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Tau Pathology Drives Dem
entia Risk-Associated
Gene Networks toward Chronic Inflammatory States
and Immunosuppression
Graphical Abstract
FTD with tau
 snSeq 

1) Consensus Networks

RNAseq

6) Modeling and validating regulatory drivers

4) Microglia neuroimmune state transitions across disease 

2) Modules associated with disease progression

RNAseq

cor (kme~pTau)
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opposing early drivers
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EARLY LATE

3) 7 modules related to 
pTau pathology

microglia - 
tissue 
consensus
networks

microglia - 
only 
networks
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5) Genetic Drivers
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Highlights
d Significant changes in microglial-immune signaling mark

stages of neurodegeneration

d Pro-inflammatory pathways yield to early interferon-driven

immune suppression

d A key hub in the immune suppression module, USP18,

modulates this response

d Validation of chemogenetic predictions identifies drugs

modulating microglial function
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SUMMARY
To understand how neural-immune-associated genes and pathways contribute to neurodegenerative dis-
ease pathophysiology, we performed a systematic functional genomic analysis in purified microglia and
bulk tissue from mouse and human AD, FTD, and PSP. We uncover a complex temporal trajectory of micro-
glial-immune pathways involving the type 1 interferon response associated with tau pathology in the early
stages, followed by later signatures of partial immune suppression and, subsequently, the type 2 interferon
response. We find that genetic risk for dementias shows disease-specific patterns of pathway enrichment.
We identify drivers of two gene co-expression modules conserved from mouse to human, representing
competing arms of microglial-immune activation (NAct) and suppression (NSupp) in neurodegeneration.
We validate our findings by using chemogenetics, experimental perturbation data, and single-cell
sequencing in post-mortem brains. Our results refine the understanding of stage- and disease-specific mi-
croglial responses, implicate microglial viral defense pathways in dementia pathophysiology, and highlight
therapeutic windows.
INTRODUCTION

Microglia and CNS-resident macrophages are the principal im-

mune cells of the brain, playing critical roles in coordinating the

neural-immune response (Hickman et al., 2013). During nervous

system injury, microglia can be directly activated by myelin,

lipids, or nucleotides released from injured cells to activate

pro-inflammatory signaling, such as through the NLRP3 inflam-

masome complex (Kigerl et al., 2014), and contribute to neuronal

dysfunction in multiple ways (Deczkowska et al., 2018; Edwards,

2019; Song and Colonna, 2018). Functional studies in animal

models support roles for microglia in the clearance of age-

related amyloid beta (Abeta) plaques (Lee et al., 2018) and in

the progression of tau pathology and neurodegeneration (Bus-

sian et al., 2018; Kodama et al., 2020; Litvinchuk et al., 2018;

Shi et al., 2019). However, microglial responses in neurodegen-

eration are not monolithic; single-cell genomic studies have

begun to delineate substantial heterogeneity among disease-

associated microglial states and their trajectories (Grubman
This is an open access article under the CC BY-N
et al., 2019; Keren-Shaul et al., 2017; Mathys et al., 2017,

2019). There is a pressing need for biological models to refine

our understanding of microglia in human brain disease, including

their relationship to specific clinical dementia syndromes and

causal genetic factors.

We recently used a systems biology approach to identify a

robust, evolutionarily conserved signature of neurodegenera-

tion across humans and multiple mouse models, which is

composed of two interconnected neurodegeneration-associ-

ated synaptic (NAS) and inflammatory (NAI) modules (Swarup

et al., 2019). The NAI module was strongly enriched for

markers of astrocytes and microglia. This, coupled with

growing evidence that microglial and astrocyte neuroimmune

signaling contributes causally to Alzheimer’s disease (AD) (Ef-

thymiou and Goate, 2017), suggested that the NAI module

would be a powerful starting framework from which to identify

early disease-associated microglial changes relevant to hu-

man disease. Since our original study was based on bulk tis-

sue RNA sequencing (RNA-seq), downregulated microglial
Cell Reports 33, 108398, November 17, 2020 1
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gene expression trajectories were likely obscured by disease-

related broad upregulation of microglial markers (De Strooper

and Karran, 2016; Swarup et al., 2019). Understanding both

upregulated and downregulated signaling pathways within mi-

croglia, which likely represent stage and pathology-associated

microglial states (Keren-Shaul et al., 2017; Mathys et al.,

2017), is necessary to understanding the role of microglia in

disease. To achieve this, we reasoned that the integration of

cell-type-specific, microglial gene expression data from

different stages of disease and control samples with bulk tis-

sue transcriptomes would reveal disease-relevant, cell-spe-

cific signaling networks.

Here, we conduct a systematic, integrative analysis of micro-

glial transcriptomic changes that are associated with latent com-

ponents of neurodegeneration-associated pathways at the tis-

sue level. Our findings parse disease genes into distinct

microglial co-expression modules related to progressive stages

of neurodegeneration that are robustly modeled in genetically

diverse mouse models (n = 492 samples, 14 studies) and

conserved in human brain (n = 360, 7 studies). We find that the

common genetic risk factors contributing to AD, frontotemporal

dementia (FTD)-Pick’s disease, and progressive supranuclear

palsy (PSP), often referred to as tauopathies because they share

the accumulation of pathological tau protein, involves temporally

and biologically distinct microglia-associated neuroimmune

modules that converge on viral response as a common causal

factor. We use multiple data types, integrated across species

and human diseases, including chemical genomics experiments,

to show that the early microglia disease response reflects a ten-

sion between immune suppressors and immune activators.

These data and analyses, including proof-of-concept experi-

ments in vitro and single nuclear sequencing of the human FTD

brain, support a model wherein neuroimmune signaling in tauop-

athy is dominated by viral response pathways. Initially this in-

volves microglial neuroimmune suppression, driven by type I

interferon (IFN) and double-stranded RNA (dsRNA), followed

by the activation of type II IFN during the later, frank neurodegen-

erative phase.
Figure 1. Purified Microglia-Brain Tissue Consensus Gene Co-express

(A) Experimental schema, showing approach for microglia-tissue consensus WG

(B) Module enrichment heatmap for (left) top 100 genes differentially expressed b

differentially expressed between microglia single-cell states identified from the

indicated; Mic0, Mic1 (AD-associated microglia subpopulation), Mic2, and Mic3,

comparisons per module. *FDR < 0.05, **FDR < 0.005, ***FDR < 0.001. Hom, hom

defined in Keren-Shaul et al. (2017).

(C) Signed Pearson’s correlation of the module eigengene (ME) with transgenic c

age; unpaired 2-tailed t test; n = 7 modules, n = 4 mice per genotype (P301LMAP

zero plotted at time zero.

(D) Module PPI network enrichment p value (STAR Methods).

(E) Module annotation showing representative module hub genes (disease genes

with binding site enrichment (p < 0.05; STAR Methods), and module genes that f

(‘‘immune sensors’’). TF labels are bold and italic if unique, and red if a module h

(F) Scatterplot of gene-module connectivity (kME) (y axis) versus gene correlatio

cortex, 6 months of age, n = 18 per group of WT or P301S MAPT; p values from

(G) Module preservation in AD patient and control temporal cortex (control n = 74,

(Allen et al., 2016), and FTD patient and control frontal cortex (dataset 1 [Chen-Plo

n = 14, FTD n = 16). The bottom line is at the lower cutoff for preservation (Zsumm

(Langfelder et al., 2011).

See also Figure S1.
RESULTS

Microglial Neurodegeneration-Associated Modules
(MNMs) Capture Neuroimmune Interactions Enriched
for Microglial Genes and Pathways
We performed consensus weighted gene co-expression analysis

(WGCNA; Langfelder and Horvath, 2008; STAR Methods) to

combine gene expression data from multiple independent trans-

genic models expressing human mutantMAPT, including sorted,

purified microglia at different stages of neurodegeneration (from

the rTg4510 model expressing the human P301LMAPTmutation;

Wang et al., 2018) and whole-brain tissue (TPR50model express-

ing thehumanP301SMAPTmutation;Swarupetal., 2019) to iden-

tify conservedmodulesof co-expressedgenespresent inbothpu-

rifiedmicroglia and bulk brain tissue sampled frommultiplemouse

transgenic lines and genetic backgrounds (Figure 1A; STAR

Methods). We identified 13 distinct, robust co-expression mod-

ules, including 7 modules enriched for microglial genes, but

varying in their relationship to disease, cell type, and temporal tra-

jectories; we call these microglial neurodegeneration-associated

modules, MNMs (Figures 1, S1, and S2; Table S1). We compared

themwith six independentmicroglia-specific gene expression da-

tasets fromtransgenicmousemodelsandhumanswithADpathol-

ogy to identify overlapping patterns of gene expression (Figures

1B,S1C–S1E,andS2F;TableS2), supporting their generalizability.

We observed significant overlap between MNMs and disease-

associated microglia (DAM), including in their temporal progres-

sion (Keren-Shaul et al., 2017), exemplified by a downregulation

of homeostatic and upregulation of DAM1 and DAM2 genes (Fig-

ure 1B). We note that the microglial modules defined here provide

substantially more refinement than the original binary classifica-

tion. Furthermore, M_UP1 significantly overlaps with a microglial

subtype observed in human AD patients (Mathys et al., 2019;

Figure 1B).

We capitalized on the sorted, purified microglia, combined

with bulk tissue to deconvolute MNMmodules into three distinct

temporal trajectories with respect to progressive disease stages

modeled in the rTg4510 mouse: (1) changing at the earliest
ion Network Analysis

CNA.

etween progressive microglia single-cell states, as indicated, and (right) genes

prefrontal cortex of patients with Alzheimer’s disease (AD) and controls, as

microglia subclusters as defined in Mathys et al. (2019); n = 7 modules with 4

eostatic; DAM1, type 1 disease-associated microglia; DAM2, type 2 DAMs, as

ondition calculated in the rTg4510 microglia gene expression dataset at each

T or wild type [WT]); *p < 0.05, **p < 0.01, ***p < 0.005. Graphed with theoretical

in red), enriched Gene Ontology terms (Z score > 2), transcription factors (TFs)

unction as receptors for pathogen- or damage-associated molecular patterns

ub gene.

n with sample pT231 tau levels (x axis) in TPR50 mouse brain (n = 36; frontal

2-sided test for Pearson correlation).

