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Overview

• Medical research often focuses on time to event outcomes
(survival).

• This type of outcome creates many complications.

• First, I will review data complications.

• Second, I will review study design complications.

• Third, I will review basic survival analyses.

• Fourth, I will conclude with an example in Stata.
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results for a survival analysis.

• Such formatting is a key part of “cleaning” the data for
analysis.
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Data Notation

Typically, we need to create:

Yi = the duration until the event occurs, ie. 12 months



Dates

• Registry data typically contain dates of events.

• Handling dates in Stata is a key first step.

• Date variables need to be converted to date format using the
date() command.
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2. Date command requires you to know format of your date.

3. Date might be recorded as 31jan2000 or 1/31/2000.

4. You must know the difference.
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• Key parts FMT and 201X
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• FMT is DMY for 31jan2000.

• FMT is MDY for 1/31/2000.

• Final part is topyear–most recent year in your data.
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• Stata saves dates as number of days since Jan 1, 1960.

• The command:

• format date1 %td

• converts date from numeric form to date format.
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Calculating Duration

• Stata: gen duration = date2 - date1

• This gives survival time in days.
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• What is censoring?

• Censoring loosely refers to missing outcome data.

• For some individuals, duration is known but survival time is
unknown.

• Most common is administrative censoring.
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Administrative Censoring

• Survival analysis requires a stopping point data collection.

• Some patients may not have experienced the event when the
data is collected.

• For these patients, we don’t observe their survival time.

• We have a duration but survival time is missing, since the
recorded time span is qualitatively different from patients that
experienced the event.
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Administrative Censoring

• Outcome: disease free survival after adj. chemo.

• Data collection stops on Dec 1, 2021.

• All patients that have yet to recur when data collection stops
are censored.

• We observe their duration but not the time to event, since the
event has yet to occur.

• The survival time is missing.
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• Create new variable: C = 1 is an uncensored observation,
C = 0 is a censored observation.
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Competing Events Censoring

• A competing event prevents event of interest.

• Example: time to transplant.

• Patient dies before transplant.

• These patient should be considered censored.

• Competing events are study specific.

• Need to be defined by the researcher.

• Widespread competing events makes interpretation of results
difficult.
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Follow-up Time

• Follow-up time is the time from an event of interest: i.e. time
since randomization.

• If follow-up time isn’t long enough, censoring rates will be
high.

• What is the appropriate follow-up time?

• Will be study specific: follow up time in a transplant context
is very different from cancer recurrence.
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Baseline Time Point

• All subjects should be untreated at t = 0.

• E.g.: Effect of lipitor on time to cardiac event.

• No one should be on lipitor at t = 0.
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Example Data

id duration censor

1 4 1
2 2 1
3 5 1
4 6 0



Stata stset

• Stata requires all survival data to be stset.

• Syntax: stset surv var, failure(censor)

• Stata creates: t0, t1, d, and st

• time span, censoring, and relevant.
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Survival Curves

• We have N observations.

• nt = the number of observations “at risk” for the event at
time t.

• dt = the number of observations which experience the event
at time t

• For any particular time t = k , we can get an estimate of the
survival function S(t) as the product of the conditional
proportions of all survivors to that point

Ŝ(tk) =
∏
t≤tk

nt − dt
nt

This is known as the “Kaplan–Meier” estimate of the survivor
function.
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Estimating Survival Curves - An Example

Time No. at risk No. failed No. censored

2 6 1 0
4 5 2 0
5 3 0 1
7 2 1 0
8 1 0 1
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2 6 1 0 5/6 5/6
4 5 2 0 3/5 1/2
5 3 0 1 1 1/2
7 2 1 0 1/2 1/4
8 1 0 1 1 1/4



Estimating Survival Curves

Time No. at risk No. failed No. censored p Ŝ(t)
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2 6 1 0 5/6 5/6
4 5 2 0 3/5 1/2
5 3 0 1 1 1/2
7 2 1 0 1/2 1/4
8 1 0 1 1 1/4

(6−1)
6 = 5

6

(5−2)
5 = 3

5 × 5
6 = 1

2



Survival Curves

• Typically, we plot stratified KM curves.

• Stratify by key covariate: treatment, sex, etc.

• Inference is now important: are the curves statistically
different?
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If we’re interested in inference, or just want to know the
uncertainty surrounding our estimates, we need some measure of
the variability of these estimates. The most commonly–used of
these is the “Greenwood” variance estimator:

Var [Ŝ(tk)] = [Ŝ(tk)]2
∑
t≤tk

dt
nt(nt − dt)



Log-rank Test

We have two groups; treatment (=1) and placebo (=0), and we
want to know if the survival curves are statistically different.
Standard test is the log-rank test.



Log-rank Test

Treatment Placebo Total

Event d1t d0t dt
No Event n1t − d1t n0t − d0t nt − dt
Total n1t n0t nt

Normally, we’d do a χ2 test here, using the observed and expected
number of events per cell.

The same general intuition applies, except that we conduct a
similar test for each time period t.



Log-rank Test

ê1t =
n1tdt
nt

is the “expected” number of events in that time period.



Log-rank Test

Q̂ =
[
∑

t(d1t − ê1t)]2[
n1tn0td0t(nt−dt)

n2t (nt−1)

]
The numerator of Q̂ is the sum of the (squared) observed minus
expected events. We use this to test the null hypothesis of no
difference between the treatment and placebo groups.

Q̂ is distributed as χ2
1.



Unadjusted Survival Analysis

• The analysis thus far assumes treated and control groups are
exchangeable.

• Only reason survival curves differ is treatment–not some
baseline characteristic of the treated group.

• Next time we take up methods to control for confounders.



Conclusion

• Data cleaning is a key step in survival analysis.

• May require several consequential choices.


