Radiosynthesis and biological evaluation of two 18F-labeled PET radioligands for α-synuclein

Yanbo Yu1, Lin Qiu1, Hao Jiang1, Dhruva Dhavale2, Paul Kotzbauer2, Joel S. Perlmutter2, Wai Kit Chia3, Robert Mach3 and Zhude Tu1*

1Departments of Radiology, 2Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
3Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104,
Parkinson disease and alpha-synuclein protein

- Parkinson’s Disease (PD) is the second most common neurodegenerative disease
- The motor symptoms of PD are caused by degeneration of dopaminergic neurons in the substantia nigra, which is accompanied by Lewy bodies (LBs) and Lewy neuritis (LN)
- α-Synuclein is the main component of Lewy bodies and Lewy neuritis, and plays an important function in the CNS by regulating synaptic vesicle recycling and synthesis, vesicular storage and release of neurotransmitter
- Accumulation of α-synuclein aggregation may cause synaptic dysfunction and neuronal cell death
- α-synuclein is a pathological hallmark of Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA).
- A suitable PET radiotracer targeting α-synuclein could be useful in early diagnosis of PD, disease progression, and assessment of the efficacy of disease-modifying therapies

Radioligands for α-Synuclein

- **Radiotracer** $[^{18}F]$ACI-12589 was reported as PET radiotracer for imaging alpha-synuclein in the human brain by AC immune (https://clinicaltrials.gov/ct2/show/results/NCT05067192).
- Data suggested that $[^{18}F]$ACI-12589 tracer binding in the brain is consistent with expected patterns of α-synuclein pathology.
- However, further evaluation of disease and target specificity, and potential PET signal retention in α-syn-positive PD/dementia are still needed.

R. Wang, etc., *Analytical and Bioanalytical Chemistry, 2023*, 415, 1589-1605.
Design and synthesis strategy

increased binding sites and rotational freedom around NH linker
In vivo screening of each new compounds

<table>
<thead>
<tr>
<th>Name</th>
<th>Ki (nM), in a-syn fibrils v.s. [³H]BF2846</th>
<th>max%inh_site9</th>
<th>Ki (nM) in AD vs [³H]PiB</th>
<th>max % Inh PiB</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZ80-156</td>
<td>14.95 ± 19.07</td>
<td>100</td>
<td>>1000</td>
<td>NA</td>
</tr>
<tr>
<td>TZ83-41</td>
<td>12.5 ± 40.81</td>
<td>60</td>
<td>362 ± 372</td>
<td>40</td>
</tr>
</tbody>
</table>

[³H]BF2846 for alpha-synuclein fibrils

[³H]PiB for AD tissues

BF2846 (site 9 asyn fibrils)

PiB (AD CAA- Hom.)
Syntheses of precursors

Reaction and conditions: (a) Pd$_2$(dba)$_3$, XantPhos, Cs$_2$CO$_3$, 1,4-dioxane, 110 ºC; (b) 6 M HCl, MeOH, 70 ºC; (c) Boc$_2$O, DMAP, RT; (d) Cs$_2$CO$_3$, MeOH, RT; (e) (E)-1,4-dibromobut-2-ene, Cs$_2$CO$_3$, acetone, RT.
Radiosynthesis of $[^{18}\text{F}]$TZ83-41 and $[^{18}\text{F}]$TZ80-156

- Specific activity (SA): (> 37 GBq/μmol, at the end of synthesis (EOS)).
- Radiochemical and chemical purity > 98%
The brain standardized uptake values (SUVs) for [\(^{18}\text{F}\)]TZ83-41 and [\(^{18}\text{F}\)]TZ80-156 reached a maximum (~2.0) at 6-7 min post tracer injection, followed by a favorable washout rate from the NHP brain.

It suggests that both radioligands could cross the blood brain barrier, [\(^{18}\text{F}\)]TZ80-156 may have defluorination in vivo.
Tissue biodistribution in Sprague-Dawley rats

- $[^{18}\text{F}]\text{TZ83-41}$ had a good brain uptake up to $0.71 \sim 0.24\ \%\text{ID/gram}$ from 5 to 120 min.

- For $[^{18}\text{F}]\text{TZ80-156}$, the brain uptake dramatically decreased to 0.25 at 30 min, and 0.16 at 60 min. Bone uptake increased from 0.45 at 5 min to 2.18 at 30 min and 3.09 at 120 min.
Radiometabolite analysis of NHP plasma samples

• **[^18F]TZ83-41** is relatively stable in NHP plasma and only one hydrophilic radiometabolite ($t_R = 6.8$ min) is detected.

<table>
<thead>
<tr>
<th></th>
<th>5 min</th>
<th>15 min</th>
<th>30 min</th>
<th>60 min</th>
<th>90 min</th>
<th>In vitro blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometabolite</td>
<td>7%</td>
<td>31%</td>
<td>41%</td>
<td>53%</td>
<td>62%</td>
<td>3%</td>
</tr>
<tr>
<td>[^18F]TZ83-41</td>
<td>93%</td>
<td>69%</td>
<td>59%</td>
<td>47%</td>
<td>38%</td>
<td>97%</td>
</tr>
</tbody>
</table>
Summary and future plan

- *In vitro* binding showed two compounds are potent and selective for alpha-synuclein.

- Two new F-18 labeled radioligands, [\(^{18}\text{F}\)]TZ83-41 and [\(^{18}\text{F}\)]TZ80-156 were radiosynthesized successfully.

- Both radiotracers could cross the blood brain barrier (SUV up to 2.0) and possess a good brain washout kinetics in the NHP.

- Radiometabolite analysis and rat biodistribution showed that [\(^{18}\text{F}\)]TZ83-41 has no defluoroination *in vivo*.

- Further evaluation will focus on [\(^{18}\text{F}\)]TZ83-41 and determine if it be selected for translational clinic evaluation.
Acknowledgements

- Washington University Cyclotron Facility
- Small Animal Preclinical Imaging Facility
- Nonhuman Primate PET Facility
- U of Penn, Dr. Robert Mach’s group
- U of Pittsburg, Dr. Chester Mathis’s group

- **Funding support:** National Institutes of Health (U19 NS110456)
THANK YOU FOR YOUR ATTENTION!
Addition information

- **ID:** SS14
- **Room:** S504ab
- **Session Date:** June 25, 2023
- **Session Time:** 12:30 PM - 1:45 PM
 Session Type: Scientific Session
- **Session Title:** Developments in Cardiovascular and Neurological Imaging
- **Abstract #/Title:** P1452 - *Radiosynthesis and biological evaluation of two 18F-labeled PET radioligands for α-synuclein*
 Presentation Time: 1:05 PM - 1:15 PM (this includes 2 minutes for Q&A)
- **Presenters:**
 - Xuedan Wu
 - Steven Liang
 - Mausam Kalita
 - Zhude Tu
 - Divangana Lahad
 - Allen Brooks
 - Yadira Medina Guevara