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statistics for survival data.

• Today, we focus on multivariate models for survival data.
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• Differences in survival may be due to group composition.

• E.g. treated group may have higher frailty before treatment.

• Treatment may appear to be ineffectual, but survival would be
lower without treatment.

• Treatment decisions are almost always confounded –
correlated with patient characteristics.
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• We attempt to make treated and control groups similar on
observed data, i.e. control for confounders.

• Key assumption: there are no unobserved differences between
treated and control group.

• This assumption is untestable, i.e. you can never rule out the
possibility that differences are due to unobserved differences in
groups.
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• When you control for variables, you should be able to answer
the question following question:

How could it be that two units that are identical in all
meaningful background characteristics nonetheless receive

different treatments?

• Are all the reasons for treatment fully recorded in the data?

• Ask yourself if that is plausible?
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• Clearly delineate when X ’s are measured.

• Don’t adjust for X ’s measured after the treatment occurred.

• Only interpret effect for exposure variable.
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• Cox model has some key drawbacks.

• Cox model assumes hazards are constant over time.

• Should effect be the same from 20 to 40 as 60 to 80?

• Cox model can lead to bias in a number of scenarios.

• See: Miguel Hernan, 2010. “The Hazard of Hazard Ratios.”
Epidimiology 21:1, 13–15.



The Cox Model: Problems

• Cox model has some key drawbacks.

• Cox model assumes hazards are constant over time.

• Should effect be the same from 20 to 40 as 60 to 80?

• Cox model can lead to bias in a number of scenarios.

• See: Miguel Hernan, 2010. “The Hazard of Hazard Ratios.”
Epidimiology 21:1, 13–15.



The Cox Model: Problems

• Cox model has some key drawbacks.

• Cox model assumes hazards are constant over time.

• Should effect be the same from 20 to 40 as 60 to 80?

• Cox model can lead to bias in a number of scenarios.

• See: Miguel Hernan, 2010. “The Hazard of Hazard Ratios.”
Epidimiology 21:1, 13–15.



Propensity Score Weighting

• The main alternative is a propensity score analysis.

• Matching is one alternative: use log-rank test on matched
data.

• Inverse propensity score weighting has some advantages with
survival data.

• Primarily, it allows one to retain hazard ratio interpretation.



Propensity Score Weighting

• The main alternative is a propensity score analysis.

• Matching is one alternative: use log-rank test on matched
data.

• Inverse propensity score weighting has some advantages with
survival data.

• Primarily, it allows one to retain hazard ratio interpretation.



Propensity Score Weighting

• The main alternative is a propensity score analysis.

• Matching is one alternative: use log-rank test on matched
data.

• Inverse propensity score weighting has some advantages with
survival data.

• Primarily, it allows one to retain hazard ratio interpretation.



Propensity Score Weighting

• The main alternative is a propensity score analysis.

• Matching is one alternative: use log-rank test on matched
data.

• Inverse propensity score weighting has some advantages with
survival data.

• Primarily, it allows one to retain hazard ratio interpretation.



The Propensity Score

• A = 0, 1 (treatment indicator).

• The propensity score: π(X ) = Pr(A = 1|X ).

• This is the conditional probability of being treated given a set
of observed covariates.



The Propensity Score

• A = 0, 1 (treatment indicator).

• The propensity score: π(X ) = Pr(A = 1|X ).

• This is the conditional probability of being treated given a set
of observed covariates.



Balancing Property

• The probability of treatment should be the same for people
with the same propensity score.

• Alternatively, units with similar propensity scores should look
similar in terms of all their observed characteristics.



Balancing Property

• The probability of treatment should be the same for people
with the same propensity score.

• Alternatively, units with similar propensity scores should look
similar in terms of all their observed characteristics.



Confounding and Sampling

• Confounding can be viewed as a problem of biased sampling.

• If units were randomly selected, X would be independent of A.

• Random assignment is a form of random sampling.

• i.e.
P(A = 1|X = 1) = P(A = 1|X = 0)

P(A = 0|X = 1) = P(A = 0|X = 0)



Confounding and Sampling

• Confounding can be viewed as a problem of biased sampling.

• If units were randomly selected, X would be independent of A.

• Random assignment is a form of random sampling.

• i.e.
P(A = 1|X = 1) = P(A = 1|X = 0)

P(A = 0|X = 1) = P(A = 0|X = 0)



Confounding and Sampling

• Confounding can be viewed as a problem of biased sampling.

• If units were randomly selected, X would be independent of A.

• Random assignment is a form of random sampling.

• i.e.
P(A = 1|X = 1) = P(A = 1|X = 0)

P(A = 0|X = 1) = P(A = 0|X = 0)



Confounding and Sampling

• Confounding can be viewed as a problem of biased sampling.

• If units were randomly selected, X would be independent of A.

• Random assignment is a form of random sampling.

• i.e.
P(A = 1|X = 1) = P(A = 1|X = 0)

P(A = 0|X = 1) = P(A = 0|X = 0)



Confounding and Sampling

• Assume that older people are more likely to be treated.

• Therefore older people are over-represented in the treated
group.

• The propensity score π(X ) tells us which types of units are
over and under-represented.



Confounding and Sampling

• Assume that older people are more likely to be treated.

• Therefore older people are over-represented in the treated
group.

• The propensity score π(X ) tells us which types of units are
over and under-represented.



Confounding and Sampling

• Assume that older people are more likely to be treated.

• Therefore older people are over-represented in the treated
group.

• The propensity score π(X ) tells us which types of units are
over and under-represented.



Inverse Probability Weighting

• Using IPW, we up-weight units that are under-represented
(X = 0).

• And we down-weight units that are over-represented (X = 1).

• Thus we weight by the inverse of the propensity score.



Inverse Probability Weighting

• Using IPW, we up-weight units that are under-represented
(X = 0).

• And we down-weight units that are over-represented (X = 1).

• Thus we weight by the inverse of the propensity score.



IPW Weights

• More typically, we estimate the propensity score,
P(A|X ) = π̂(X ), using logit or probit.

• For ai = 1, wi = 1/π̂(L).

• For ai = 0, wi = 1/(1− π̂(L)).



IPW Weights

• More typically, we estimate the propensity score,
P(A|X ) = π̂(X ), using logit or probit.

• For ai = 1, wi = 1/π̂(L).

• For ai = 0, wi = 1/(1− π̂(L)).



IPW Weights

• More typically, we estimate the propensity score,
P(A|X ) = π̂(X ), using logit or probit.

• For ai = 1, wi = 1/π̂(L).

• For ai = 0, wi = 1/(1− π̂(L)).



Extreme Weights

• Sometimes weights are quite large, this causes IPW estimator
to perform poorly.

• Use stabilized weights



Extreme Weights

• Sometimes weights are quite large, this causes IPW estimator
to perform poorly.

• Use stabilized weights



Stabilized IPW

The IP stabilized weight is:

• For ai = 1, wi = Pr(â)/π̂(X ).
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