AD n = 86), PSP patient and control temporal cortex (control n = 37, PSP n = 37)

tkin et al., 2008] control n = 8, FTD n = 10; dataset 2 [Swarup et al., 2019] control

ary = 2) and the upper line is at the cutoff for high preservation (Zsummary = 10)
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disease stage, before neuronal loss, and persistent through later

stages (M_UP1, M_DOWN1, M_DOWN2); (2) changing during

early periods of neuronal loss and transient (M_UP2,

M_DOWN3); and (3) most significantly changing during the late

stage of continued neuronal loss and cumulative pathology

(M_UP3) (Figure 1C). We also tested whether these co-expres-

sion modules were preserved in protein-protein interaction

data. We observed significant conservation of protein-protein in-

teractions (PPIs) for all modules (Figure 1D; STAR Methods),

further validation of their biological coherence. We next anno-

tated the MNM in detail to uncover disease-associated micro-

glial changes related to the progressive stages of tau-associated

neurodegeneration and to identify regulatory drivers of specific

microglia disease states and transitions.

We confirmed that the MNMs include expected traits indica-

tive of neuroimmune activity, including: (1) known neuroregula-

tory pathways, such as complement activation (Schafer et al.,

2013), Toll-like receptor (TLR), and interleukin-1b (IL-1b) (Heneka

et al., 2013; Figure 1E); (2) strong association with tau pathology,

a neuronal driver of neurodegeneration (Figures 1F and S2A);

and (3) high overlap with the conserved neuroinflammatory mod-

ule we identified in our prior study (NAI; Swarup et al., 2019; Fig-

ures S2B and S2C). In contrast, when we analyzed WGCNA

modules generated using only sorted microglial cell gene

expression data from the rTg4510 model, rather than consensus

modules based on network edges shared between bulk tissue

and the sorted cell data, the correlation with pathological forms

of tau was substantially reduced (Figure 1F). Thus, combining

bulk tissue andmicroglial-specific consensusWGCNA identified

co-expression patterns that were present in latent forms, but not

detected in the analysis of bulk tissue alone. This demonstrates

the complementary nature of using both cell-specific and bulk

tissue data to resolve neuroimmune-related microglial disease

signatures that are closely tied to neuronal pathology.

To explore their preservation across neurodegenerative de-

mentias, we tested module preservation in multiple mouse and

human disease datasets (total n = 525 samples from 17 datasets;

STAR Methods; Table S2), finding significant preservation in

transcriptome data from post-mortem human brain tissue from

AD (Allen et al., 2016), FTD (Chen-Plotkin et al., 2008; Swarup

et al., 2019), and PSP (Allen et al., 2016) patients (Figure 1G).

In addition, all MNMs are preserved in three different transgenic

mouse models expressing human MAPT mutations (Swarup

et al., 2019; Figure S2D) and in microglial-specific datasets

from mouse models expressing PSEN2 (Srinivasan et al., 2016)

and APP (Wang et al., 2015) mutations, with the exception of

M_UP3, which is only weakly preserved in one of the two data-

sets from mice expressing early AD mutations (Figure S2E). A

few modules display variability in their differential expression in

different transgenic models, suggesting that they may be condi-

tional on mutational interactions with disease-stage and dis-

ease-specific pathology, or possibly by other technical factors

distinguishing these mouse models (Figure S2F).

Pathway Analysis to Expand Biological Insights into
Microglial Transitions across Disease
The distinct module trajectories suggested that they represented

discrete pathways associated with different stages of disease.
4 Cell Reports 33, 108398, November 17, 2020
The time course of theMNMspainted a detailed picture ofmicro-

glia transitions across disease progression, such that MNMs

represented specific biological regulators and pathways, dis-

ease genes, immune receptors, and transcription factors (TFs)

associated with progressive stages of disease (Figures 1B–1E,

2A, and 2B). M_UP1 represents an early pro-inflammatory

response, and the nearly mirror image early M_DOWN1 repre-

sents a loss of homeostasis. These are soon followed by the

downregulation of cell-cycle and RNA-stabilizing genes repre-

sented by M_DOWN2, along with a transient pro-phagocytic

response expressed by M_UP2. Finally, we observed an

increased expression of genes involved in viral response and

type II IFN response represented by M_UP3 (Figures 1E, 2A,

2B, and S2G).

Further examination of the genes within these modules known

to regulate immune responses to exogenous signals suggested

that gene expression patterns reflected the microglia response

to different damage-associated immune activators at different

stages of disease progression (Kigerl et al., 2014; Vénéreau

et al., 2015; Figure 1E). For example, the earliest upregulated

module M_UP1 includes sensors of peptide and lipopeptide im-

mune activators (Tlr1 and Tlr2), whereas the subsequently upre-

gulated module M_UP2 includes sensors of lipid immune activa-

tors (Trem2 and Scarb2) and nucleotides (Tlr7, Tlr9, and Ifih1).

These nucleotide receptors are known to be activated by viruses

or by damaged endogenous DNA or chromatin (Ahmad et al.,

2018; Dhir et al., 2018; Dias Junior et al., 2019; Figure 1E). There-

fore, this time course analysis suggests that microglia transition

from an early response to peptide modulators toward respond-

ing to DNA and RNA and expressing genes involved in viral de-

fense over the progression of pathology and neurodegeneration

(Figure 2B).

Genetic Risk Factors for FTD, PSP, and AD Converge on
Different Viral Response Pathways
We integrated genome-wide common genetic risk using

MAGMA (de Leeuw et al., 2015) to determine whether any of

the identified MNMs enrich for causal genetic factors. We iden-

tified the earliest interconnected MNM genes present in pre-

symptomatic disease tissue and called them early MNM sub-

modules, reasoning that casual disease pathways should enrich

among the earliest MNM components in disease (Figure S3;

STARMethods). We found that the common genetic risk associ-

atedwith AD, FTD, and PSP (Ferrari et al., 2014a; Höglinger et al.,

2011; Lambert et al., 2013) was not randomly distributed, but

instead showed distinct patterns of enrichment in each disorder:

FTD risk within early_UP1 and early_DOWN1, PSP risk in

early_DOWN1, and AD risk in M_UP3 (Figure 3A). We confirmed

significant associations using exome array data (Chen et al.,

2015), replicating significant associations between AD and

M_UP3 (b= 0.19, p < 0.001), FTD and early_UP1 (b= 0.25,

p < 0.001), and FTD and early_DOWN1 (b= 0.15 p < 0.001)

(Figure S3G). We do not identify the PSP-genome-wide associ-

ation study (GWAS) association, likely because the exome array

dataset is small and therefore relatively underpowered for PSP

(Chen et al., 2015; STAR Methods).

We note that the viral response is shared between two of

the risk-associated modules (M_UP3 and early_DOWN1)
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Figure 2. Microglia-Tissue Consensus Module Microglia Disease Time Course and Pathway Annotation

(A) Protein-protein interactions (PPIs) among the top 150 module genes (ranked by kME) with associated Gene Ontology pathway labeled, as shown (GO-Elite

[Zambon et al., 2012], Z score > 2).

(B) Model showing microglia transitions across progressive disease stages based on the annotation of microglia-tissue consensus modules (MNMs).

See also Figure S2.
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(Figures 3B and 3C). Therefore, human genetic variation contrib-

uting to tau-associated dementias involves pathways typically

associated with host viral defense. However, in AD, the causal

genetic association is with positive regulation of viral defense

response (upregulated), whereas in FTD and PSP, the causal as-

sociation is with viral defense response in a downregulatedmod-
ule (Figures 3B and 3C). Overall, these results show that distinct

aspects of microglial biology and viral response pathways are

influenced by causal risk in AD versus FTD and PSP. Consistent

with these causal relationships defined by genetic enrichment,

we were able to demonstrate that the expression of genes

involved with viral defense, including the type I IFN response
Cell Reports 33, 108398, November 17, 2020 5



Figure 3. GWAS Variants for AD, FTD, or PSP Implicate Modules Associated with Viral Response in Causal Disease Biology

(A)Module enrichment for disease variants for AD (Lambert et al., 2013), FTD (Ferrari et al., 2014b), or PSP (Höglinger et al., 2011) (horizontal line:�log10(FDR) = 1;

FDR corrected, competitive gene-set analysis p value from MAGMA [de Leeuw et al., 2015]).

(B) Gene co-expression network plots of the top 25 genes, ranked by kME, from each module; with enriched TFs (bold, if unique) shown (‘‘TFBS’’; enrichment p <

0.05).

(C) GO terms enrichment among corresponding module genes (Z score > 2).

See also Figure S3.
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and dsRNA binding, were highly associated with the level of

pathological tau phosphorylation in the brains of TPR50 mice

(Figures S3H–S3J).

Opposing Neuroimmune Activation and Suppression
Modules
We observed that early in disease, microglia upregulate a

mixture of signaling receptors and immune response pathways,

including viral defense and IFN response genes in two upregu-

lated modules—M_UP1 andM_UP2 (Figures 1 and 2). To further

explore the early microglial response in disease, we re-clustered

only the genes fromM_UP1 andM_UP2 to identify additional co-

expression relationships among them (Figure 4A, Module A and

Module B; Table S1). This resulted in two new modules upregu-

lated early in diseasewith nearly identical trajectories (Figure 4B),

but demonstrating strongly anti-correlated gene-module con-

nectivity (anti-correlated gene-module connectivity [kME]; Fig-

ures 4C and 4D), suggestive of opposing or competing pathways

(Langfelder andHorvath, 2008). To test this hypothesis, we lever-

aged the CMAP database to ask whether large-scale gene per-

turbations have opposing effects on the trajectories of these two

modules (Subramanian et al., 2017). We found that gene overex-

pression has inverse effects on modules A and B (Figure 4D;

2,161 genes; STAR Methods), which we also confirmed at the

levels of gene connectivity (Figure S4A) and PPI (Figure S4B).

These patterns were confirmed in 12 independent transcriptome

datasets (Figures S4D–S4I), indicating that these two modules

represent robust, early microglia responses mediating opposing

signaling pathways.

Module A includes protein complexes and pathways of micro-

glial innate neuroimmune activation, including the NLRP3 inflam-

masome (Nlrp3, Pycard, Il1a, Il1b, and Casp1) (Ahmed et al.,

2017; Ising et al., 2019; Lu�ci�unait _e et al., 2019), TLRs (Tlr1,

Tlr2, Tlr7, and Tlr9), and nuclear factor kB (NF-kB) targets (Fig-

ures 4E, 4G, and S4A). Since this module represents early micro-

glia innate immune activation in response to extracellular dis-

ease-associated signaling molecules (Ahmed et al., 2017), we

called it the neuroimmune activation module (NAct). Supporting

this interpretation, we found that purified pathological Ab, an

extracellular inducer of pro-inflammatory microglial activity
Figure 4. Opposing Neuroimmune Activation and Suppression Module

(A) Experimental schema for identifying opposing regulatory networks among up

(B) Signed Pearson’s correlation of theMEwith transgenic trait calculated in the rT

per genotype [P301L MAPT or WT], ages = 2, 4, 6, and 8 months, *2-tailed p val

(C) Scatterplot of gene-module connectivity scores (kME) with module A andmodu

899 genes).

