Precision Medicine for mNETs: Update on Organoid Research

Terence P. Gade MD PhD
Departments of Radiology and Cancer Biology
Perelman School of Medicine, University of Pennsylvania
9th Annual Focus on Neuroendocrine Tumor
6 March 2020
DISCLOSURES

- Trisalus Life Sciences- Scientific Advisory Board
- Grant Funding
 - NIH
 - Veterans Administration
 - Society of Interventional Oncology
 - Society of Interventional Radiology
 - RSNA
NETs: A Growing Health Problem

Increasing Incidence of NET

Metastatic Disease is Common

NET incidence per 100,000 has INCREASED FROM 1.7 IN 1980-1989 TO 14 IN 2019

Adapted from https://gicancer.org.au/cancer/neuroendocrine-tumours/
Adapted from https://gicancer.org.au/cancer/neuroendocrine-tumours/

Therapeutic Targeting of mNETs: Challenges

- Unrepresentative Samples
- Limited Biobanks
- Suboptimal Model Systems
Penn mNET Biopsy Protocol

Observational Clinical Trial:
Biopsy of Liver mNETs at time of TAE/TACE

- Genetic Sequencing
- Genome Mapping
- Metabolomic Profiling
- Model Generation
MODEL GENERATION: ORGANOIDS

Tumor Organoids Provide Unique Cancer Models

- Self-organizing 3D structures grown in vitro
- Recapitulate the architecture and function of the parent human tumor
- Diverse applications
 - Study of representative cancer biology
 - Precision medicine
 - Identify optimal therapy for each patient

Schematic of Tumor Organoid

Adapted Tuveson Science 2019
Methods for organoid generation from mNET biopsy samples are not well established.
mNET ORGANOID CREATION: PROGRESS

Optimized Culture Conditions

mNET Patient

Biopsy

Relative adherence (75th percentile)

Growth

Patient 11
Patient 16

Patient 11
Patient 16
Precision Medicine

Personalized therapy against specific vulnerabilities in each patient’s cancer

Key Components
- Consistent acquisition of tissue samples
- Safety & compatibility with current clinical workflow
- Robust patient-derived models (organoids)

The right drug for the right patient
PARADIGM

1. mNET Patient
2. Biopsy
3. Primary Culture (Organoids)
4. High throughput chemical screen
5. Putative targets
6. Clinical application
7. In vivo Expansion
Precision Medicine: Patients 17 & 20

Biopsy

1. Cell isolation & expansion

2. Validation

3. Screen

44 Hits that overlap

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Class</th>
<th>Catalog No.</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemcitabine</td>
<td>cancer</td>
<td>S1478</td>
<td>Arafase, Autophagy/DNA/PNA Synthesis</td>
</tr>
<tr>
<td>GO2824</td>
<td>kinase</td>
<td>S7194</td>
<td>Bcr-Abl</td>
</tr>
<tr>
<td>Ibrutinib</td>
<td>kinase</td>
<td>S2622</td>
<td>DNA-PK, PD-1p, PI3K</td>
</tr>
<tr>
<td>GW9508</td>
<td>kinase</td>
<td>S8014</td>
<td>Epigenetic, HMG-CoA, MEK</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>metabolite</td>
<td>S2077</td>
<td>Epigenetic, HMG-CoA, MEK</td>
</tr>
<tr>
<td>BI-172525</td>
<td>MEK</td>
<td>S7843</td>
<td>Kras, PI3K</td>
</tr>
<tr>
<td>Pimasertib</td>
<td>kinase</td>
<td>S1475</td>
<td>MEK, PI3K, SRC, TNF-alpha</td>
</tr>
<tr>
<td>Cephalomannine</td>
<td>other</td>
<td>S2408</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Elafolysin</td>
<td>microbicid</td>
<td>S1448</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Apigenin</td>
<td>metabolite</td>
<td>S2262</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>VS-5584 (SB2343)</td>
<td>kinase</td>
<td>S2077</td>
<td>Rac, PI3K, Others, Src</td>
</tr>
<tr>
<td>EHop-016</td>
<td>kinase</td>
<td>S7319</td>
<td>Rac, PI3K, Src, TNF-alpha</td>
</tr>
<tr>
<td>Dasatinib Monohydrate</td>
<td>kinase</td>
<td>S7782</td>
<td>Rac, PI3K, Src, TNF-alpha</td>
</tr>
<tr>
<td>QNZ (EVP5933)</td>
<td>cancer</td>
<td>S4902</td>
<td>Rac, PI3K, Src, TNF-alpha</td>
</tr>
</tbody>
</table>

