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Abstract 1 

Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, 2 

and monitoring treatment response. While proteins can be useful blood-based biomarkers, many 3 

have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-4 

1, L1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in 5 

carcinomas and high-risk precursors during carcinogenesis with negligible detectable expression 6 

in corresponding normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. 7 

To explore the potential of ORF1p as a blood-based biomarker, we engineered ultrasensitive 8 

digital immunoassays that detect mid-attomolar (10-17 M) ORF1p concentrations in patient plasma 9 

samples across multiple cancers with high specificity. Plasma ORF1p shows promise for early 10 

detection of ovarian cancer, improves diagnostic performance in a multi-analyte panel, and 11 

provides early therapeutic response monitoring in gastric and esophageal cancers. Together, 12 

these observations nominate ORF1p as a multi-cancer biomarker with potential utility for disease 13 

detection and monitoring. 14 

 15 

Statement of Significance (50 word) 16 

LINE-1 ORF1p transposon protein is pervasively expressed in many cancers and a highly specific 17 

biomarker of multiple common, lethal carcinomas and their high-risk precursors in tissue and 18 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.01.25.525462doi: bioRxiv preprint 

mailto:mstaylor@mgh.harvard.edu
mailto:conniewu@umich.edu
mailto:dwalt@bwh.harvard.edu
mailto:kathleenh_burns@dfci.harvard.edu
https://doi.org/10.1101/2023.01.25.525462
http://creativecommons.org/licenses/by-nd/4.0/


 2 

blood. Ultrasensitive ORF1p assays from as little as 25 µL plasma are novel, rapid, cost-effective 19 

tools in cancer detection and monitoring. 20 

 21 

Introduction 22 

There is significant clinical need for non-invasive methods to detect, risk stratify, and monitor 23 

cancers over time. Many malignancies are diagnosed at late stages when disease is widespread, 24 

contributing significantly to cancer morbidity and mortality(1). In contrast, there is a likely window 25 

in early-stage disease when patients are typically asymptomatic, in which treatments can be much 26 

more effective. Biomarkers are also needed to assess likelihood of progression in patients with 27 

precursor lesions, to provide prognostic information, and to predict and monitor responses or 28 

resistance to treatment(2). Considerable advances have been made towards detecting circulating 29 

tumor DNA, circulating tumor cells, microRNAs, and extracellular vesicles as non-invasive cancer 30 

biomarkers(3). However, achieving high sensitivities and specificities, particularly in affordable, 31 

scalable, clinical grade screening assays for early cancer detection, remains a major challenge. 32 

The plasma proteome provides a rich reservoir of potential biomarkers(4), which may be used 33 

individually or in combination for Multi-Cancer Early Detection (MCED) assays(5). However, most 34 

readily detectable proteins, including CA125 and HE4(6), FDA-cleared markers for the differential 35 

diagnosis of pelvic masses,  are not sufficiently sensitive at the required high specificity(7) for 36 

cancer screening and/or are expressed in normal tissues and therefore lack the requisite 37 

specificity. 38 

 39 

We have previously shown that expression of long interspersed element-1 (L1, LINE-1)-encoded 40 

open reading frame 1 protein (ORF1p) is a hallmark of many cancers(8), particularly p53-deficient 41 

epithelial cancers. These encompass many of the most commonly occurring and lethal human 42 

cancers, including esophageal, colorectal, lung, breast, prostate, ovarian, uterine, pancreatic, and 43 

head and neck cancers. L1 is the only active protein-coding transposon in humans. We each 44 
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inherit, dispersed throughout our genomes, a complement of active L1 loci encoding two proteins: 45 

ORF1p, the highly expressed RNA binding protein(8), and ORF2p, an endonuclease and reverse 46 

transcriptase with limited expression(9) that generates L1 insertions in cancer genomes(10-13). 47 