(D) Bar plots showing CMAP connectivity scores between overexpression of a giv

from left to right by difference between NSupp andNActmodule connectivity score

genes shown for each module.

(E) PPI maps with associated GO pathways highlighted for NAct.

(F) Module preservation and trajectory of average module gene expression of the

vehicle control (unpaired 2-sample Wilcoxon rank-sum test; n = 3 per group [Woo

at 75th and 25th percentiles.

(G) Module assignment and module connectivity scores for components of NLR

(H) PPI maps with associated GO pathways highlighted for NSupp.

(I) Trajectory of NAct and NSupp MEs in mouse microglia purified from IFNAR kno

virus (AAV) (unpaired 2-sample Wilcoxon rank-sum test, WT control-virus n = 3, IF

b-virus n = 7 [Deczkowska et al., 2017]). Boxplot with center line at median and

See also Figure S4.
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(Lu�ci�unait _e et al., 2019), stimulates NAct in microglia (Figures

4F and S4C). In contrast, module B includes viral and stress

response genes, drivers of immune suppression (Cd274 [PD-

L1], Il10rb, Lag3, Usp18, and Nfkbia), and the senescence

marker, Cdkn1a (Figures 4H and S4A). Therefore, we hypothe-

sized that module B represents microglial neuroimmune sup-

pression and called it the neuroimmune suppression module

(NSupp).

We next used the CMAP database to find candidate drivers of

NSupp and NAct (STAR Methods), identifying genes that regu-

late the viral activation of type I IFN among the top drivers of

NSupp and suppressors of NAct (Paf1; Marazzi et al., 2012; Ta-

ble S1). Consistent with this, the NSupp module contains both

type I IFN receptor genes (Ifnar1 and Ifnar2), the principal down-

stream TF, Stat1, andmultiple IFN response activators (Ifit1, Ifit2,

and Ifit3) (Figures 4G and 4H). In contrast, the NAct module con-

tains inhibitors of IFN-b production, including Ifitm3 (Jiang et al.,

2018) and Prdm1 (Doody et al., 2010).

Therefore, we hypothesized that type I IFN is a direct upstream

driver of NSupp, which we were able to verify using data from

mice treated with IFNb (Figure 4I). In contrast, we found that

the treatment of mice with IFN-b decreases the microglial

expression of NAct (Figure 4I). Because NAct contains no IFN re-

ceptor or activators of IFN signaling, our experimental evidence

suggested that in microglia, NAct and NSupp appear to repre-

sent opposing disease-associated microglial states, likely

orchestrated by direct type I IFN activation of NSupp, leading

to secondary suppression of NAct.

Type I IFN is a critical driver of immune suppression and toler-

ance in certain chronic viral infections (Teijaro et al., 2013).

Several features of NSupp suggest that in the context of tauop-

athy it may also represent an immunosuppressive type of IFN-b

signaling in disease-associated microglia that are expressing

inhibitory immune checkpoint genes (e.g., Cd274 [PDL-1],

Il10rb, and Lag3) (Snell et al., 2017; Wykes and Lewin, 2018)

and inhibitors of immune hyperactivity (e.g., Usp18; Basters

et al., 2018; Taylor et al., 2018; Figures 4G, 4H, and S4A). Consis-

tent with the model of NSupp activation causing the partial sup-

pression of immune defense, the IFN-induced immune suppres-

sor gene Usp18 is a NSupp module hub (Figure 5A). Moreover,
s Are Upregulated Early in Disease

regulated microglia module genes.

g4510microglia gene expression dataset at each age (n = 7modules, n = 4mice

ue of Pearson’s correlation < 0.005).

le B calculated across rTg4510 purifiedmicroglia samples (n = 32 samples, n =

en gene (n = 2,161 genes) and NAct (pink) and NSupp (blue) modules, ordered

s. The top 5 highest scoringmodule genes among 2,161CMAPoverexpressed

NAct and NSupp modules in cultured microglia treated with fibrillar Abeta42 or

dling et al., 2014]). Boxplot with center line at median and upper and lower lines

P3 inflammasome complex and type I IFN response.

ckout or WT mice infected with IFN-b expressing or control adeno-associated

NAR knockout control-virus n = 7, WT IFN-b-virus n = 5, IFNAR knockout IFN-

upper and lower lines at 75th and 25th percentiles.



(legend on next page)

Cell Reports 33, 108398, November 17, 2020 9

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
USP18 modifies protein ISGylation to coordinately regulate mul-

tiple genes and pathways in the NSupp module, including Isg15,

proteostasis, translation, viral response, and exosome formation

(Honke et al., 2016; Figure 4H).

Consequentially, these bioinformatic analyses support Usp18

as a candidate regulator of the integrated biological response

represented by NSupp, and therefore we predicted that Usp18

knockout would disrupt NSupp module connectivity. Remark-

ably, and consistent with Usp18 being a critical driver of NSupp

(Figure 5A), we found that gene co-expression relationships in

NSupp were severely disrupted by Usp18 knockout. This was

despite these animals having a dramatic brain cellular inflamma-

tory response (Goldmann et al., 2015). NAct remains intact in

Usp18 knockout brain, illustrating the specificity of the relation-

ship of Usp18 to NSupp integrity (Figure 5B) and supporting

Usp18 as a critical driver of the integrated biological response

to IFN-b in NSupp. In addition, we find that NAct is highly upre-

gulated in the Usp18 knockout mouse brain in an IFNAR1-

dependent fashion and in Usp18 knockout primary microglial

cultures (Figures 5C and 5D). These data show that the immune

suppressor Usp18 drives the NSupp module, which partially in-

hibits microglial NAct module gene upregulation in disease,

such that whenUsp18 is deleted, NSupp is essentially dissolved,

and NAct is de-repressed and up-regulated. These results, sum-

marized in Figure 5H, suggest that the microglial response to

IFN-b in disease includes both coordinated changes in cellular

function related to viral response (represented by NSupp) and

partial suppression of TLR signaling (represented by NAct).

To facilitate proof-of-concept hypothesis testing of our find-

ings, we synthesize the following key observations into a cohe-

sive, testable model (Figure 5H). NAct is activated by extracel-

lular stimuli working through TLR and related receptors

(Figures 4E, 4F, S4A, and S4C). NSupp is independently acti-

vated by the detection of aberrant intracellular nucleotides lead-

ing to type I IFN signaling (Figures 4G–4I) and this NSupp activa-

tion secondarily inhibits NAct (Figures 4C, 4D, 5C, and 5D).
Figure 5. Microglial Immune Suppression Is Prominent in Disease

(A) PPI plot showing that Usp18 is a central NSupp module gene based on high PP

treated mice (Deczkowska et al., 2017).

(B–D) Module preservation of NAct and NSupp modules (B); ME trajectory of NAc

(C) (2-tailed unpaired t test; n = 3 per group [Goldmann et al., 2015]; boxplot with c

average module gene expression of NSupp and NAct in Usp18 knockout and WT

2015]).

(E) Module preservation of NAct and NSupp in primary mouse microglia cultures

(F) ME trajectory of NAct and NSupp in primary mouse microglia cultures treated w

24 h), and fatostatin (1 mM, n = 5, 72 h) or DMSO vehicle (n = 6, 72 h) (unpaired 2

(G) Image of neuronal-BV2 co-cultures (left) showing neuronal processes (synap

processes (left) and BV2 cells (far right) normalized to controls, following 36 h co-

DMSO vehicle (n = 6), compared to density of neuronal processes in drug-treate

(H) Model showing that nucleotide detection from damaged cells activates interf

(I) Pre-treatment with IFN-b (20 ng/mL) reduces IL-1b secretion of human iPSC-de

tailed unpaired t test; n = 3 per condition).

(J) ME trajectories of NSupp and NAct in AD patient and control temporal cortex (

n = 37, PSP n = 37) (Allen et al., 2016) (unpaired 2-sample Wilcoxon rank-sum te

25th percentiles.

(K) Module enrichment for genes that are differentially expressed in microglia of

studies (genes upregulated or downregulated in AD with log fold change [LFC] > 0

exact test, *FDR < 0.05, **FDR < 0.001, ***FDR < 0.005 [Grubman et al., 2019; M
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Genes that drive NSupp inhibit NAct, and vice versa (Figures

4C, 4D, and 4I). This model also describes how NAct and NSupp

are functionally interconnected in disease (Figure 5H). NAct is

activated initially, representing pro-inflammatory microglia acti-

vated by TLR signaling (Figures 4E, 4F, and 5H). As disease pro-

gresses, NSupp follows closely due to aberrant nucleotide

detection and type I IFN signaling, which in turn partially sup-

presses NAct. Therefore, the model predicts that the inhibition

of NSupp would cause a relative increase in NAct and a net in-

crease in NAct activity, whereas the inhibition of NAct would

cause a net decrease in NAct activity.

We experimentally validated a prediction of this model, that

NSupp would suppress and NAct would activate microglial

neuroimmune activity, using a chemical genomics approach

(STAR Methods), identifying 2 compounds predicted to coordi-

nately drive NAct and NSupp module-wide expression. Then,

we tested the functional consequences of altering NAct activity

using a co-culture of neurons with microglia-like BV2 cells,

where BV2 expression of pathways that are highly represented

in NAct drives the clearance of neuronal processes in cell cul-

ture (Höing et al., 2012; Figures 5E–5G). We found that high-

dose saracatinib, a Src kinase inhibitor (Wölfl et al., 2013), in-

creases NAct expression and decreases NSupp expression in

primary mouse microglial cultures as predicted (Figures 5E

and 5F, CMAP score = �90.42 [NSupp] and 36.88 [NAct]). In

contrast, we found that fatostatin, a SREBP inhibitor,

decreased NAct expression (CMAP score = �90.18 [Nact]),

which we confirmed in primary mouse microglial cultures (Fig-

ures 5E and 5F). Therefore, we hypothesized that by reducing

NSupp, saracatinib would increase the microglial clearance of

neuronal process, and by decreasing net NAct activity, fatosta-

tin would decrease the microglial clearance of neuronal pro-

cesses in cell culture, which is what was observed (Figure 5G).

