• Human tau is comprised of six isoforms that possess three microtubule-binding repeats (3R) or four repeats (4R): Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are considered 4R-tauopathies, Alzheimer’s disease (AD) and chronic traumatic encephalopathy (CTE) are mixed 3R/4R-tauopathies while Pick’s disease (PiD) is considered a 3R-tauopathy.[1]

• Cryo-EM studies have demonstrated that tauopathies have different tau folding structures. AD & CTE share a common fold, where as PiD, PSP, or CBD are comprised of unique folds.[2]

• The development of tau PET radiotracers has been focused on AD. Of the radiopharmaceuticals reported to bind 4R-tau in non-AD tauopathies, [18F]PM-PBB3 and [18F]PI-2620 are the most advanced.[3]

Figure 1. Structures of CBD-2115, Z-3540 and Z-2340.

•

\[
\text{K}_d \text{ values showed that [3H]Z-3540 binds with high affinity}
\]

\[
(18F)Z-3540
\]

To identify novel high-affinity analogs of CBD-2115 with suitable physicochemical properties for blood-brain barrier (BBB) permeability through high-resolution structural fingerprint searches.

• Radiolabel the lead candidates and evaluate them using in vitro binding assays as well as in vivo PET studies in rodents.

• Given the promising in vitro binding results of (18F)CBD-2115 for non-AD tauopathies, a study to identify new analogs to improve brain uptake was initiated by chemical fingerprint-based method to identify closely related compounds to CBD-2115 from virtual screening libraries.

• An in silico search was performed by constructing a high-resolution structural fingerprint database of a 3.5B compound library from the Enamine REAL collection to identify promising leads.

In Silico & In Vivo Evaluation

The current study utilized a variety of in silico approaches to identify high affinity candidates with higher probability of BBB permeability than CBD-2115:

• Cryo-EM structures of 4R-tau filaments were used to identify potential binding sites for structure-activity relationship (SAR) studies.

• A structural fingerprint based on CBD-2115 was then used to screen 3.5 Billion compounds virtually to identify candidates with similar SAR.

• Three computational methods, CNS MPO, CNS PET MPO and BBB score [5], were used to evaluate BBB permeability.

• Z-3540 showed improved scores in all three models compared to CBD-2115 (Table 1).

Table 1. In silico BBB permeability scores for Z-3540 compared to CBD-2115.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CNS MPO (6.0)</th>
<th>CNS PET MPO (6.0)</th>
<th>BBB Score (6.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD-2115</td>
<td>3.7</td>
<td>1.9</td>
<td>3.18</td>
</tr>
<tr>
<td>OXD-3540</td>
<td>3.8</td>
<td>2.9</td>
<td>3.55</td>
</tr>
</tbody>
</table>

• [1H]Z-3540 affinity to tau filaments were evaluated in human AD, PSP, CBD, PiD and PD homogenous tissue (Table 2).

\[
\text{K}_d \text{ values showed that [1H]Z-3540 binds with high affinity (≤5 nM) to mixed 3R/4R tau (AD tissue) as well as 4R tau (PSP and CBD tissue).}
\]

Table 2. Binding affinities (Kd) for [1H]Z-3540 in human homogenous brain tissues.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>[1H]Z-3540 Kd (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>4.0 ± 3.1</td>
</tr>
<tr>
<td>PSP</td>
<td>5.1 ± 1.2</td>
</tr>
<tr>
<td>CBD</td>
<td>4.5 ± 0.4</td>
</tr>
<tr>
<td>PiD</td>
<td>9.7 ± 7.4</td>
</tr>
<tr>
<td>PD</td>
<td>89 ± 10</td>
</tr>
</tbody>
</table>

• [18F]Z-3540 was radiolabeled in a two-step fully automated reaction using alcohol enhanced copper-mediated radiofluorination followed by purification of >98%.

• The logD7.4 value of [18F]Z-3540 were measured to 3.36 ± 0.04, which is within the upper range of known brain penetrant PET radiotracers.

•

\[
\text{In competitive binding assays against [1H]PM-PBB3, [1H]CBD-2115 and [1H]PI-2620 (Table 3).}
\]

• Surprisingly, Z-3540 did not compete well for the same high affinity binding site as [1H]CBD-2115, but did compete with [1H]PM-PBB3.

• [18F]Z-3540 is a brain penetrant high-affinity 4R-tau PET radiotracer for imaging 4R-tauopathies based on a novel fluoro-pyridinyl indole structural scaffold.[4]

• A structural fingerprint database of a 3.5B compound library from the Enamine REAL collection to identify promising leads.

• [18F]Z-3540 showed initial uptake of 1.7 SUV in brain following iv administration in rat PET imaging studies (Figure 2).

• Radioactivity cleared from brain as expected in wild-type rats to 0.5 SUV during the duration of the PET scans.

Table 3. Competitive binding assay comparing Z-3540

<table>
<thead>
<tr>
<th>Radioligand</th>
<th>Blocking Compound</th>
<th>AD tissue Ki (nM)</th>
<th>PSP tissue Ki (nM)</th>
<th>CBD tissue Ki (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1H]PM-PBB3</td>
<td>Z-3540</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>[1H]CBD-2115</td>
<td>Z-3540</td>
<td>270</td>
<td>250</td>
<td>210</td>
</tr>
<tr>
<td>[1H]PI-2620</td>
<td>Z-3540</td>
<td>80</td>
<td>95</td>
<td>71</td>
</tr>
</tbody>
</table>

• [18F]Z-3540 was shown to have a low Ki (nM) in all tissues and a high Ki (nM) in PSP tissue.

• [18F]Z-3540 showed high initial uptake of 1.7 SUV in brain following iv administration in rat PET imaging studies (Figure 2).

• Radioactivity cleared from brain as expected in wild-type rats to 0.5 SUV during the duration of the PET scans.

CONCLUSIONS & FUTURE PERSPECTIVES

• [18F]Z-3540 is a brain penetrant high-affinity 4R-tau PET radiotracer developed through in silico methodology.

• Further work on assessing their potential in higher species as well as identifying new analogs with higher affinities are ongoing.

References:

Acknowledgements:
We thank the radiochemistry, preclinical, and methodology teams at CAMH Brain Health Imaging Centre; the Autism Foundation, the Canada Research Chairs Program, Canada Foundation for Innovation and the Ontario Research Fund for support. The National Institute on Neurological Disorders and Stroke (NINDS) for supporting this research collaboration (U19 NS110469). Human AD, PSP, CBD, and PD tissue samples were provided by the Neurodegenerative Disease Brain Bank at the University of California, San Francisco, the Rainwater Charitable Foundation, and the Bluefield Project to Cure FTD. Human PD tissue was provided by the Michael J. Fox Foundation.