L1 expression is repressed in normal somatic tissues, resulting in either very low or undetectable 48 

levels of L1 RNA and protein that appear to originate from epithelium(9,14). Epigenetic 49 

dysregulation of L1 and L1 ORF1p overexpression begin early in carcinogenesis, and histologic 50 

precursors of ovarian, esophageal, colorectal, and pancreatic cancers studied all express ORF1p 51 

at varying levels(8,15). ORF1p is thus a promising highly specific cancer biomarker.  52 

 53 

Although elevated expression of ORF1p is readily detected by immunostaining in tumor tissue, 54 

ORF1p is found in plasma at low concentrations, well below detection limits of conventional 55 

clinical laboratory methods. We therefore applied the much more sensitive Single Molecule Arrays 56 

(Simoa), a digital bead-based ELISA technology, and in preliminary studies detected ORF1p in 57 

plasma at femtomolar levels in subsets of patients with advanced breast (33%, n=6)(16) and 58 

colorectal (90%, n=32)(17) cancers, respectively. Here, we assess the landscape of ORF1p 59 

plasma levels across multiple cancers, iteratively develop highly sensitive assays for potential 60 

applications in early or minimal residual disease detection, and provide evidence that plasma 61 

ORF1p may be an early indicator of therapeutic response.  62 

 63 

Results 64 

Because our preliminary survey of plasma ORF1p levels by Simoa in patients with advanced 65 

stage colorectal cancer (CRC) indicated detectable ORF1p levels in 90% of cases(18), higher 66 

than the proportion of CRCs we previously reported to express ORF1p by immunohistochemistry 67 

(50%, n=18)(8), we first sought to benchmark ORF1p in tissues. Using a re-optimized protocol, 68 

we stained 211 CRCs [178 sequential cases included on a tissue microarray (TMA) as well as an 69 

additional 33 with matched plasma] and found 91% of CRC cases were immunoreactive for 70 
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Figure 1. ORF1p expression is early and pervasive in carcinomas. a, ORF1p immunostaining in a cohort of 211 colorectal cancers. b, Repre-
sentative BE case: lesional cells overexpress p53, the L1 RNA, and ORF1p. c, L1 RNA and ORF1p overexpression across a cohort of 72 
consensus BE cases and 51 carcinomas. d, Schematic of single-molecule protein detection by Simoa; a second generation assay is shown. 
Antibody/nanobody-coated magnetic beads, present in excess relative to target, capture single target ORF1p molecules. Enzyme-labeled 
detection reagent (here, a homodimeric nanobody) is added, forming an “immunosandwich”, beads are loaded into microwells that each can 
hold at most one bead, and ORF1p molecules are then digitally detected using a fluorogenic substrate by counting “on” wells. First generation 
Simoa instead uses Nb5-coated beads and Ab6 detector. e, First-generation ORF1p Simoa detects plasma ORF1p with high specificity across 
major carcinomas. Pie charts indicate percentage of samples with detectable levels; dashed red line, LOD. **, this control patient was thought 
to be ‘healthy’ at the time blood was donated to the biobank but was later found to have prostate cancer and lymphoma.
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ORF1p (Fig. 1a). This result is consistent with genetic studies demonstrating somatic L1 71 

retrotransposition in most CRCs(19), including activity in precancerous lesions antedating APC 72 

tumor suppressor loss(20-22). Similarly, genetic evidence shows esophageal adenocarcinoma 73 

(EAC) has high L1 activity(12), and L1 insertions occur in the highly prevalent Barrett’s esophagus 74 

(BE) precursor early in carcinogenesis(23,24). We therefore assembled a cross-sectional cohort 75 

of 72 BE cases with consensus diagnosis reached by three expert gastrointestinal pathologists. 76 

L1 RNA and ORF1p expression were pervasive in dysplastic BE and present in 100% of 51 77 

esophageal carcinomas (Fig. 1b,c); all five BE cases indefinite for dysplasia and positive for 78 

ORF1p and/or L1 RNA developed high grade dysplasia on subsequent biopsies (not shown). 79 

