Radiosynthesis, in vitro and in vivo evaluation of [18F]Z-3540 for imaging 4R-tauopathies
 Anton Lindberg¹, Thomas J. A. Graham², Junchao Tong ${ }^{1}$, Robert H. Mach ${ }^{2}$, Chester A. Mathis ${ }^{3}$ and Neil Vasdev ${ }^{1,4}$

anton.lindberg@camh.ca
INTRODUCTION

Human tau is comprised of six isoforms that possess three microtubule binding repeats (3R) or four repeats (4R): Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are considered 4Rtauopathies, Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE) are mixed 3R/4R-tauopthies while Pick's disease (PiD) is considered a 3R-tauopathy.[1]
Cryo-EM studies have demonstrated that tauopathies have different tau folding structures. AD \& CTE share a common fold, where as PiD, PSP, or CBD are comprised of unique folds.[2]
The development of tau PET radiotracers has been focused on AD. Of the radiopharmaceuticals reported to bind 4R-tau in non-AD tauopathies, [18F]PM-PBB3 and [${ }^{18}$ F]PI-2620 are the most advanced.[3]

Figure 1. Structures of CBD-2115, Z-3540 and Z-2340
We recently reported the development of [$\left.{ }^{18} \mathrm{~F}\right] \mathrm{CBD}-2115$ (Figure 1), a first in-class PET radiotracer for imaging 4R-tauopathies based on a novel in-class PET radiotracer for imagidingl indole structural scaffold.[4]
[$\left.{ }^{3} \mathrm{H}\right]$ CBD-2115 binds to tau aggregates in PSP tissue in vitro. Unfortunately, [$\left.{ }^{18} \mathrm{~F}\right] C B D-2115$ had low brain uptake in rodent and non-human primate PET imaging studies.

METHODS \& RESULTS

In Silico \& In Vitro Evaluation

The current study utilized a variety of in silico approaches to identify high affinity candidates with higher probability of BBB permeability than CBD-2115:

Cryo-EM structures of $4 R$-tau filaments were used to identify potential binding sites for structure-activity relationship (SAR) studies.
A structural fingerprint based on CBD-2115 was then used to screen 3.5 Billion compounds virtually to identify candidates with similar SAR

Three computational methods, CNS MPO, CNS PET MPO and BBB score [5], were used to evaluate BBB permeability
Z-3540 showed improved scores in all three models compared to CBD-2115 (Table 1).

```
Table 1. In silico BBB permeability scores for Z-3540 compared to CBD-2115.
```

Compound	CNS MPO (6.0)	CNS PET MPO (6.0)	BBB Score (6.0)
CBD-2115	3.7	1.9	3.18
OXD-3540	3.8	2.9	3.55

[$\left.{ }^{3} \mathrm{H}\right]$ Z-3540 affinity to tau filaments were evaluated in human AD, PSP, CBD, PiD and PD homogenous tissue (Table 2).
K_{d} values showed that $\left[{ }^{3} \mathrm{H}\right]$ Z-3540 binds with high affinity ($\geq 5 \mathrm{nM}$) to mixed 3R/4R tau (AD tissue) as well as 4R tau (PSP and CBD tissue)

Table 2. Binding affinities (K_{d}) for $\left.{ }^{3} \mathrm{H}\right] \mathrm{Z}-3540$ in human homogenous brain tissues

Tissue	$\left[{ }^{3} \mathrm{H}\right] \mathrm{Z}-3540 \mathrm{~K}_{\mathrm{d}}(\mathrm{nM})$
AD	4.0 ± 3.1
PSP	5.1 ± 1.2
CBD	4.5 ± 0.4
PiD	9.7 ± 7.4
PD	89 ± 10

camh
Brain Health Imaging Centre
toriversity of
罝Penn
Nitsburgh

In Vitro Assays and Radiosynthesis
In competitive binding assays against $\left[{ }^{3} \mathrm{H}\right] \mathrm{PM}-\mathrm{PBB} 3,\left[{ }^{3} \mathrm{H}\right] \mathrm{CBD}-2115$ and $\left[{ }^{3} \mathrm{H}\right] \mathrm{PI}-2620$, Z-3540 blocked [$\left.{ }^{3} \mathrm{H}\right]$ PM-PBB3 but showed low capacity to $\left[{ }^{3} \mathrm{H}\right] \mathrm{PI}-2620, \mathrm{Z}-3540$ blocked ${ }^{[3 \mathrm{H}] \text { PM-PBB3 but }}$ sher
block either $\left[{ }^{3} \mathrm{H}\right] \mathrm{CBD}-2115$ or $\left[{ }^{3} \mathrm{H}\right] \mathrm{PI}-2620$ (Table 3).
Surprisingly, Z-3540 did not compete well for the same high affinity binding site as $\left[{ }^{3} \mathrm{H}\right] \mathrm{CBD}-2115$, but did compete with [$\left.{ }^{3} \mathrm{H}\right]$ PM-PBB3.