This confirmed predictions that the chemical inhibition of NAct

and NSupp has opposing effects on neuroimmune activation

and suppression, respectively.
I and ME connectivity (node color) in microglia purified from IFN-b and control

t in Usp18 knockout, IFNAR knockout, double knockout, and WT mouse brain

enter line at median and upper and lower lines at 75th and 25th percentiles) and

mouse microglia (D) (2-tailed unpaired t test; n = 2 per group [Goldmann et al.,

treated with drugs or DMSO vehicle as indicated in (F).

ith high-dose saracatinib (1 mM, n = 10, 24 h) or DMSO vehicle control (n = 10,

-sample Wilcoxon rank-sum test).

tophysin) and BV2 cells (non-neuronal DAPI+ cells), and density of neuronal

culture and treatment with saracatinib (1 mM, n = 5), fatostatin (1 mM n = 7), or

d and control neurons cultured without BV2 cells (center).

eron (IFN) to suppress microglia activity in disease.

rivedmicroglia-like cultures following stimulation by fibrillar amyloid b (1 mM) (2-

control n = 74, AD n = 86) and PSP patient and control temporal cortex (control

st). Boxplot with center line at median and upper and lower lines at 75th and

AD compared to control brain based on published single nuclear sequencing

.1 and FDR < 0.05 = ‘‘AD_up,’’ and ‘‘AD_down,’’ respectively; Fisher’s 2-tailed

athys et al., 2019]).
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AModel of Early Immunosuppression in Tau-Associated
Neurodegeneration
Cumulatively, these unbiased, genome-wide data support a

more refined model of early microglial neuroimmune signaling

in neurodegenerative disorders with tauopathy (Figures 2B

and 5H). At the onset of cellular dysfunction, a pro-inflammatory

microglial neuroimmune response, NAct, is activated by extra-

cellular peptide and lipopeptide damage signals. Then, as tau

pathology leads to chromatin and nucleotide dysregulation

before neuronal loss, nucleotide damage signals activate dsRNA

receptors to trigger a microglial type I IFN response that drives

the expression of NSupp pathways involved in stress response,

exosome, and viral entry (Figure 4H), while suppressing the spe-

cific microglial immune attack pathways represented by NAct,

including the NLRP3 inflammasome and TLR1 and -2 signaling

(Figures 4E and S4A). This results in reactive microglia that sup-

press pathways early in disease that are related to pathogen

clearance consistent with the known immunosuppressive role

of IFN-b elsewhere (Snell et al., 2017). As disease progresses

to include frank neurodegeneration, microglia undergo addi-

tional dynamic states, including increased type II IFN signaling,

exogenous antigen presentation, T cell regulation, and cell death

(Figures 1E, 2A, 2B, and S2G). Importantly, this model suggests

that tau pathology may contribute to the inhibition of microglial

immune clearance activity early in disease, causing a state of

relative immunosuppression, which may lead to disease

progression.

We tested this model with a proof-of-concept validation

experiment in human microglia, asking whether type I IFN

can functionally inhibit NAct. We pre-treated human-induced

pluripotent stem cell (iPSC)-derived microglia (Haenseler

et al., 2017; STAR Methods) with IFN-b and tested the ability

of fibrillar Ab, a NAct activator (Figures 4F and S4C), to induce

the secretion of IL-1b, a prominent member of the NAct

pathway in these human cells (Figures 4E and 4G). We

observed that Ab increased IL-1b secretion in untreated micro-

glial cultures and that IFN-b treatment significantly suppressed

Ab-induced IL-1b secretion in human iPSC-induced microglial

cultures (Figure 5I).

Validation by Single Nuclear Sequencing of Human
Disease Tissue
Having annotated and functionally validated theNSupp andNAct

modules, we levered them as biomarkers to measure microglial

neuroimmune activity in human post-mortem disease samples.

We found that NSupp upregulation is a consistent feature seen

in the brain tissue of subjects with AD and PSP (Figure 5J), and
Figure 6. Microglia from Patients with FTD Upregulate the Later-Stage

(A) Seurat object of nuclei sequenced from bvFTD patients with tau pathology (Pick

n = 8), showing the cell cluster enriched for microglial-specific marker genes (gre

(B) Scatterplot and Pearson’s correlation of effect size (b) of differential gene expre

model (x axis) and mixed-effects model with subject as a random effect (y axis)

(C) PPI plot of genes significantly upregulated in bvFTD microglia compared to co

pathways (Z > 2). The asterisk indicates functional overlap with M_UP3.

(D) Bar plot of genes that are differentially expressed in bvFTD versus control mic

(red), (linear model; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001).

See also Figure S5 and Table S3.
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in single-cell data from AD (Figure 5K), suggesting that microglial

NAct suppressionmay be a shared feature of the chronic phases

of these two tau-associated dementia syndromes.

Another prediction based on the mouse microglia module tra-

jectory analysis (Figure 2) is a delayed, biphasic type II IFN

response with early suppression and late increase (M_DOWN1,

M_UP3; Figures 1C, 1E, 2A, 2B, and S2G). To validate the rele-

vance of these findings to humans, we performed deep single-

cell sequencing in human post-mortem brain from dementia pa-

tients and controls to determine the microglia changes associ-

ated with tau pathology. We performed single nuclear

sequencing of 107,620 nuclei from pre-central gyrus from pa-

tients having behavioral variant FTD (bvFTD) with tau immunore-

active inclusions (Pick’s disease) and matched controls, identi-

fying 2,891 microglial nuclei for this analysis after quality

control (QC), clustering and cluster annotation (Figure 6A).

Remarkably, we observed concordance between disease-asso-

ciated signaling pathways represented in M_UP3 and microglia

from patients with FTD-Pick’s; in particular in type II IFN, a spe-

cific activator of M_UP3 (Figures 2A, 2B, 6C, and S2G). Signifi-

cantly upregulated in bvFTD microglia are genes that can stimu-

late IFN-g production (IL18, LILRB1, TLR7, and SPP1) (Renkl

et al., 2005) and genes that mediate IFN-g response (IFNGR1,

IRF8, B2M, and JAK2; Figures 6C, 6D, and S5E). Gene Ontology

(GO) and PPI analyses demonstrate additional pathway-level

alignment between M_UP3 and bvFTD microglia, including anti-

gen presentation, IFN-g signaling, and regulation of cell death

(Figure 6C), further confirming that the latent microglia disease

states that we identified in mice are relevant to human disease.

DISCUSSION

Through an integrative systems-biology approach, we have

identified microglia neuroimmune networks related to early

stages of neurodegeneration modeled in mice harboring mutant

tau protein. Combining bulk tissue and cell-type-specific data

from multiple divergent transgenic mice and human single-cell

data, we identified seven conserved microglia modules that

were also represented in post-mortem tissue from patients and

controls. By integrating data from brain tissue with sorted cell

data, we achieved a unique perspective on neuroinflammatory

signaling in neurodegeneration that we show neither bulk tissue

nor single-cell-type data can achieve on its own. The seven mi-

croglial co-expression modules identified represent a refined,

more integrative, and complementary view of microglial neuro-

immune trajectories representing distinct signaling and neuroim-

mune states in neurodegeneration.
Immune Pathways Identified in Mice with Tau Pathology

’s disease, precentral gyrus, n = 7) and control (no pathology, precentral gyrus,

en, top) and cells from bvFTD (pink) and control (blue) patients.

ssion between bvFTD versus control microglia, comparing results from a linear

(n = 7,989 genes).

ntrols (log2fc3 0.1, FDR < 5E�4), highlighting genes with PPI in significant GO

roglia (log2fc scale) and either activate IFN-g (blue) or mediate IFN-g signaling
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Our refined analyses of microglia-associated changes at

different stages of tauopathy suggest that early immune activa-

tion is accompanied by immune suppression, likely driven by

the activation of IFN-b, and we provide multiple analyses sup-

porting this model. Recent experimental data show that

IFN receptor blockade reduces sustained microgliosis and syn-

aptic clearance (Roy et al., 2020), and IFN treatment inhibits

microglial phagocytosis (Mudò et al., 2019) and release of

pro-inflammatory cytokines (Moore et al., 2020). Here, we pro-

vide complementary evidence that IFN-b may also suppress

genes involved in microglial immune clearance (NAct; including

Il1b, CD74, IL27ra, B2m, Fcer1g, Cd14, Ptprc, Tlr2, Trem2,

Cd68, and Cxcr4) and drive genes that function in early immune

suppression (NSupp; PD-L1, Isg15, Tgfbr2, Usp18, and

Zc3h12a; Mao et al., 2017). At later disease stages, microglia

transition to expressing chronic viral response pathways,

together with pathways that were relatively quiescent or downre-

gulated at earlier stages, such as the type II IFN response.

Several endogenous stimuli are capable of activating type I

IFN in disease (Cuellar et al., 2017; Dhir et al., 2018), but our ob-

servations suggest that pathological tau may trigger the IFN

pathway through cytosolic dsRNA detection. We find that both

dsRNA detection and IFN pathways are highly correlated with

pathological tau burden in brain (Figures S3H–S3J) and both

the cytosolic dsRNA receptor Ifih1 (MDA5) and RIG1 pathway

are hubs of the NSupp module (Figure 4H). This is particularly

salient based upon the recent observation that pathological tau

drives chromatin destabilization (Guo et al., 2018; Sun et al.,

2018), a known source of endogenous dsRNA that can activate

Ifih1 (MDA5) and trigger an IFN response outside of the CNS (Ah-

mad et al., 2018; Cuellar et al., 2017). These intracellular events

contrast with extracellular tau seeds and fibrils, which experi-

mental evidence suggests activate microglia NAct pathways

(Pampuscenko et al., 2020; Stancu et al., 2019).

These data suggest a parsimonious model wherein dsRNA,

released following chromatin destabilization in injured neurons

and/or other cells in response to tau pathology, activates early

suppressive pathways driven by type I IFN (NSupp) to sup-

press acute microglia defense pathways that would clear

infection (NAct). These observations predict that the inhibition

of NSupp, either through blockade of dsRNA, IFNAR1 path-

ways, or immune checkpoints, would reduce early immune

dysregulation triggered by pathological tau and, at least in

part, restore microglia damage response and promote viral

clearance mechanisms. Our model also predicts that without

this suppression, disease pathology may drive immune hyper-

activity and cellular injury.

