as thoroughly analyzed and 
annotated as the muscle set that we analyze above. In genomics, 
we often face the situation where some promoters are shown to be 
active under some stimuli, and others are not. In general, in these 
situations we have no knowledge about the functional sites in these 
promoters, although often some hypothesis exists regarding the 
identity of the transcription factors involved (so, we might have the 
identity of the factors but not their sites nor the regulatory 
grammar). This type of situation is a case where we can use e-
HMMs as classifiers, if it can find grammars that distinguish two 
sets of promoters from one another. To test this, we choose a large 
novel biological promoter set where we have some indications of 
which TFs that might be determinants of tissue-specific 
expression, but not the details of its mode of regulation.  
Specifically, we extracted promoters preferentially expressed in 
mouse macrophages induced by lipopolysaccharide (LPS), as 
measured by Cap Analysis of Gene Expression (CAGE) data 
presented in (Carninci, et al., 2006 )(See Methods). LPS treatment 
provokes a drastic expression response similar to that of in-vivo 
immunological response (Nilsson, et al., 2006). To train the e-
HMMs, we selected PSSMs among the TFs presented in (Carninci, 
et al., 2006 ), which are likely determinants in this set. We chose 4 
TFs whose binding preferences are not similar: IRF, PU.1, SOX-9 
and c-Ets-2 (from TRANSFAC (Matys, et al., 2003)). We also 
included NF-kappaB (JASPAR(Bryne, et al., 2007) ID MA0061), 
as this factor is expected to play a major role in immunological 
response (Bonizzi and Karin, 2004). The positive model for the 
classifier was designed automatically by evolving e-HMMs with 
the positive training set. To run the genetic algorithm, we 
generated 30 HMMs to construct a population where each HMM 
was composed of 40 blocks including zero blocks and PSSM 

blocks. The negative model was derived from the positive model 
by taking PSSM blocks out and performing parameter training 
with the negative set, as described previously. Figure 6 shows a 
ROC curve plotting sensitivity (=TP/(TP+FN)) against 1-
specificity (=TN/(FP+TN)) of the three-fold cross-validation of the 
three e-HMM classifiers. To test the evolved model, we selected 
HMMs after some evolutionary iterations. The three HMMs are 
acquired from the 80th, 90th and 100th iteration of the simulation. 
We also tested ensemble of these three HMMs. For comparison, 
we also applied Cluster-Buster and COMET to identify motif 
clusters given the same PSSMs. Also, we compared our method 
with the performance of a classifier using SVMs (Support Vector 
Machines) (Vapnik, 1995). Using these results, we checked if they 
can classify the macrophage dataset well by counting the number 
of predicted sites as in the test by (Chowdhary, et al., 2006). For 
COMET and Cluster-Buster we regarded a sequence as an induced 
macrophage promoter if any cluster prediction was made on the 
sequence. Changes in the cut-off values were used to derive the 
ROC plots as above. Cluster-Buster performed better than COMET 
in this test, but had lower sensitivity than the e-HMM classifiers 
for the whole range of specificity values. The SVM classifier in 
this test had the worst performance.  
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Fig. 6.  Performance of e-HMMs as classifiers of macrophage promoters. 
ROC curves plotting sensitivity versus 1-specificity for three evolved 
HMMs, ensemble of HMMs, COMET, Cluster-Buster and SVM. 

To investigate which grammar the HMMs have found, we decoded the 
sequence with the evolved HMMs.  Table S5 lists the grammar the 3 
HMMs found. 

4 DISCUSSION 
In this study, we present a method that models co-occurring motifs 
in a set of promoters. A wealth of methods taking a set of PSSMs 
to classify gene sets have been published (Frith, et al., 2001; Frith, 
et al., 2003; Frith, et al., 2002; Gupta and Liu, 2005; Rajewsky, et 
al., 2002; Rebeiz, et al., 2002; Sharan and Myers, 2005; Sinha, et 
al., 2003; Wasserman and Fickett, 1998). The methods range from 
relatively simple statistical frameworks such as logistic regression 
(Wasserman and Fickett, 1998) to general classifiers based on 
Support Vector Machines (Sharan and Myers, 2005) or other more 
complex methods. However, none of these methods are aimed at 
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describing the inter-dependencies of sites. In our approach, using 
blocks derived from known transcription factor binding sites as 
well as blocks modeling the intermediate regions, we build HMM 
architectures describing the promoters using an evolving model. 
Thus, we can model the "grammar" of the regulation, i.e., the order 
of transcription factors, the distance between them, the 
composition of intermediate regions, etc. This has two immediate 
advantages. Firstly, it gives increased predictive power for 
classifying sequences. Secondly, it represents a step towards more 
realistic descriptions of promoter architecture and function, which 
is necessary for understanding the complex transcription process. 
An important issue is that the grammar obtained by e-HMMs may 
not be the optimal or the simplest one because e-HMMs search for 
the rules in the sequence set heuristically. Thus, it represents a 
hypothesis that to some degree can explain the data, and these 
types of hypothesis can give a starting point for experimental trials. 
A cis-regulatory structure learning algorithm using HMMs was 
presented by (Noto and Craven, 2007), in which they tried to build 
logical relationships among binding sites. Starting from a structure 
with a single motif, they expanded their logics. Our structure 
learning method is different in that we search for a whole logic 
using a genetic algorithm. A greedy approach to infer the cis-
regulatory logic of transcriptional network was suggested using 
DNA sequence and mRNA expression data (Beer and Tavazoie, 
2004).  They used a Bayesian network that models combinatorial 
regulatory rules to predict gene expression pattern of 
Saccharomyces cerevisiae.  While the model in this work share 
some similarity with ours, the study is different as they tried to 
learn gene expression patterns, which we do not (so, the gene 
expression data is part of the training data). However, this points to 
a possible extension of the e-HMM concept – to incorporate 
expression data in the actual model. Recent studies have claimed 
that regulatory grammars are very flexible (Brown, et al., 2007) 
and a predictor can perform well without considering any 
grammar(Segal, et al., 2008). It is not clear whether this is a 
universal truth in mammalian gene regulation; the increased 
classification power of our method compared to others imply that 
part of grammars are detectable and increase accuracy if taken into 
account. 
A further enhancement introduced is the usage of ensembles of 
models in classification as well as in motif identification. The 
ensemble approach is beneficial in that it compensates for a biased 
result of a single HMM and thus prevents over-fitting the data. As 
seen in the simulation with the muscle set, the ensemble approach 
accumulates the results of each genetic step, and generally 
produces better results than other methods. The concept of e-
HMMs can be extended in many directions. For instance, it may be 
applied to protein sequences. As this methodology is new, many 
aspects await further study: for instance, the selection of the fitness 
function, which has implications on search space and the evolution 
pace within the process. Nevertheless, we believe that methods 
trying to model the underlying regulatory grammar are an 
important step at the road from phenomena-based promoter 
analysis to hypothesis-based. 
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