15 Hits unique to Patient 17 (M898)

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Class</th>
<th>Catalog No.</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHA-793887</td>
<td>kinase</td>
<td>S1487</td>
<td>CDK, COK, MEK, PI3K, Rac, SRC</td>
</tr>
<tr>
<td>Celsidixib</td>
<td>cancer</td>
<td>S1261</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>PP121</td>
<td>kinase</td>
<td>S2622</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>I-BET51 (GSK1261015)</td>
<td>epigenetic</td>
<td>S2077</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>GW9508</td>
<td>cancer</td>
<td>S8014</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>metabolite</td>
<td>S2077</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>BI-172525</td>
<td>MEK</td>
<td>S7843</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Pimasertib</td>
<td>kinase</td>
<td>S1475</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Cephalomannine</td>
<td>other</td>
<td>S2408</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Elafolysin</td>
<td>microbicid</td>
<td>S1448</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Apigenin</td>
<td>metabolite</td>
<td>S2262</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>VS-5584 (SB2343)</td>
<td>kinase</td>
<td>S2077</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>EHop-016</td>
<td>kinase</td>
<td>S7319</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Dasatinib Monohydrate</td>
<td>kinase</td>
<td>S7782</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>QNZ (EVP5933)</td>
<td>cancer</td>
<td>S4902</td>
<td>Others, Others, Others</td>
</tr>
</tbody>
</table>

8 Hits unique to Patient 20 (M2842)

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Class</th>
<th>Catalog No.</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deguelin</td>
<td>Akt</td>
<td>S8132</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>KPT-330</td>
<td>CRM1</td>
<td>S7251</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Pozotinib (HM781-36B)</td>
<td>EGFR</td>
<td>S7358</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>Vegesib (ABBV-079)</td>
<td>Epigenetic</td>
<td>S8400</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>17-AAG (Tanespimycin)</td>
<td>cancer</td>
<td>S1141</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>6MS-707035</td>
<td>Integrase</td>
<td>S8215</td>
<td>Others, Others, Others</td>
</tr>
<tr>
<td>NMS-8735.3</td>
<td>p97</td>
<td>S7258</td>
<td>Others, Others, Others</td>
</tr>
</tbody>
</table>

Patient 17M
Precision Medicine: Patients 17 & 20

Biopsy

Cell isolation & expansion

Validation

Screen

Normalized % Inhibition

FDA-Approved Drugs

Dasatinib
Vorinostat
Temsirolimus
Gemcitabine
Pemetrexed
Valpazinc
Pancrtaxinol
Doxorubicin
Mitomycin
Cisplatin
Sorafenib
Regorafenib

Patient 17P
Patient 17M
Patient 20

Other Malignancies

HCC

Patient 20
Precision Medicine: Patients 17 & 20

- Biopsy
- Cell isolation & expansion
- Validation
- Screen
Feasible to establish mNET organoid cultures from needle biopsy samples

Drug screening enables identification of existing, FDA-approved drugs on a patient-by-patient basis

Foundation for precision medicine approach to mNET
FUTURE DIRECTIONS: DEVELOPMENT FOR CLINICAL IMPLEMENTATION

1. Optimize culture of, and validate, *in vitro* (organoid) & *in vivo* models
FUTURE DIRECTIONS: DEVELOPMENT FOR CLINICAL IMPLEMENTATION

1. Optimize culture of, and validate, *in vitro* (organoid) models

2. Leverage models for precision medicine paradigm for patients with mNETs
ACKNOWLEDGEMENTS

Patient Volunteers

PIGI Lab
Penn IR
Dan Ackerman
Kelley Weinfurtner
Michael Soulen
Greg Nadolski
Stephen Hunt
James Chen

Stem Cell & Xenograft Core

Tony Secreto
Josh Glover

HT Screening Core

Sara Cherry
David Schultz

Funding

SIR Foundation

Philanthropy

Penn Medicine Center for Precision Medicine

Rick Mainwaring