

The Development of [¹¹C]M503-1619 As a PET Tracer for Imaging α-Synucleinopathies in Parkinson's Disease (PD)

<u>Guilong Tian</u>¹, Wai Kit Chia¹, Chia-Ju Hsieh¹, Thomas J. Graham¹, Mark Schneider¹, Tianyu Huang², Hao Jiang², Yanbo Yu², Joel S. Perlmutter^{2,3,4}, Zhude Tu², Paul Kotzbauer⁴, E. James Petersson⁵, Chester Mathis⁶, Robert H. Mach¹

¹ Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA;

² Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA;

³ Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA;

⁴ Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA;

⁵ Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA;

⁶ Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.

The 25th iSRS - Honolulu, Hawaii, USA. May 26, 2023

Features of Neurodegenerative Diseases

Charan Ranganath and Gregor Rainer Nature Rev. Neurosci. 2003, 4, 193; Norihito Uemura et al. Trends in Molecular Medicine 2020, 26, 936.

α-Synuclein aggregates are a hallmark of Parkinson's disease (PD) and multiple system atrophy (MSA)

Penn Medicine 2

Challenges for Developing α -Synuclein PET Tracers

• The absolute concentration of α -syn aggregates vs AB and tau (10 to 50-fold lower):

Jamie L. Eberling. et al. J. Park. Dis. 2013, 3, 565; Chester A. Mathis et al. Semin. Nucl. Med. 2017, 47, 553; Devika P. Bagchi et al. PLoS ONE 2013, 8, e55031.

• Co-existence and co-localization of α -synuclein aggregates with Good selectivity Vs Aß and tau ~ 30-50; Aß and tau fibrils; Maliha Shah et al. J. Nucl. Med. 2014, 55, 1397; Elina T. L'Estrade et al. Neuropharmacology 2020, 172, 107830.

The limited ligands number of ligands and data

• Most of α -synuclein inclusions are found intracellularly.

Chester A. Mathis et al. Semin. Nucl. Med. 2017, 47, 553; Maliha Shah et al. J. Nucl. Med. 2014, 55, 1397.

• High affinity for α-synuclein ~ 1 nM;

Pass the BBB plus cell membranes.

Various structural forms: Oligomers, fibrils, misfolded proteins

.....

Mohammad Shahnawaz et al. Nature 2020, 578, 273.

in vitro assays or in vivo models

Marcus D Tuttle et al. Nat. Struct. Mol. Biol. 2016, 23, 409.

Timo Strohäker et al. Nat. Commun. 2019, 10, 5535.

The Process of Finding the Ligand: In silico Methods and In Vitro Screening

M503-1619 was identified as a suitable hit for further study

In Vitro Affinity Evaluation Toward Synthetic α-Synuclein Fibrils and AD Tissues

M503-1619 has selectivity to α -synuclein aggregates vs A β

Ligand	<i>K</i> _i (nM) α-Synuclein fibrils vs [³ H]BF2846	<i>K</i> _i (nM) AD Tissue vs <mark>[³H]PIB</mark>	<i>K_i</i> (nM) PD Tissue	<i>K_d</i> (nM) PD Tissue	<i>K_d</i> (nM) AD Tissue	K _d (nM) PSP Tissue
M503-1619	6.5	>350				
[³ H]-M503-1619			4.2	2.5	32	53

M503-1619 has selectivity to α -synuclein aggregates vs A β

In Vitro Off Target Binding: Screening Against 44 G Protein-Coupled Receptor (GPCRs)

GPCPs	K _i (nM) or % inhibition	GPCPs	K _i (nM) or % inhibition	GPCPs	K _i (nM) or % inhibition
Dopamine D1	NA	Muscarinic M1	NA	BZP Rat Brain Site	NA
D2	NA	M2	NA	GABAA	NA
D3	NA	М3	NA	SERT	NA
D4	NA	M4	NA	DAT	NA
D5	NA	M5	NA	NET	NA
Serotonin 5-HT1A	NA	Adrenergic α1A	NA	PBR	NA
5-HT1B	NA	α1B	NA	Opioid µ	NA
5-HT1D	NA	α1D	NA	К	NA
5-HT1E	NA	α2A	NA	δ	NA
5-HT2A	NA	α2B	NA	Histamine H1	NA
5-HT2B	NA	α2C	NA	H2	NA
5-HT2C	NA	β1	NA	H3	NA
5-HT3	NA	β2	NA	H4	NA
5-HT5A	NA	β3	NA		
5-HT6	NA				
5-HT7A	NA	Sigma σ1	NA	NA = not active (no binding at 10 µM)	
		σ2	NA		