These data fit with recent observations that IFN-driven micro-

glial immunosuppression in aging may also contribute to age-

related susceptibility to neurodegeneration (Deczkowska et al.,

2017). In addition, our observation that AD, FTD, and PSP sus-

ceptibility genes converge on viral response pathways is consis-

tent with the notion that the microglial type I IFN response may

influence early disease progression, including the propagation

of tau pathology (Ising et al., 2019; Stancu et al., 2019). These

observations suggest an important causal connection between

viral defense and pathological tau, with interactions varying

over the course of disease.
From this perspective, different stages of dementia are asso-

ciated with different forms or levels of immune activation. These

analyses suggest that early immune suppression and delayed

viral response, rather than immune activation alone, may

contribute to disease progression and promote chronic inflam-

mation as disease progresses into its clinical phase, particularly

in response to tauopathy. Future functional and mechanistic

studies will be needed to experimentally test and extend this

model, which has significant implications for the development

and timing of therapeutic interventions targeted at the neuroim-

mune response.
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N2 Supplement Thermo Fisher Cat# 17502048

HBSS (without calcium, magnesium) Thermo Fisher Cat# 14175095

DNase I Roche Cat# 4536282001

Penicillin/Streptomycin Thermo Fisher Cat# 15140122

Beta-mercaptoethanol Thermo Fisher Cat# 31350-010

Poly-D-Lysine Sigma Cat# A-003-M

Recombinant Human IL-34 Protein Biolegend Cat# 577906

Recombinant Human GM-CSF Biolegend Cat# 766104

Recombinant Human IFN-beta R&D Systems Cat# 8499-IF

Recombinant Human IL-3 Biolegend Cat# 578006

Recombinant Human M-CSF Biolegend Cat# 574806

Recombinant Human BMP-4 (E. coli derived) Peprotech Cat# 120-05ET

Recombinant Human VEGF-165 Biolegend Cat# 583702

Recombinant Human SCF Peprotech Cat# 300-07

Recombinant Vitronectin (VTN-N) Thermo Fisher Cat# A14700

Rock Inhibitor (Y-27632 dihydrochloride) Tocris Cat# 1254

Saractinib Selleckchem Cat# S1006

Fatostatin hydrobromide Sigma Cat# F893

Dimethyl sulfoxide (DMSO) Sigma Cat# D2650

Amyloid beta (abeta, 1-42) Bachem Cat# 4014447

Recombinant Human IFN-beta R&D Systems Cat# 8499-IF

Complete protease inhibitor cocktail Roche Cat# 11697498001

OptiPrep (Iodixanol) StemCell Technologies Cat# 07820

Triton X-100 Fisher Cat# 21568-0010

(Continued on next page)
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Tween-20 Sigma Cat# P9416

RNase-free Bovine Serum Albumin (BSA) VWR Cat# EM-2930

RNase Inhibitor NEB Cat# M0314

DNase I Roche Cat# 4536282001

Critical Commercial Assays

NucleoSpin RNA Plus Takara Cat# 740984.50

QuantSeq 30 End Labeling Kit Lexogen Cat# 015.96

Total Tau Human ELISA Kit Thermo Fisher Cat# KHB0041

pT231 Tau Human ELISA Kit Thermo Fisher Cat# KHB8051

IL-1beta Mouse ELISA Kit R&D Systems Cat# DY401

Chromium Single Cell 30 Reagent Kits V2 10X Genomics Cat# 1000075

Deposited Data

TPR50 Mouse (male P301S MAPT and WT)

microarray or RNaseq transcriptomics dataset

(Swarup et al., 2019) GEO: GSE90696

rTg4510 microglia dataset (Wang et al., 2018) AMP-AD Knowledge Portal: https://www.synapse.

org/#!Synapse:syn9884351

JNPL3 mouse datasets AMP-AD AMP-AD Knowledge Portal: https://

adknowledgeportal.synapse.org/Explore/

Studies/DetailsPage?Study=syn3157182

PS2APP microglia RNaseq (Srinivasan et al., 2016) GEO: GSE75431

USP18 Knockout and IFNAR Knockout (Goldmann et al., 2015) GEO: GSE61499; GEO: GSE61500

5xFAD microglia RNaseq (Wang et al., 2015) GEO: GSE65067

CK-p25 (Mathys et al., 2017) GEO: GSE103334

In vivo Abeta-42 (Johansson et al., 2015) GEO: GSE57181

in vitro treatments with Abeta-42 (Woodling et al., 2014) GEO: GSE55627

Microglia isolated from IFN-beta AAV infected

mouse brain

(Deczkowska et al., 2017) GEO: GSE98401

IFN-gamma human microglia (Rock et al., 2005) GEO: GSE1432

Human postmortem data-FTD RNaseq (Chen-Plotkin et al., 2008) GEO: GSE13162

Human postmortem data-AD and PSP

temporal cortex

(Allen et al., 2016) AMP-AD Knowledge Portal: https://repo-prod.prod.

sagebase.org/repo/v1/doi/locate?id=syn3163039&

type=ENTITY

Human postmortem data-FTD frontal cortex (Swarup et al., 2019) Synpase: https://www.synapse.org/#!Synapse:

syn7818788

Single nuclear sequencing data from

Alzheimer’s and control prefrontal cortex

(Mathys et al., 2019) Synpase: https://www.synapse.org/#!Synapse:

syn18485175

Single nuclear sequencing data from

Alzheimer’s and control Entorhinal cortex

(Grubman et al., 2019) GEO: GSE138852

Single cell data from injured mouse brain (Hammond et al., 2019) GEO: GSE121654

Alzheimer’s disease, FTD, and PSP exome

array data

(Chen et al., 2015) NIAGADS: https://www.niagads.org/,

accession number NG00040

Single nuclear sequencing data from Pick’s

disease and control precentral gyrus

This study dbGAP: https://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study_id=phs002197.v1.p1

Mouse microglia treated with fatostatin or

saracatinib

This study GEO: GSE146866

5xFAD microglial single cell data (Keren-Shaul et al., 2017) GEO: GSE98969

GRCm38 (Dobin et al., 2013) https://www.ncbi.nlm.nih.gov/assembly/

GCF_000001635.20

GencodeM11 (Liao et al., 2019) https://www.gencodegenes.org/mouse/

release_M11.html

(Continued on next page)
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Experimental Models: Cell Lines

1205 (human control) iPSC cell line Pasca Lab (Stanford) Obtained from Pasca lab (Stanford)

BV2 (female mouse microglia) cell line Kind gift from Peter Tontonoz

lab; UCLA

RRID: CVCL_0182

Experimental Models: Organisms/Strains

Primary mouse embryonic cortical neurons

from E15 C57BL/6J embryos

Charles River C57BL/6NCrl

Primary mouse embryonic microglia cultures

from P1 C57BL/6J pups

Charles River C57BL/6NCrl

Software and Algorithms

Weighted Gene Co-expression Analysis

(WGCNA)

(Langfelder and Horvath, 2008) https://cran.r-project.org/web/packages/

WGCNA/index.html

MAGMA v1.06 (de Leeuw et al., 2015) https://ctg.cncr.nl/software/magma

Broad’s CMAP database, version CLUE (Subramanian et al., 2017) (https://clue.io)

CQN Package v 1.18.0 (Hansen et al., 2012) Source (‘‘http://bioconductor.org/biocLite.R’’)

STRING for PPI (Szklarczyk et al., 2017) https://string-db.org

GOElite Package (Zambon et al., 2012) http://www.genmapp.org/go_elite/

Cytoscape v3.4.0 (Saito et al., 2012) https://cytoscape.org

Transcription Factor Binding Site (TFBS)

enrichment

analysis

(Chandran et al., 2016) N/A

NetSig (Horn et al., 2018) https://www.lagelab.org/resources/

ImageJ v1.1 N/A https://imagej.nih.gov/ij/download.html

STAR 2.7.2b (Dobin et al., 2013) https://github.com/alexdobin/STAR

RSubread 1.34.6 (Liao et al., 2019) https://bioconductor.org/packages/

3.11/bioc/html/Rsubread.html

ComBat v 1.32.0 (Johnson et al., 2007) https://rdrr.io/bioc/sva/man/ComBat.html

10X Genomics Cell Ranger (v3.0) N/A https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/installation

Seurat (v3.1) (Butler et al., 2018) https://satijalab.org/seurat/install.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Professor

Daniel H. Geschwind (dhg@mednet.ucla.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
RNaseq data of mice microglia cultures treated with fatostatin and saracatinib are available at the NCBI Gene Expression Omnibus

(GEO) database under accession number GEO: GSE146866.

FTD-tau and control snSeq data are available from dbGAP under accession number dbGAP: phs002197.v1.p1

Custom code used for the analysis is available on github: https://github.com/dhglab/Tau-pathology-drives-dementia-risk-

associated-gene-networks-towards-chronic-inflammatory-states-and

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Frozen brain tissue (precentral gyrus) were obtained from the UCSF Neurodegenerative Disease Brain Bank and University of Penn-

sylvania Center for Neurodegenerative Disease Research Brain Bank. We obtained samples from 16 total individuals, including 8
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subjects with clinical diagnosis of behavior variant frontotemporal dementia and neuropathological diagnosis of Pick’s disease (Tau

protein pathology) and controls (n = 8). Samples were balanced age (mean: 68 years old -Pick’s, 66 years old -control), PMI (mean:

15.98 hours – Pick’s, 12.78 hours - control) and tissue RNA integrity number (RIN; mean: 6.1 -Pick’s, 5.6 -controls) (Table S2). Sam-

ples were obtained with informed consent and institutional IRB approval for each brain bank. IRB exemption was obtained from the

UCLA IRB to authorize use of de-identified human postmortem brain single nuclear sequencing data in this study. Neuropathological

diagnosis was verified by Professor William Seeley at UCSF.

Cell Lines
The induced pluripotent stem cells (iPSC) line #1205 (a de-identified, human control line; Sloan et al., 2018) was provided by the lab of

professor Sergiu Pasca (Stanford University); and obtained with informed consent and institutional IRB approval by the Pasca lab.

Use of this line in the Geschwind lab is approved by the UCLA Embryonic Stem Cell Research Oversight (ESCRO) Committee. The

iPSC line was checked when thawed and confirmed for expression of markers of pluripotency (OCT4, SSEA4). For line maintenance

and quality control, the line was tested to confirm negative mycoplasma contamination, and checked for chromosomal copy number

changes using comparative genomic hybridization array. CO2 was tightly controlled. iPSC cell morphology was visually inspected to

ensure against spontaneous differentiation. For cell cultures, iPSCs were plated on 5mg/mL Vitronectin (Thermo Fisher, A14700)

coated plates in Essential 8 (E8) media (Thermo Fisher, A1517001). Cells were maintained with daily media changes and kept at

37�C and 5%CO2. Cells were passaged approximately every 4 days or at 60%–70% confluency using 0.5mM EDTA/DPBS for 3 mi-

nutes at RT. EDTA/DPBS was aspirated and cells were blown off by gently using 1mL of media. iPSCs were passaged as small

cellular clusters at a 1:10 dilution to help proliferation.

iPSC derived microglia-like cells were generated and validated as previously described (Haenseler et al., 2017). Embryoid bodies

(EBs) were made by adding 3x106 iPSCs to each Aggrewell-800 well (24-well plate; StemCell Technologies, 34850) in 2mL of E8 me-

dia supplemented with 50ng/mL BMP-4 (Peprotech, 120-05ET), 50ng/mL VEGF (Biolegend, 583702), and 20ng/mL SCF (Peprotech,

300-07). ROCK inhibitor Y-27632 was added to the media only on day 0. For days 1-4, media was replaced by performing two-half

changes daily. On day 5, EBs were gently collected with wide-boar pipette tips and transferred to T-75 flasks with 12mL of MacPre

media. EBs were maintained in macrophage precursor (MacPre) media, consisting of AIM-V media (Thermo Fisher, 12055083) sup-

plemented with 100U/mL penicillin/streptomycin, 0.055mM beta-mercaptoethanol (Life Technologies, 31350-010), 100ng/mL

M-CSF (Biolegend, 574806), 25ng/mL IL-3 (Biolegend, 578006), and 2mM GlutaMAX (Thermo Fisher, 35050-061). EBs seeded in

T-75 flasks were cultured at 37�C and 5% CO2 for 7-12 days before performing weekly media changes to ensure EBs attached to

the flask. Macrophage precursor cells were released from EBs into the media approximately 3-4 weeks post-seeding of EBs into

flasks. At that point, the supernatant was collected weekly and passed through a 40mm cell strainer. Supernatant was spun down

at 500xg for 5 minutes to pellet cells. Macrophage precursor cells were resuspended in microglia media to differentiate cells toward

a microglia-like state and plated on non-treated tissue culture plates. Human 1205 iPSC-derived microglia cells were maintained in

RPMI media (Thermo Fisher, 11875093) supplemented with 2mM GlutaMAX, 100U/mL penicillin/streptomycin, 0.055mM beta-mer-

captoethanol, 1x N2 supplement (Thermo Fisher, 17502048), 100ng/mL IL-34 (Biolegend, 577906), and 10ng/mL GM-CSF (Bio-

legend, 766104). Microglia-like cells can be maintained up to 14 days after initial plating with media changes every 3-4 days.