Overall, this picture is similar to high grade serous ovarian cancers (HGSOC), where ORF1p is 80 

expressed in 90% of cases and 90% of fallopian tube precursor lesions (serous tubal 81 

intraepithelial carcinomas, STICs)(8,15,25). Taken together, ORF1p tissue expression is highly 82 

prevalent in gastrointestinal and gynecologic carcinomas and high-risk precursor lesions. 83 

 84 

We next sought to extend our tissue findings and explore plasma ORF1p. We optimized our 85 

previously reported ORF1p Simoa assay and assessed the landscape of ORF1p levels in 86 

pretreatment plasma from patients with advanced cancers. This “first-generation” assay uses a 87 

recombinant, single-domain camelid nanobody (Nb5) as the capture reagent and a monoclonal 88 

antibody (Ab6) as the detector reagent and has a limit of detection of 0.056 pg/mL (~470 aM 89 

trimeric ORF1p), corresponding to 1.9 fM in plasma after correcting for sample dilution (Fig. 1d, 90 

Table S1). With this assay, we surveyed multiple cancer types and >400 ‘healthy’ control 91 

individuals, who were without known cancer at the time blood was donated to the biobank. Plasma 92 

ORF1p appears to be a highly specific cancer biomarker, with undetectable levels in ~99% of 93 

controls (ages 20-90, Fig. 1e, S1). Of the five control patients with detectable ORF1p, the one 94 

with the highest ORF1p was later found to have advanced prostate cancer and a cutaneous T 95 

cell lymphoma; limited clinical information is available for the other four positive ‘healthy’ 96 
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individuals. With a cutoff set at 98% specificity in healthy controls, the highest proportions of 97 

ORF1p(+) cases were observed in colorectal (58%, n=101) and ovarian cancers (71%, n=145). 98 

While most of these patients had advanced-stage disease, plasma ORF1p remained detectable 99 

in several early-stage patients in the cohort, including in those with ovarian and lung cancers and 100 

in 5/18 with intraductal papillary mucinous neoplasms in the pancreas (IPMN, Fig. S2-S4). 101 

Notably, four of eight stage I ovarian cancers in the cohort were positive (Fig. S2), suggesting 102 

that plasma ORF1p may be an indicator of early-stage disease. As L1 expression is also 103 

dysregulated in autoimmune disease and autoantibodies against ORF1p are prevalent in patients 104 

with systemic lupus erythematosus (SLE), we measured plasma ORF1p in 30 SLE patients and 105 

observed no detectable levels (Fig. S5)(26). Detectable ORF1p was seen in 1 of 30 patients with 106 

chronic liver disease; the one positive patient was subsequently diagnosed with hepatocellular 107 

carcinoma (Fig. S5). Size exclusion chromatography analysis of patient plasma further showed 108 

that the majority of ORF1p resides outside extracellular vesicles (Fig. S6). Together, these 109 

findings support the hypothesis that tumor-derived ORF1p can be found in the peripheral blood 110 

of cancer patients and may act as a cancer-specific biomarker.  111 

 112 

Given the gap between proportions of ORF1p(+) cancers by tumor immunohistochemistry (~90% 113 

for CRC and HGSOC) versus by blood testing (~60-70%), we evaluated the possibility of 114 

increasing plasma assay sensitivity by decreasing the assay’s lower limit of detection. To this end, 115 

we developed a panel of ORF1p affinity reagents, including new recombinant rabbit monoclonal 116 

antibodies (RabMAbs) and engineered camelid nanobodies raised against recombinant human 117 

ORF1p. Because ORF1p is homotrimeric, we engineered multimeric nanobody reagents with the 118 

goal of enhancing binding affinity via increased avidity. These parallel development efforts 119 

ultimately yielded both improved nanobody and rabbit monoclonal antibody reagents with at least 120 

low-picomolar equilibrium dissociation constants (KD) (Fig. S7-S12, Table S2-S4). Iterative 121 

screening of these reagents with Simoa using recombinant antigen and select patient plasma 122 
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samples yielded three best-performing capture::detection pairs, termed “second-generation,” 123 

which use rabbit monoclonal antibodies 34H7 and 62H12 as capture reagents and either Ab6 or 124 

homodimeric form of Nb5 (Nb5-5LL) as detector (Fig. 2a-c, S13-S16). Adding detergent further 125 

improved performance by limiting bead aggregation and improving bead loading into microwells. 126 