Table 3. Competitive binding assay comparing Z-3540

Radioligand	Blocking Compound	AD tissue $\mathrm{K}_{\mathrm{i}}(\mathrm{nM})$	PSP tissue $\mathrm{K}_{\mathrm{i}}(\mathrm{nM})$	CBD tissue $\mathrm{K}_{\mathrm{i}}(\mathrm{nM})$
$\left.{ }^{[3} \mathrm{H}\right]$ PM-PBB3	Z-3540	18	$\mathbf{2 0}$	$\mathbf{2 2}$
$\left[\begin{array}{c}3 \\ H\end{array}\right]$ CBD-2115				
$\left[{ }^{3} \mathrm{H}\right]$ PI-2620	Z-3540	270	250	210
Z-3540	80	95	71	

[${ }^{18}$ F]Z-3540 was radiolabeled in a two-step fully automated reaction using alcohol enhanced copper-mediated radiofluorination followed by deprotection of the BOC groups in methanol at high temperature.
The unactivated site for the radiofluorination limited the radiochemical yields to $<1.0 \%$ with molar activities of $65.3 \pm 15.2 \mathrm{GBq} / \mu \mathrm{mol}$ and radiochemical purity of $>98 \%$.
The $\log \mathrm{D}_{7.4}$ value of $\left[{ }^{18} \mathrm{~F}\right] Z-3540$ were measured to 3.36 ± 0.04, which is within the upper range of known brain penetrant PET radiotracers.

\qquad

Scheme 1. Radiosynthesis of [18F F$]-3540$. Conditions: $\left.{ }^{18} \mathrm{~F}\right] \mathrm{F}$-, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{Kryptofix}_{2.2}$, DMSO, $160^{\circ} \mathrm{C}, 20$ min followed by methanol, $130^{\circ} \mathrm{C}, 20 \mathrm{~min}$.
References: (1) Goedert et al. Annu. Rev. Neurosci. 2017; Berriman et al. Proc. Natl. Acad. Sci, 2003; Arai et al. Acta Neuropathol. 2001 (2) Sergeant et al. J. Neurochem. 1999; McKee et al. Brain Pathol. 2015; Shi et al. Nature 2021 (3) Malarte et al. Eur. J. Nucl. Med. Mol. Imaging 2021; Tagai et al. Neuron 2021 (4) Lindberg et. al. ACS Chem. Neurosci. 2021 (5) Gupta et al. J. Med Chem. 2019; Zhang et al. J. Med. Chem. 2013

PET Imaging in Rats

[$\left.{ }^{18} \mathrm{~F}\right]$ Z-3540 showed initial uptake of 1.7 SUV in brain following iv. administration in rat PET imaging studies (Figure 2).
Radioactivity cleared from brain as expected in wild-type rats to 0.5 SUV during the duration of the PET scans

Figure 2. PET summation images ($0-5 \mathrm{~min}$ and $0-120 \mathrm{~min}$) and time-activity curve from rat PET imaging scans using $\left.{ }^{18} \mathrm{~F}\right] \mathrm{Z}-3540$.

CONCLUSIONS \& FUTURE PERSPECTIVES

- [$\left.{ }^{18} \mathrm{~F}\right] Z-3540$ is a brain penetrant high-affinity 4R-tau PET radiotracers developed through in silico methodology.
Further work on assessing their potential in higher species as well as identifying new analogs with higher affinities are ongoing

Acknowledgements:
We thank the radiochemistry, precinical, and methodology teams at CAMH Brain Health Imaging Centre; the Azrieli
We thank the radiochemistry, preclinical, and methodology teams at CAMH Brain Heath Imaging Centre; the Azrie,
Foundation, the Canada Research Chairs Program, Canada Foundation for Innovation and the Ontario Research Fund for Foundation, the Canad Research Chairs Program, Canada Foundation for Innovation and the Ontario Research Fund for
support The National Institue on Neurologicial isoorders and Stroke (NINDS) for supporting this research collaboration (U19
NS1045 Sp10.
NS110456), Human AD, PPPP, CBD, and Pip tissue samples were provided by the Neurodedegenerative Disease Brain Bank at
the University of California, San Franciso, the Rainwater Charitable Foundation, and the Bluefield Project to Cure FTD. the University of California, San Francisco, the Rainwater Charity
Human PD tissue was provided by the Michael J. Fox Foundation.