BV2 female C57BL/6 mouse microglia cultures (RRID: CVCL_0182) were passaged at 70%–80% confluency weekly. 0.25%

Trypsin/EDTA was used to dissociate cells and spun down at 1000rpm for 5 minutes to pellet the cells. Supernatant was aspirated

and cells were resuspended and passaged at 1:10 on 6-well plates for maintenance with complete media. Cells were kept in 37�C
with 5% CO2 in DMEM media (Thermo Fisher, 11995065) supplemented with 5% heat-inactivated fetal bovine serum (HI-FBS) and

1% Penicillin/Streptomycin. Media was replaced every 3-4 days.

Primary Cell Cultures
Mouse primary embryonic cortical neurons were prepared from E15 C57BL/6J embryos. Briefly, cortical tissue from day 15 (E15)

C57BL/6J embryos was collected, dissected and washed in ice-cold Hank’s balanced salt solution (HBSS; Thermo Fisher,

14175095). Tissue was incubated in 0.25% trypsin (Invitrogen) in the presence of DNase I (Roche, 4536282001) at 37�C for

10 minutes. Tissue was washed with cold HBSS and titurated in plating media (Neurobasal Medium; Thermo Fisher Scientific,

10888-022), 10% heat-inactivated fetal bovine serum (Thermo Fisher Scientific, 16140071), 25mM sucrose and 0.25% GlutaMAX

(Thermo Fisher, 35050-061) in the presence of DNase I. Dissociated cells were centrifuged at 125xg for 5 minutes at 4�C, resus-
pended in culture medium, counted and plated in poly-D-lysine coated and etched glass coverslips. Neurons were cultured in Neuro-

basal Medium supplemented with 2% B27 (17504-044), 2mM GlutaMAX and penicillin/streptomycin (100 U/mL). BV2-neuronal co-

cultures were also maintained in this neuronal culture media.

Mouse primary embryonic microglial cultures were prepared from P1 C57BL/6J pups as previously described (Saura et al., 2003).

This protocol has two steps – first the culturing of mixed glia followed by isolation of microglia. Cortical tissues were collected in 0.1%

glucose/PBS. Meninges and blood vessels were removed and brains were transferred to 6mL of 0.05% trypsin/PBS (Invitrogen) and

pipetted through P1000 tip one time to gently mince. Tissue was incubated for 20 minutes at 37�C and transferred to 50mL conical

tube containing 25mL of DMEM-F12 (Thermo Fisher, 1132003) supplemented with 10%heat-inactivated fetal bovine serum (HI-FBS;

Thermo Fisher). Tissue settled to bottom of tube, and the media was replaced with fresh 30mL of DMEM-F12 (Thermo Fisher) + 10%

HI-FBS. Samples were titurated until completed homogenized and aliquoted (at 1/2 brain per plate) into 150mmPetri dish containing
Cell Reports 33, 108398, November 17, 2020 e4
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30mL DMEM-F12 + 10% HI-FBS. After two days, and then every 5 days, the media was replaced. After 20 days in culture, microglia

were isolated as follows: cell plates were agitated 15minutes at 150-200rpm on an orbital shaker. Media containing floatingmicroglia

was collected in a 50mL conical tube. Plates were washed three times in PBS. To remove astrocytes, cells were covered in 9mL of

0.25% Trypsin/HBSS (14175095) diluted 1:3 in serum free DMEM-F12 and incubated at 37�C for 30 minutes until astrocytes floated

off the plate. Media containing astrocytes was aspirated and cells washed 3x with 10mL of PBS. Subsequently, adherent microglia

were removed by incubating in 5mL of 0.25% Trypsin/HBSS for 3 minutes at 37�C. Microglia were then collected in 5mL of DMEM-

F12 + 10%HI-FBS, spun down, and resuspended in 5mL culturemedia (DMEM-F12 supplemented with 2%HI-FBS, penicillin/strep-

tomycin (100U/mL) and 50mM beta-mercaptoethanol) for 24 hours prior to drug treatment. Microglia purity was assessed by

immunocytochemistry.

METHOD DETAILS

Dataset Acquisition and Filtering
Both RNaseq datasets used as input for consensus WGCNA were previously generated. The TPR50 dataset (Swarup et al., 2019)

includes gene expression data from frontal cortex dissected from male mice expressing P301SMAPT or WT controls (TPR50 trans-

genic model (Onishi et al., 2014)) in three different genetic backgrounds (C57BL6/J, F1 C57BL6/J x DAB, F1 C57BL6/J x FVB), and

includes samples collected at 3 months of age (n = 6 per group) and 6months of age (n = 5-6 per group). The rTg4510 microglia data-

set includes gene expression data obtained from microglia purified using C11b FACS collected from mice expressing P301L MAPT

and WT controls (rTg4510 transgenic model (Santacruz et al., 2005)), pooled to include microglia from 8-10 forebrains per sample,

with n = 4 replicate samples per time points (2, 4, 6, and 8 months of age) (AMP-AD Knowledge Portal: https://doi.org/10.7303/

syn2580853) (Wang et al., 2018). Data were filtered for low read counts (> 80% of the sample with > 10 reads with HTSeq quantifi-

cation) and normalized using log2-transformation and linear regression prior to use for consensus WGCNA and module expression

trajectory analysis, as previously described (Swarup et al., 2019). The rTg4510 transgenic mouse is a model of neurodegeneration

secondary to human mutant MAPT and additional factors (Gamache et al., 2019).

Additional publicly available datasets were used throughout the study for validation or comparison (Table S2; and Key Resources

Table). Mouse datasets consist of microarray or RNaseq transcriptomics data from a variety of transgenic mice models –PS19

(Swarup et al., 2019), rTg4510 and JNPL3 (AMP-AD Knowledge Portal, available on Synapse: https://www.synapse.org), PS2APP

(Srinivasan et al., 2016), USP18 knockout (Goldmann et al., 2015), IFNAR knockout (Goldmann et al., 2015), 5xFAD (Wang et al.,

2015), CK-p25 (Mathys et al., 2017), and in vitro and in vivo treatments – Abeta42 (Johansson et al., 2015; Woodling et al., 2014),

IFN-beta-expressing AAV (Deczkowska et al., 2017), and IFN-gamma (Rock et al., 2005). Human postmortem data consist of AD

temporal cortex (Allen et al., 2016), FTD frontal cortex, and PSP temporal cortex (Allen et al., 2016), as well as single nuclear

sequencing data from Alzheimer’s and control prefrontal (Mathys et al., 2019) and entorhinal cortex (Grubman et al., 2019). IRB

exemption was obtained from the UCLA IRB to authorize use of de-identified human postmortem sequencing data in this study.

Microarray or RNaseq datasets downloaded from theGene ExpressionOmnibus (GEO) were read into R and processed as follows.

Microarray data were log2-transformed and normalized by quantile normalization. Gene counts were filtered to remove low read

counts (> 80% of the sample with > 10 reads with HTSeq quantification), corrected for guanine-cytosine content, gene length and

library size, and log2-transformed using the CQN package in R (Hansen et al., 2012). The resulting data was used as an input to

test module preservation, average gene expression and/or eigengene expression.

mRNA Weighted Co-expression Network Analysis
In order to identify gene co-expression networks present both in purified microglia and frontal cortical brain tissue, and across mul-

tiple transgenic mouse strains and genetic backgrounds, we utilized consensus WGCNA as previously described (Swarup et al.,

2019) using the WGCNA R package (Langfelder and Horvath, 2008), applied to the TPR50 dataset of forebrain RNaseq from mice

aged 6 months, and the Tg4510 dataset of purified microglia described above. The input data were generated from (1) microglia pu-

rified from P301L MAPT and WT mice from the Tg4510 model (Santacruz et al., 2005) at ages 2, 4, 6 and 8 months (n = 4 mice per

condition) (AMP-AD Knowledge Portal: https://doi.org/10.7303/syn2580853) (Wang et al., 2018), and (2) frontal cortex from P301S

MAPT andWTmice from the TPR50model with three different genetic backgrounds (C57BL6/J, F1 C57BL6/J x DAB, F1 C57BL6/J x

FVB) at 6 months of age (n = 5-6 per group), a period with extensive gliosis and neuronal Tau pathology but prior to frank atrophy

(Swarup et al., 2019).