These second-generation assays comprised capture::detection pairs of 34H7::Nb5-5LL, 127 

62H12::Nb5-5LL, and 62H12::Ab6, achieving detection limits of 0.016-0.029 pg/mL (130-240 aM 128 

trimeric ORF1p), and the four different reagents have predominantly non-overlapping epitopes in 129 

binning experiments (34H7 and 62H12 partially overlap, Fig. 2a-c, Table S1, S5-S6). Somewhat 130 

unexpectedly, analytical sensitivity did not perfectly correspond to clinical sensitivity. While the 131 

second-generation assays demonstrated less than an order-of-magnitude improvement in 132 

analytical sensitivity over the first-generation assay, they showed considerable improvement in 133 

circulating ORF1p detectability over background in buffer in re-measured samples across a large 134 

cohort of healthy and cancer patients (Fig 2a, S17). This difference may be due to differing 135 

accessibilities of circulating ORF1p epitopes or to different nonspecific binding patterns in plasma.  136 

 137 

Undetectable or extremely low ORF1p levels in healthy individuals could readily be discriminated 138 

from measured ORF1p levels in ovarian cancer patients, resulting in a strong discriminatory ability 139 

with single-marker models (area under the receiver operating characteristic curve, AUCs of 0.93 140 

to 0.948, sensitivity of 41% to 81% at 98% specificity, Fig. 2d top panel, Table S7). This large 141 

cohort included pre-treatment plasma samples from ovarian cancer patients (mostly high-grade 142 

serous ovarian carcinoma) with age-matched controls (n=51-53 women, Fig 2b); again, second-143 

generation assays showed higher sensitivities while maintaining high specificities, notably 144 

achieving detection of five out of six Stage I/II patients at >98% specificity. Furthermore, 145 

multivariate models combining ORF1p (34H7::Nb5-5LL assay) with ovarian cancer biomarkers 146 

CA125 and HE4 yielded improved diagnostic performance over these existing markers (CA125 147 

and HE4 alone, AUC = 0.94, 59% sensitivity at 98% specificity; ORF1p, CA125, and HE4, AUC 148 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.01.25.525462doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525462
http://creativecommons.org/licenses/by-nd/4.0/


 7 

= 0.98, 91% sensitivity at 98% specificity; Fig 2d bottom panel, S18; Table S8). While it is not 149 

clear whether the low ORF1p levels detected in several healthy individuals is due to nonspecific 150 

binding, true background levels of ORF1p, or an unappreciated pre-malignant state, several 151 

positive healthy controls were positive by only one of the three second-generation assays (n=4 152 

positive by only 62H12::Nb5-5LL and n=75 positive by only 62H12:Ab6), suggesting nonspecific 153 

binding in at least some of these cases and the potential to improve specificity by combining data 154 

from multiple assays. Our results indicate that by developing improved affinity reagents, we 155 

achieved improved clinical sensitivity in detecting circulating ORF1p in cancer patients, with 83% 156 

sensitivity at >98% specificity towards early detection of ovarian cancer.  157 

 158 

To further validate our results, we developed a targeted proteomics approach to measure ORF1p 159 

following affinity capture, with two distinct peptides measured vs. internal isotopically labeled 160 

control peptides (Fig. 2e). With this assay, we applied much larger volumes of plasma (3-6 ml, 161 

120-240 fold more than the 25 µL used in Simoa assays) from a cohort of 10 patients, including 162 

2 gastroesophageal (GE) cancer patients and one healthy control with very high ORF1p (230-163 

1230 pg/ml), two healthy controls with high ORF1p, (3-5 pg/ml), and 5 healthy controls with low 164 