Structure of Insoluble α-Synuclein Aggregates is Different in Different Pathologies

Tg-1-52: Microscopy Studies in Human Brain

MeO-

Parkinson's disease (PD)

-Lewy body pathology -Middle Frontal Gyrus -αSyn 2+ Neuron loss 1+ Aβ, tau 0

-Glial cell inclusions -Cerebellum -αSyn 3+ Neuron loss 3+ Aβ, tau 0

Zsofia Lengyel-Zhand et al. Chem. Commun. 2020, 56, 3567.

Small molecules may preferentially bind to one form of α -synucleinopathies

[³H]M503-1619: Nuclear Emulsion Autoradiography Studies

$[^{3}H]M503-1619$ co-localized with α -synuclein antibody in PD not MSA

[³H]M503-1619: Autoradiography Studies

[³H]M503 binds to α-synuclein aggregates in PD not MSA

Radiosynthesis of [¹¹C]M503-1619 and HPLC Analysis

▲ 56-63% radiochemical yield; ♥ >1,187 GBq/µmol molar activity;

♣ >99% radiochemical purity; ♦ radiochemical yield and mol molar activity: decay corrected to EOB.

A: [¹¹C]M503-1619 radiochemical trace; B: UV trace for [¹¹C]M503-1619 with 10% ethanol in 0.9% saline;

C: Radiochemical trace for co-injection of [¹¹C]M503-1619 and M503-1619; D: UV trace for co-injection of [¹¹C]M503-1619 and M503-1619.

The radiosynthesis of [¹¹C]M503-1619 meets the requirements for further preclinical and clinical studies

Penn Medicine 11

[¹¹C]M503-1619: PET Imaging in Non-Human Primates (NHPs) and Radiometabolite Studies

Time HPLC	2 min	20 min	30 min	blood control
1	0.11%	0.52%	0.85%	0.04%
2	0.04%	0.32%	0.97%	0.07%
3	0.05%	0.33%	0.57%	0.05%
4	0.05%	0.22%	0.82%	0.06%
5	0.06%	0.34%	0.89%	0.06%
6	0.05%	0.73%	0.76%	0.05%
7	0.06%	0.48%	0.94%	0.07%
8	1.25%	4.60%	9.30%	0.11%
9	2.18%	3.97%	8.59%	0.95%
10	1.29%	1.52%	2.43%	0.32%
11	0.41%	1.09%	3.30%	0.30%
12	1.28%	3.63%	7.48%	0.12%
13	0.18%	0.63%	0.73%	0.11%
14	0.16%	0.78%	0.87%	0.07%
15	2.39%	2.67%	1.92%	0.07%
<mark>16</mark>	<mark>58.50%</mark>	<mark>45.31%</mark>	<mark>40.89%</mark>	<mark>1.41%</mark>
<mark>17</mark>	<mark>29.50%</mark>	<mark>29.56%</mark>	<mark>13.90%</mark>	<mark>86.15%</mark>
<mark>18</mark>	<mark>2.05%</mark>	<mark>0.90%</mark>	<mark>1.51%</mark>	<mark>9.50%</mark>
19	0.20%	0.60%	1.13%	0.27%
20	0.12%	1.08%	0.72%	0.14%
21	0.08%	0.72%	1.41%	0.09%

Pharmacokinetic and imaging properties are quite suitable for a PET tracer

Conclusions

 H_2N $H_{3}^{11}C$ [¹¹C]M503-1619

- High affinity for α-synuclein, low affinity for Aβ;
- Good radiochemical yield, high molar activity and radiochemical purity;
- High specificity as demonstrated by in vitro off-target studies;
- Nuclear emulsion and ARG studies: α-Syn aggregates in PD not in MSA;
- High brain uptake and rapid washout.

Our data suggest that [¹¹C]M503-1619 has suitable properties for a PET radiotracer for translational imaging studies in PD subjects.

🎇 Penn Medicine 🛛 🕦

Acknowledgments

Thanks to the National Institute on Neurological Disorders and Stroke (NINDS) for Funding the U19 Center-Grant #NS110456