Similarity matrices were created using the Consensus WGCNA method as previously described (Li and Horvath, 2007). In the

signed network, the similarity between genes reflects the sign of the correlation of their expression profiles. The signed similarity ma-

trix was then raised to power b to emphasize strong correlations and reduce the emphasis of weak correlations on an exponential

scale. A thresholding power of 14 was chosen (as it was the smallest threshold that resulted in a scale-free R2 fit of 0.8) and the

consensus network was created using the function blockwiseConsensusModules() to calculate the component-wise minimum

values for topologic overlap (TOM), with parameters set as networkType = ‘‘signed,’’ deepSplit = 2, detectcutHeight = 0.995, con-

sensusQuantile = 0.0, minModulesize = 100, mergeCutHeight = 0.2. Using 1� TOM (dissTOM) as the distance measure, genes were

hierarchically clustered. The resulting modules or groups of co-expressed genes were used to calculate module eigengenes (MEs; or

the 1st principal component of the module). Gene – module eigengene connectivity score (kME, was calculated using the WGCNA
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function consensusKME() with parameters set to consensusQuantile = 0.20, signed = TRUE. Modules were annotated using the

GOElite package (Zambon et al., 2012). We performedmodule preservation analysis using consensusmodule definitions (Langfelder

et al., 2011).MEswere correlatedwith transgenic condition to find disease-associatedmodules.Module hubswere defined by calcu-

lating module membership (kME) values which are the Pearson correlations between each gene and each ME. Gene expression was

correlated with pT231 Tau levels measured by ELISA to calculate the ‘‘gene significance’’ relationship with pT231 Tau, as defined by

the WGCNAmethod (Langfelder and Horvath, 2008), using gene expression data from the TPR50 model (6 months, n = 36), and this

was further correlated (Pearson’s) with kME to assess the relationship between pT231 Tau and gene-module connectivity. All

network plots were constructed using the Cytoscape software (Saito et al., 2012). Module definitions from the network analysis

were used to create synthetic eigengenes from which to calculate the expression trajectory of various modules in different gene

expression datasets.

Clustering of Gene Subsets
To apply gene co-expression methods to understand co-expression relationships among subsets of module genes in either the orig-

inal consensus dataset, or in the TPR50 dataset of pre-symptomatic mice at 3 month of age, we again used the WGCNA package

(Langfelder and Horvath, 2008). Biweighted mid-correlations were calculated for a subset of genes from selected consensus mod-

ules to create an adjacencymatrix that was further transformed into a topological overlapmatrix (with TOMType = ‘‘unsigned’’). Using

1� TOM (dissTOM) as the distance measure, genes were hierarchically clustered using the following parameters (deepSplit = 2, de-

tectcutHeight = 0.999, minModulesize = 40, dthresh = 0.1, softPower = 7). The resulting modules, or groups of co-expressed genes,

were used to calculate module eigengenes (MEs; or the 1st principal component of the module). The significance of intramodular

connectivity was assessed for each module using a permutation test (10,000 permutations), and all modules were confirmed to

have permuted p value < 0.001. ‘‘Early submodules,’’ described in Figures 3 and S3, were derived by re-clustering M_UP1 and

M_UP2 genes to generate ‘‘earlyUP’’ modules, or M_DOWN1, M_DOWN2 and M_DOWN3 genes to generate ‘‘earlyDOWN’’ mod-

ules, using the 3 month of age frontal cortex TPR50 gene expression data (Swarup et al., 2019). ‘‘NSupp and NAct,’’ described in

Figures 4 and 5, were derived from re-clustering the M_UP1 andM_UP2 genes, keeping only genes with annotated PPI in either Bio-

grid (Stark et al., 2006) or Inweb databases (Rossin et al., 2011), using the same gene expression data used for the consensus

WGCNA analysis (purified microglia from the Tg4510 model and frontal cortex TPR50 dataset (6 months of age)).

Module Preservation Analysis
Weusedmodule preservation analysis (Langfelder et al., 2011) to validate co-expression in independentmouse and human datasets.

Module definitions from consensus network analysis were used as reference and the analysis was used to calculate the Zsummary

statistic for eachmodule. This measure combinesmodule density and intramodular connectivity metrics to give a composite statistic

where Z > 2 suggests moderate preservation and Z > 10 suggests high preservation (Langfelder et al., 2011).

Module Gene Set Enrichment Analysis
Gene set enrichment analysis was performed using a two-sided Fisher exact test with 95%confidence intervals calculated according

to the R function fisher.test(). We used p values from this two-sided approach for the one-sided test (which is equivalent to the hy-

pergeometric p- value) as we do not assume a priori enrichment (Rivals et al., 2007). To reduce false positives, we used FDR adjusted

p values (Benjamini and Hochberg, 1995) for multiple hypergeometric test comparisons. For cell-type enrichment analysis we used

publishedmouse brain dataset (Zhang et al., 2014). The test background for over-representation analyses was chosen as total genes

input into the consensus analysis (overlap of genes expressed in Tg4510 microglia and TPR50 frontal cortex RNaseq datasets).

To test module enrichment for single cell microglial gene expression signatures, we used signatures defined from publicly available

single-cell studies pertaining tomicroglia and/or neurodegenerative disease (Hammond et al., 2019; Keren-Shaul et al., 2017;Mathys

et al., 2017; Olah et al., 2018; Scott et al., 2018). Specifically, for disease-associatedmicroglia (Keren-Shaul et al., 2017;Mathys et al.,

2017), we set cluster signatures to be the top 100 differentially expressed genes between two microglia clusters, as defined in their

corresponding publications. For microglial and macrophage clusters defined from young and aged mouse brain in (Hammond et al.,

2019), we defined clusters signatures as published except duplicated genes were removed among the young cluster group (C1, C2a,

C2b, C3, C4, C5, C6, C7a, C7b, C7c, C8, C9,mono_macA, mono_macB), and aged cluster group (aging_C1a, aging_C1b, aging_C2,

aging_C3, aging_C4) to increase the distinctiveness of each cluster. To define genesets from the single-cell microglial trends from

injured mouse brain published in (Hammond et al., 2019), we used the genes with fold change > 1.5 in control versus injured, and

injured versus control mice, respectively, to define the injury_C1 and injury_C2 genesets. For humanmicroglial gene clusters defined

in (Olah et al., 2018), we defined cluster signatures as genes with expression fold > 1.8 compared to any other clusters. For human

Alzheimer’s disease brain single cell signatures (Grubman et al., 2019; Mathys et al., 2019), we defined differentially expressed genes

as those with FDR < 0.05 and logFC > 0.1 using the published differential gene expression data.

Gene Set Annotation
Genes in network modules were characterized using GO-Elite (version 1.2.5), using as background the set of input genes used to

generated the modules being annotated (Zambon et al., 2012). GO-Elite uses a Z-score approximation of the hypergeometric

distribution to assess term enrichment, and removes redundant GO or KEGG terms to give a concise output. We used 10,000
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permutations and required at least 3 genes to be enriched in a given pathway at a Z score of at least 2. We report only biological

process and molecular function category output.

Protein-Protein Interaction Analysis
To assess and visualize protein-protein interactions among module genes, we used STRING (version 10.5; (Szklarczyk et al., 2017)

with the following setting (organism: Mus musculus for mouse data, and Homo sapiens for human data; meaning of network edges:

confidence; active interaction sources: experiments and databases; minimal required interaction score: medium confidence (0.400),

max number of interactors to show: none). Data was exported and visualized using the Cytoscape software (Saito et al., 2012).

Transcription Factor Binding Site Enrichment Analysis
Transcription Factor Binding Site (TFBS) enrichment analysis using an in-house package that incorporates TFBS as previously

described (Chandran et al., 2016). Briefly, this published code uses TFBS position weight matrices (PWMs) from JASPAR and

TRANSFAC databases (Matys et al., 2003; Portales-Casamar et al., 2010) to examine the enrichment for TFBS within each module

using the Clover algorithm (Frith et al., 2004). To compute the enrichment analysis, we utilized three different background datasets

(1000 bp sequences upstream of all mouse genes, mouse CpG islands, and mouse chromosome 20 sequence).

Connectivity Map (CMAP) Analysis
For a given module, the top 150 module genes (ranked by kME) were used as input for the QUERY app in the Broad’s CMAP data-

base, version CLUE (Subramanian et al., 2017). This signature was used to query 7,494 gene overexpression or knockdown exper-

iments carried out across 9 cell lines for similar (positive connectivity score) or opposite (negative connectivity score) effects on gene

expression signatures, incorporating Kolmogorov-Smirnov statistics (a nonparametric, rank-based pattern-matching strategy) as

described (Lamb et al., 2006; Subramanian et al., 2017). Per the CMAP website (https://clue.io), for each module-perturbagen

pair, the connectivity score (tau) is a standardized percentile score that compares the similarity of the query geneset to the pertur-

bagen compared to all other reference genesets in CMAP; such that 95 indicates that 5% of reference genesets show stronger con-

nectivity to the perturbagen than the query dataset. For our analysis, we used the mean ‘‘connectivity scores’’ which is calculated

from the combining data generated independently in 9 cell lines (see Table S1).

MAGMA
Summary statistics for genome-wide association studies for AD (Lambert et al., 2013), PSP (Höglinger et al., 2011) and FTD (Ferrari

et al., 2014a) were used as an input for MAGMA (v1.06) (de Leeuw et al., 2015) for gene annotation to map SNPs onto genes (with

annotate window = 20,20) and the competitive gene set analysis was performed to test module associations with GWAS variants

(permutations = 100,000). All genes assigned to a given module were used as the input for each module. Consensus modules

and re-clusteredmodules were run as separate groups inMAGMA given that they contain overlapping genes. Additional FDR correc-

tion was applied across all the competitive p value outputs from MAGMA for all modules used in the study.

Exome-based Validation of MAGMA
Summary statistics from Alzheimer’s disease, frontotemporal dementia and progressive supranuclear palsy exome array analyses

were downloaded from (Chen et al., 2015). To incorporate protein-protein interaction, summary statistics were used as input to

the network burden test, NetSig (Horn et al., 2018). NetSig determines a gene’s network association with disease. Generalized

least-squares regression was used to determine if NetSig results were enriched in gene modules. Regression covariates included

gene length and mean protein expression, including the log of these values. To account for linkage disequilibrium, error was corre-

lated for genes within 5 megabase pairs.

Drug Treatments
Saracatinib (S1006) and fatostatin (F8932) were purchased from Selleckchem and Sigma. Primary microglia were treated with sar-

acatinib (1 mM, 24h), fatotastatin (1 mM, 72h) or corresponding DMSO vehicle control as indicated. BV2 cells were pretreated with

saracatinib (1 mM, 72h), fatotastatin (1 mM, 72h) or DMSO vehicle control (equal volume as drug, 72h) in BV2 cell culture media.