ORF1p (undetectable – 0.2 pg/ml). The results (Fig. 2f, S19) show strong correlation with Simoa, 165 

providing further confidence in our results (r=0.97-0.99, p<0.0001). 166 

 167 

Building on the improvements made through nanobody engineering in our second-generation 168 

assays, we developed an expanded set of homodimeric, heterodimeric, and heterotrimeric anti-169 

ORF1p nanobodies and screened them in combination with 34H7 and 62H12 capture antibodies, 170 

resulting in “third-generation” assays (Figs. S9, S12, S20-21). We noticed that reagents 171 

containing Nb2 performed very well in SPR but poorly in Simoa detection, and we hypothesized 172 

this was because Nb2 contains a lysine in the CDR, which would be biotinylated in the procedure, 173 

reducing affinity. We therefore engineered the new reagents to be C-terminally biotinylated on 174 
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 8 

cysteine residues and varied linker sequence. Five of these assays, which utilize Nb2- and Nb9- 175 

containing constructs, outperform our second-generation assays in a cohort of 25 GE cancer 176 

patients with ORF1p measurements that were mostly undetectable previously, while maintaining 177 

high specificity versus healthy individuals (Fig. 2g, S21). 178 

 179 

To leverage more sensitive assays for ORF1p detection, we next tested ORF1p affinity reagents 180 

from one of the second-generation Simoa assays on our recently developed Molecular On-bead 181 

Signal Amplification for Individual Counting platform (MOSAIC, Fig. 2h). MOSAIC develops 182 

localized on-bead signal from single captured molecules, in contrast to the microwell array format 183 

in Simoa, and improves analytical sensitivity by an order of magnitude over Simoa via increasing 184 

the number of beads counted(27). Furthermore, as the developed Simoa assays used only 25 µL 185 

plasma, we hypothesized that using larger plasma volumes would enhance ORF1p detectability 186 

by increasing the number of analyte molecules present. By using a 20-fold higher sample volume 187 

(500 µL plasma) and the MOSAIC platform, we achieved ten-fold higher analytical sensitivity, with 188 

a limit of detection of 0.002 pg/ml ORF1p (17 aM trimer, Fig. S22). Indeed, in a pilot cohort of 189 

gastroesophageal cancer and healthy patients, ORF1p levels in nine of ten previously 190 

undetectable cancer patients were readily discriminated from healthy individuals (Fig. 2i). Thus, 191 

in addition to improved affinity reagents, using larger sample volumes and more analytically 192 

sensitive technologies can further enhance both sensitivity and discrimination of circulating 193 

ORF1p levels between healthy controls and patients with cancer.  194 

 195 

To test whether ORF1p might be useful for monitoring therapeutic response, 19 patients with 196 

gastroesophageal cancer were identified who had both detectable plasma ORF1p at diagnosis 197 

as well as subsequent samples available collected during or after treatment. Primary tumors were 198 

all adenocarcinoma and located in the esophagus (n=7), gastroesophageal junction (n=7) and 199 

stomach (n=5). All patients received systemic therapy. A smaller fraction of patients also received 200 
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Figure 3. ORF1p is an early predictor of response in 19 gastroesophageal patients undergoing chemo/chemoradiotherapy. a, Plasma ORF1p 
as measured by all three second-generation Simoa assays before and during/post treatment; Responders and Non-Responders were charac-
terized by post-therapy, pre-surgery imaging; p<0.0001, Fisher’s exact test. Non-Responders also have higher pre-treatment ORF1p than 
Responders (p=0.02, t-test). b, Representative CT and PET-CT from patients in the cohort.
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 9 

radiation and/or surgery (Supplement, Table S9). Clinical response (‘Responders’ and ‘Non-201 

Responders’) was determined by review of re-staging CT and PET-CT imaging. Over an average 202 

of 465 days (range 98-1098), 12 patients died, six were alive at last follow-up (all ‘Responders’), 203 

and one was lost to follow-up. All 6 patients with detectable ORF1p at follow-up sampling, as 204 

defined by positivity over background in two of three assays, were also Non-Responders by 205 

imaging (Fig. 3a, p<0.0001, Fisher’s Exact test) and had reduced survival (p = 0.001 log-rank test 206 

for overall survival). In contrast, in all 13 Responders, circulating ORF1p dropped to undetectable 207 

levels post-treatment. Representative PET and PET-CT images are shown (Fig. 3b). Thus, 208 

reduction in circulating ORF1p paralleled treatment response and survival, while persistent 209 

circulating ORF1p corresponded to patients with refractory disease, indicating the predictive 210 

potential of this marker. 211 

 212 

Discussion 213 

Taken together, our data reveal for the first time that circulating ORF1p is a multi-cancer protein 214 

biomarker with potential utility across clinical paradigms, including early detection, risk 215 

stratification, and treatment response. These assays are enabled by ultrasensitive single-216 

molecule detection technologies and high-quality affinity reagents, which are both required due 217 

to the attomolar-to-femtomolar circulating levels of ORF1p in cancer patients. Iterative 218 

improvements including optimized affinity reagents, buffer, and assay design yield highly sensitive 219 

and specific assays. A 20-fold volume scale-up to 500 µL appears promising for improving 220 

sensitivity without obviously compromising specificity, and this volume remains much smaller than 221 

a typical 5-10 mL blood draw and could be scaled further without limiting clinical applicability. The 222 

data strongly suggest that these assays are measuring bona fide tumor-derived circulating ORF1p 223 

for the following reasons: (1) four developed assays with predominantly non-overlapping high 224 

affinity reagents all measure similar levels across hundreds of samples; (2) levels appear specific 225 

to cancer patients, whose tumors overexpress ORF1p; (3) they correlate strongly with 226 
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 10 

measurements made by targeted proteomics, and (4), plasma levels pre- and on/post treatment 227 

correlated with therapeutic response. Nonetheless, the low levels of circulating ORF1p makes 228 

orthogonal confirmation in larger cohorts by any other method challenging, as even the most 229 

sensitive mass spectrometry assays have limits of detection orders of magnitude higher.  230 

 231 

The results expand our understanding that L1 expression is early and pervasive across 232 

carcinomas from multiple organs and high-risk precursor lesions, including dysplastic Barrett’s 233 

esophagus, which is challenging to diagnose and manage. Circulating ORF1p shows promise in 234 

early detection applications such as in ovarian cancer and may be more useful as part of a multi-235 

analyte detection test combined with, for example, cfDNA methylation, longitudinal CA125 in 236 

ovarian cancer, or CEA in colorectal cancer(3,5,28). We demonstrate that ORF1p is an early 237 

indicator of chemotherapeutic response in gastric and esophageal cancers at timepoints where 238 

other parameters are often ambiguous, opening possibilities for monitoring minimal residual 239 

disease or relapse. Importantly, ORF1p appears to provide a level of specificity for cancers not 240 

achieved by other protein biomarkers, likely due to the unique biology of the retrotransposon, with 241 

repression of L1 in normal somatic tissue(9,13,14). ORF1p is therefore attractive as a putative 242 

“binary” cancer biomarker, in which a positive signal is highly specific for disease, with diagnostic 243 

utility both in tissue and plasma. 244 

 245 

The assays are cost-effective (<$3 in consumables), rapid (<two hours), simple to perform, 246 

scalable, and have clinical-grade coefficients of variation (<15%). Flow cytometers for MOSAIC 247 

are common in clinical reference laboratories, and the assay could be modified for DNA-based 248 

readout by qPCR or sequencing. Limitations of the current work include the relatively small 249 

numbers of early-stage samples and a small and heterogeneous gastroesophageal therapeutic 250 

cohort. Larger cohorts will be needed for further validation. Further optimizations to both assay 251 

design and reagents will likely be possible, and larger cohorts are needed to further validate and 252 
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develop third generation Simoa assays and MOSAIC assays. Finally, it is unclear how ORF1p, 253 

which is normally cytosolic, enters the blood and what clinicopathologic factors might affect these 254 

levels. Future work will also be needed to understand whether there is a normal baseline level of 255 

circulating ORF1p, as implied by the trace amounts seen when ORF1p was measured from much 256 

larger volumes of plasma using targeted mass spectrometry, and what factors affect this level.  257 