Pre-treated BV2 cells were dissociated using trypsin/EDTA, washed and resuspended in neuronal culture media, counted, and

plated on top of mouse primary neuronal cultures (aged 14 days in vitro) at a ratio of 1 BV2 cell: 3 neurons. BV2 cell-neuronal co-cul-

tures were treated with drug or DMSO vehicle control for three days in neuronal culture media (Neurobasal medium (Thermo Fisher)

supplemented with 2% B27 (17504-044), 2 mM GlutaMAX Supplement (Thermo Fisher) and penicillin/streptomycin (100 U/mL)).

iPSC-induced microglia cultures were plated on black 96-well clear bottom plates (Corning, 3603) and maintained in RPMI media

(Thermo Fisher, cat no 11875085) supplemented with 100ng/mL IL-34 (Biolegend, 577906) and 10ng/mL GM-CSF (Biolegend,

766404) for 10 days prior to experimentation. Human iPSC-inducedmicroglia andwere then treated in culturemedia with 1uMfibrillar

amyloid beta for 6 hours at 37�C and 5% CO2 with or without pretreatment of 20ng/mL recombinant human interferon beta (IFN-b;

R&D Systems, cat no. 8499-IF) for 2 hours.
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Cell Staining and Quantification
Following BV2-neuronal coculture, cells were fixed in 4% paraformaldehyde, permeabilized for 20 minutes in 0.25% Tween-20, and

immunostained with a microglial marker rabbit anti-Iba1 (1:1000, Wako, 019-19741), and guinea pig anti-synaptophysin (1:1000;

Synaptic Systems) for 2 hours at room temperature, followed by secondary antibodies (donkey anti-rabbit 488 (1:500; Invitrogen,

A21206); goat anti-guinea pig 555 (1:500; Invitrogen, A21435) for one hour at room temperature. After washing the slides with

Tris-buffered saline with Tween-20 (TBST), slides were stained with DAPI (40,6-diamidino-2-phenylindole, a blue-fluorescent DNA

stain). Cells were imaged at 20x using Zeiss Axioplan II microscopewith six representative images captured and quantified per cover-

slip in a blinded fashion. The local density of neuronal processes surrounding BV2 cells was quantified in ImageJ by measuring the

synaptophysin staining density within the BV2 cell and surrounding area (defined by BV2 nuclei (DAPI) area and adjacent area ex-

tending out from the DAPI image perimeter using the ImageJ function ‘‘Mask of Image Points’’ (version 1.1) with settings ‘‘add

mask points within distance’’ = 1 micron. We used the expanded DAPI area to localize BV2 cells rather than the Iba1 signal because

Iba1 staining intensity varied from cell to cell.

RNA sequencing
RNAwas isolated from primary mousemicroglia using NucleoSpin RNA Plus (Takara, 740984.50) and RNA sequencing libraries were

prepared using the QuantSeq 30 end labeling kit (Lexogen, 015.96) according to the manufacturer’s protocol, and sequenced on a

HiSeq4000 to 50M single end reads (1 3 65bp). Reads were aligned against GRCm38 using STAR (Dobin et al., 2013). Transcripts

were quantified and annotated against GencodeM11 using Rsubread (Liao et al., 2019). Sample QC was performed using network

connectivity from the WGCNA package (Langfelder and Horvath, 2008) and z-score relative to the mean gene PCA, excluding sam-

ples that were > 3 standard deviations. Samples were normalizedwith CQN (Hansen et al., 2012). Sequencing batch correction, when

needed, was performed using ComBat (Johnson et al., 2007).

ELISA
Total tau and pT231 tau contents were measured by commercial tau ELISA kits according to the manufacturer’s instructions (total

tau - KHB0041; pT231 tau - KHB8051, Invitrogen), as previously described (Swarup et al., 2019). Mouse IL-1beta was quantified

using cell culture supernatant via ELISA (R&D Systems, DY401) according to the manufacturer’s protocol, with absorbance

measured at 450nm.

Single Nuclear Sequencing (snRNaseq)
Nuclei were prepared from 60-70mgof frozen brain tissue per sample, with all procedures carried out on ice or at 4�Cwith RNase-free

reagents. Briefly, postmortem frozen brain tissue was lysed in 3mL homogenization buffer (250mM sucrose, 150mM KCl, 30mM

MgCl2, 60mM Tris, 0.1% v/v Triton X-100, 1mMDTT, supplemented with 0.2U/mL RNase Inhibitor (NEB, M0314), Complete protease

inhibitor cocktail (Roche, 11697498001)) using a Wheaton Dounce Tissue Grinder (30 strokes with pestle B). The lysate was filtered

through a 40mm cell strainer and centrifuged at 1000xg for 8 minutes to obtain a nuclear pellet. To remove debris, the nuclear pellet

was resuspended in 350mL homogenization buffer and 1:1with an equal volume of 50% iodixanol buffer (Iodixanol 60%v/v combined

with buffer of 250 mM sucrose, 150mM KCl, 3mM MgCl2, 60mM Tris), then layered over 600mL of 29% iodixanol buffer (Iodixanol

29% v/v combined with buffer of 250mM sucrose, 150mM KCl, 3mMMgCl2, 60mM Tris) and centrifuged at 13500xg for 20 minutes.

The supernatant was discarded, and nuclei gently resuspended and washed in 1mL of 1% BSA/PBS. The nuclei were visually in-

spected to confirm complete lysis and nuclear integrity. Nuclei were manually counted and diluted to a concentration of 1000

nuclei/mL in 1% BSA/PBS. For single-nucleus RNA sequencing (snRNA-seq), libraries were prepared using the Chromium Single

Cell 3’ Reagent Kits v2 according to the manufacturer’s protocol (10X Genomics, 1000075). The snRNA-seq libraries were

sequenced on a Novaseq S2 with paired end reads (read 1: 26 bp, read 2: 96 bp) targeting 50,000 paired reads per nucleus.

snRNaseq Data Processing and Analysis
Raw single-nuclei RNA-seq data was processed using the 10X Genomics Cell Ranger (v3.0) pipeline. Reads were aligned to the En-

sembl release 93 Homo sapiens genome. Cells were selected for downstream analysis using the cell barcodes associated with the

most UMIs. We estimated the number of cells expected to be captured based on input nuclei concentration and retained this many

cell barcodes for downstream analysis. Cells with < 200 unique genes detected were removed (gene detection: > 1 count). Cells with

> 8% of their counts mapping to MT genes were removed. Genes detected in < 3 cells were removed. Normalization was performed

using Seurat (v3.1 (Butler et al., 2018). Briefly, raw counts are read depth normalized by dividing by the total number of UMIs per cell,

then multiplying by 10,000, adding a value of 1, and log transforming (ln (transcripts-per-10,000 + 1)). Raw UMI counts data were

assessed for the effects from biological covariates (clinical dx, anatomical region, donor, age, sex), and technical covariates (RIN,

PMI, library batch, number of UMI, number of genes detected, percentage MT). The effects of number of UMI (sequencing depth)

were removed from the read depth normalized expression values using a linear model. One outlier sample was identified

based on abnormal frequencies of major cell types and divergent gene expression patterns, and was removed from the analysis

(Table S2). To isolatemicroglia cells for further analysis, clusteringwas performed using Seurat (v3.1) (Butler et al., 2018). Each cluster
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was then annotated as a major cell type using mean expression of groups of cell type marker genes, including the microglial markers

CD74, CSF1R, C3 (Mathys et al., 2019), PTPRC, and DOCK8 (Kelley et al., 2018) (Figure S5A). Microglia clusters were selected for

further analysis.

To identify genes affected by diagnosis, differentially expressed genes were determined using a linear model implemented in R

comparing all disease microglia versus all control microglia (expression �clinical_dx + number_umi). P values were then Benja-

mini-Hochberg corrected. We used the top 250 genes associated with bvFTD (at significance thresholds of beta > 0.1 and

p-adjusted < 5.0 E-04) for further analysis (Table S3). We report the effect size output from the linear models as beta; which is approx-

imate to the log2-fold change between groups (Table S3).

While RIN, PMI and age were not significantly different between case and control subjects (Mann Whitney U test; Table S2); sex

and brank bank were not evenly split across groups (UCSF brain bank –bvFTD = 70%, control = 12%; male sex –bvFTD = 62%, con-

trols = 50% (Table S2). To identify genes potentially affected by sex or brain bank in our analysis, differentially expressed genes were

determined using a linear model comparing control microglia frommales and females (expression �sex + number_umi), and control

microglia from UCSF versus University of Pennsylvania brain banks (expression �finalsite + number_umi). We identified all genes

significantly associated with either UCSF brain bank or sex using the thresholds applied to diagnosis (beta 3 0.1, p value < 1.0

E-05, p-adjusted < 5.0 E-04) (Table S3) and excluded them from further analysis. To further identify genes potentially impacted by

low tissue quality in our analysis, we ran independent linear models for post-mortem interval (PMI; expression �pmi), RNA integrity

(RIN; expression�rin), number of genes detected per cell (expression�number_genes_detected), and number of UMI detected per

cell (expression�umi) using both case and control samples. No genes were significantly associated with PMI or number of genes or

UMI detected; and genes found to be significantly associated with RIN (Table S3) were excluded from further analysis (beta >0.1,

p value < 1.0 E-05, p-adjusted < 5.0 E-04).

In addition, to check that our findings were representative of group effects rather than driven by a few individuals, we compared all

disease and control samples for average gene expression and total number of microglia contributed to the analysis (Figure S5E). In

addition, to account for the random effect of subject in our analysis, we calculated differential expressed genes using a mixed effects

model with subject as a random effect, and confirmed a very high Pearson’s correlation between the diagnosis effects (beta) calcu-

lated from the linear model and mixed effects models (Figure 6B; Pearson’s correlation = 0.89, p < 2.2e-16). These results confirm

that the disease trends we report are representative of group differences (control versus disease) rather than based on a few non-

representative individuals.

QUANTIFICATION AND STATISTICAL ANALYSIS

For each result, the figure legend describes the type of plot, statistical analysis, and sample n and definition. For all boxplots, the

center line is at the median and the upper and lower lines are at the 75th and 25th percentiles, respectively (Figures 4I, 5C, 5F, 5K,

S3B, S3C, S4G–S4I, and S5C). Results of tissue culture experiments show each sample data point as a separate dot, the center

line at the group mean, and error bars showing s.e.m. (Figures 5D, 5G, and 5I) The barplot in Figure S2G has the center line at the

group mean and error bars as s.e.m. In Figure S5D, the center line of the boxplot is the sample mean, the upper and lower lines

are the 75th and 25th percentiles, respectively, and each dot is the average gene expression among the microglia from one subject,

with the size of the dot proportional to the number of microglia contributing to the final analysis from that subject.

For each computational analysis performed from published code or resources, we used the statistical tests specified by the code

and associated publications, as described and referenced under the corresponding experimental section underMethods Details. For

single nuclear sequencing studies, the statistical approaches and methods, including for outlier removal and covariate analysis, are

described in detail under the ‘‘single-nuclei RNA-seq data processing and analysis’’ subheading of Methods Details. Prior to single

nuclear and RNA sequencing, samples were randomized across sample prep and library synthesis batches, and then randomized

again across sequencing lanes to minimize sequencing batch effects. For cell culture experiments that measured one readout

and compared one condition (Figure 5), a normal distribution was assumed and a two-tailed Student’s t test was performed; with

samples paired if they were run together in an experimental batch. P values were corrected for multiple testing using FDR throughout

the study, with significance values reported in the figures and figure legends.
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