 258 

Methods 259 
Provided in detail in Supplementary Information. 260 
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Figure Legends  410 

Figure 1. ORF1p expression is early and pervasive in carcinomas. a, ORF1p immunostaining in 411 

a cohort of 211 colorectal cancers. b, Representative BE case: lesional cells overexpress p53, 412 

the L1 RNA, and ORF1p. c, L1 RNA and ORF1p overexpression across a cohort of 72 consensus 413 

BE cases and 51 carcinomas. d, Schematic of single-molecule protein detection by Simoa; a 414 

second generation assay is shown. Antibody/nanobody-coated magnetic beads, present in 415 

excess relative to target, capture single target ORF1p molecules. Enzyme-labeled detection 416 

reagent (here, a homodimeric nanobody) is added, forming an “immunosandwich”, beads are 417 

loaded into microwells that each can hold at most one bead, and ORF1p molecules are then 418 

digitally detected using a fluorogenic substrate by counting “on” wells. First generation Simoa 419 

instead uses Nb5-coated beads and Ab6 detector. e, First-generation ORF1p Simoa detects 420 

plasma ORF1p with high specificity across major carcinomas. Pie charts indicate percentage of 421 

samples with detectable levels; dashed red line, LOD. **, this control patient was thought to be 422 

‘healthy’ at the time blood was donated to the biobank but was later found to have prostate cancer 423 

and lymphoma. 424 

 425 
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Figure 2. Improved detection of ORF1p with second- and third-generation assays. a, 34H7::Nb5-426 

5LL second-generation assay measurements across a multi-cancer cohort. b, Ovarian cancer 427 

patients with age- and gender-matched controls in first- and second-generation assays; patients 428 

are a subset of those in 2a; red dots: stage I disease, orange dots: stage II disease. c, Schematic 429 

of affinity reagents used. 34H7 and 62H2 are custom mAbs; Nb5-5LL and Nb5-9 are an 430 

engineered homodimeric and heterodimeric nanobodies, respectively. d, ROC curves with single 431 

marker ORF1p across all healthy and ovarian cancer patients (top, n=128-132 cancer, 447-455 432 

healthy), and multivariate models for ovarian (bottom, n=51-53 cancer, 50 healthy). e, Targeted 433 

proteomics measurements of plasma ORF1p from a gastric cancer patient using two quantotypic 434 

peptides (LSFISEGEIK and NLEECIR) with internal standards. f, Correlation between measured 435 

ORF1p by Simoa and targeted proteomics assays; r=0.97 (Simoa vs LSFISEGEII) and r=0.99 436 

(Simoa vs NLEECIR, t test), p<0.0001 for both. g, Comparison of 2nd and 3rd generation Simoa 437 

assays (25 µL) in 25 mostly undetectable gastroesophageal (GE) cancer and healthy control 438 

patients. h, Schematic of MOSAIC assays. Captured single molecule “immunosandwiches” are 439 

formed analogously to Simoa assays. DNA-conjugated streptavidin enables rolling circle 440 

amplification to be carried out, generating a strong local fluorescent signal on the bead surface, 441 

and then “on” and “off” beads are quantified by flow cytometry. i, 37H7::Nb5-5LL MOSAIC and 442 

Simoa assays in 10 previously-undetectable GE cancer and healthy control patients. 443 

 444 

Figure 3. ORF1p is an early predictor of response in 19 gastroesophageal patients undergoing 445 

chemo/chemoradiotherapy. a, Plasma ORF1p as measured by all three second-generation 446 

Simoa assays before and during/post treatment; Responders and Non-Responders were 447 

characterized by post-therapy, pre-surgery imaging; p<0.0001, Fisher’s exact test. Non-448 

Responders also have higher pre-treatment ORF1p than Responders (p=0.02, t-test). b, 449 

Representative CT and PET-CT from patients in the cohort. 450 
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