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maintaining homeostasis. However, dysregulated neuroimmune function contributes to
neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission
tomography (PET) imaging of the neuroimmune system has facilitated a greater understand-
ing of its physiology and the pathology of some neuropsychiatric conditions. This review
presents an in-depth look at PET findings from human neuroimmune function studies,
highlighting their importance in current neuropsychiatric research. Although the majority of
human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO),
this review also considers studies with other neuroimmune targets, including monoamine
oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the puriner-
gic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingo-
sine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The
significance of validating neuroimmune targets and understanding their function and
expression is emphasized in this review to better identify and interpret PET results.
Semin Nucl Med 53:213-229 © 2022 Elsevier Inc. All rights reserved.
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Introduction
Background
Thebrain’s immune system is an important area of current neu-
ropsychiatric research. Neurodegenerative diseases and psy-
chiatric conditions are closely linked with neuroimmune
responses in the brain. A neuroimmune response is the adap-
tive changes in the central nervous system (CNS) to various
insults or stimuli, such as infections, toxins, or misfolded pro-
teins.1 Brain pathologies that are driven by the immune system
and showclassic inflammatory signs can bedefined as neuroin-
flammation or neuroinflammatory disease, for example,multi-
ple sclerosis. However, activated neuroimmune responses
have been lumped together under the umbrella term "neuroin-
flammation," which is a poorly defined term.2,3 For precision
in language, we refer to tissue swelling or damage to the brain
and spinal cord as "neuroinflammation." In contrast, we refer
to a change in the neuroimmune system of the brain—which
may be in the form of glial cells or other messenger mole-
cules—as a neuroimmune response.
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Neuroimmune responses primarily involve the activation
or reduction of glial cells in the CNS via the release of sec-
ondary messengers and inflammatory mediators such as
cytokines, chemokines, reactive oxygen species, and reactive
nitrogen species. Activation at a cellular level is referred to as
gliosis and involves the proliferation and hypertrophy of
microglia, astrocytes, and oligodendrocytes.4,5 Neuroim-
mune responses are healthy processes necessary for cell
repair and re-establishing homeostasis.6

The first-line response to injury or other stimuli is the
migration of local microglia to the site, known as microglio-
sis.7 Microglia are the resident macrophages of the CNS and
have been the focus of the field studying neuroimmune
responses. Under typical conditions, microglia persist in a
ramified surveillance state and use their motile branches to
monitor the local surroundings (Fig. 1, left panel).8 Microglia
are in a state of rest until they detect a stimulus from the
neighboring neurons or astrocytes, at which point they
become active, transition into an ameboid shape, and begin
to clear up and reduce the insult (Fig. 1, right panel).9 Out-
side the local milieu, microglia chemotax and secrete cyto-
kines to destroy neural debris and mend neurons. Microglia
are extremely sensitive to stimuli, and their activation is typi-
cally rapid, with a response time of a few minutes.10

Theoretically, microglial phenotypes can be described
using the M0/M1/M2 continuum. In this notion, a neuroim-
mune stimulus may activate homeostatic M0 microglia into
an amoeboid-like morphology that can be polarized into M1
and M2 microglia.11�13 M1 microglia are considered more
proinflammatory and produce chemicals like reactive oxygen
species (ROS), TNF-ɑ, and prostaglandins to remove stimuli
or insults. The M2 microglia attenuate the inflammatory
response and protect neurons by releasing growth factors
and other neuroprotective substances.13 Nevertheless, the
Figure 1 Neuroimmune response to a stimulus in the brain The
a stimulus is in the form of microgliosis, that is, the activation a
is also seen on astrocytes, but the proliferation of astrocytes is
compared to microglia, which requires a few minutes. Created
M0/M1/M2 conception is likely oversimplified and may bet-
ter be considered as a diverse spectrum.14 Oversimplification
has resulted in microglial functional states being classed as a
dichotomy, which should be considered a diverse spectrum.
Transcriptomic analysis of microglia in distinct illness and
response modes has found many more phenotypes.15 Fur-
ther research into the various phenotypes will provide a bet-
ter understanding of the role of microglia in neurological and
psychiatric disorders.

Astrogliosis, the proliferation of surrounding astrocytes,
the main constituents of the glial scar, is the final component
of gliosis.16 This is usually a longer process that may take sev-
eral days to a week.17 Through astrogliosis and fibrosis, acti-
vated astrocytes produce a glial scar, which plays an
important role in the recovery of injured tissue, blood-brain
barrier (BBB) repair, limiting infection or inflammatory cell
spread and neuroprotection against CNS diseases. Like
microglia, astrocytes have also been categorized as A1 astro-
cytes and A2 astrocytes. However, like microglia, this contin-
uum may also be oversimplified.

As seen in the M1/M2 and A1/A2 models, depending on
the activation state of glial cells, the neuroimmune response
can have both neurotoxic and neuroprotective effects.18 In
general, neuroimmune responses may be beneficial to the
CNS by activating the innate immune system to minimize
and repair insult-induced damage. However, microglia and
astrocytes may be persistently activated with a sustained gen-
eration of proinflammatory factors in chronic neuroimmune
conditions like neurodegenerative disorders. This leads to
vicious cycles of inflammation, cellular dysregulation, injury,
and degeneration.

Positron emission tomography (PET) is a befitting nonin-
vasive imaging technique to visualize and quantify in vivo
biochemical processes in real-time. A radioactive molecule
first-line response of the central nervous system to such
nd proliferation of resting microglia. A similar activation
a much slower process, which may require a few days,
with BioRender.com.



Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies 215
with high affinity and selectivity for a target protein is
injected into the bloodstream of a subject during a PET scan
to measure brain proteins and receptors. Initial understand-
ing of neuroimmune responses in neurologic and psychiatric
disorders has been greatly aided by the use of PET.19 In vivo
studies of protein and receptor targets linked to both proin-
flammatory and anti-inflammatory processes are fascinating
because they help us understand the disease and offer poten-
tial drug targets. However, developing novel radioligands for
PET imaging of neuroimmune-related targets is difficult.
Before a radiotracer can be used in human studies, it must
undergo extensive preclinical and clinical testing. This review
will focus on the translation, validation, and human applica-
tion of PET imaging radiotracers for diverse neuroimmune
targets.
Ideal Requirements for a Neuroimmune
Target and PET Radiotracer
Successful PET imaging studies require both the target and
radiotracer—as a pair—to meet key imaging properties such
as facile radiolabelling; BBB penetration; suitably fast kinetics;
high target affinity and specificity; metabolism; signal-to-
noise ratio; variability; and safety. These have been exten-
sively reviewed in the literature.20�24 Beyond these basic
requirements, we discuss additional considerations that may
be important in selecting a target and developing specific
radiotracers for neuroimmune imaging.
Sensitivity to Neuroimmune Stimuli
Radiotracers that have increased expression after a neuroim-
mune stimulus are of high interest as radiotracer targets.
However, characterization of this property, often with
repeated imaging sessions before and after the stimulus,
requires careful consideration. Selecting an appropriate
immune challenge is nontrivial, as different stimuli can elicit
different neuroimmune responses.25 Moreover, neuroim-
mune stimuli exhibit dramatic differences across species,
often requiring orders of magnitude greater doses in rodents
to elicit effects comparable to humans.26 This places a high
value on nonhuman primate evaluation of neuroimmune
radiotracers prior to translation to human imaging. Addition-
ally, for some immune targets such as cyclooxygenase-2 and
ROS, baseline expression (i.e., Bmax) can be quite small. This
scenario does not exclude such targets for radiotracer devel-
opment. However, in such instances, characterization of
radiotracer kinetics and displacement should occur under
conditions of increased expression. The timing of imaging
relevant to the stimulus is a further consideration, as different
targets exhibit different temporal responses to challenges. For
example, microglia-related targets typically exhibit fast, tran-
sient responses, while astroglia-related targets tend to exhibit
slower, more prolonged effects, although exceptions certainly
occur.27 Thus, characterization of PET radiotracers that
assess brain immune dynamics poses additional challenges to
the already difficult process of radiotracer development.
Biological Specificity
Ideal target proteins convey relevant biological information.
Some targets, such as cyclooxygenases (COX) and purinergic
receptors, have identified biological functions that are of
high interest. While the cellular expression of these targets is
relevant to the extent of functional differences across cell
types, the biological interpretation of these targets may not
be as heavily reliant on their cellular expression. In contrast,
targets such as the 18-kDa translocator protein (TSPO) and
monoamine oxidase B (MAO-B) are of interest because
immune stimuli increase their expression by microglia and
astrocytes, respectively. In these cases, the cellular specificity
of target expression is critical, and indeed, a major limitation
of TSPO and MAO-B is their expression across diverse cell
types.28,29 Moreover, understanding the mechanism of
increased target expression is critical. For example, strong
evidence indicates that LPS challenge in rodents increases the
number of TSPO-expressing microglia, supporting the inter-
pretation of TSPO radiotracers as markers of the number of
TSPO-expressing cells.25 Thus, cellular specificity is an
important consideration for neuroimmune PET radiotracers.
Finally, the phenotype or "flavor" of immune cells (i.e., pro-
inflammatory or "M1-like" vs anti-inflammatory or "M2-
like") is critical to the mechanistic understanding of neuroim-
mune dynamics. Consequently, determining the extent to
which a radiotracer target may convey such information is an
important consideration. The development of novel radio-
tracers targeting proteins that are highly relevant to one neu-
roimmune flavor over the other is of exceptionally high
priority for future research.
TSPO Imaging
Physiology
TSPO, previously named the peripheral benzodiazepine
receptor (PBR), is an evolutionary well-conserved mitochon-
drial protein involved in a variety of fundamental cellular
processes, including steroidogenesis, heme biosynthesis,
mitochondrial respiration, cell proliferation and differentia-
tion, cell life/death balance, and oxidative stress.30 TSPO has
169 amino acids and five transmembrane a-helix domains
joined by two extramitochondrial and intramitochondrial
loops, an extramitochondrial C-terminal and an intramito-
chondrial N-terminal31 Li and colleagues32 identified the
cholesterol recognition amino acid consensus sequence that,
together with a groove in TSPO, can bind a cholesterol mole-
cule and is thus involved in cholesterol transport33. An
A147T mutation in humans, rs6971 polymorphism (Ala146

to Thr146), causes a lower-affinity conformational change
and leads to decreased TSPO binding.34

Apart from its broad expression in peripheral tissues,
TSPO is highly expressed in neuroimmune cells and is a pro-
posed biomarker of microglial activation.35 Indeed, other
monocyte-derived cells and elevated levels of TSPO have
been interpreted as neuroimmune activity.36 Altered TSPO
expression has been found in some pathological conditions.
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Specifically, high TSPO expression levels have been found in
cancer, brain injury, and neurodegenerative and neuropsy-
chiatric conditions.
Current Studies With TSPO Radiotracers
More than 50 PET tracers have been developed to measure
TSPO levels in neurodegenerative and neuropsychiatric con-
ditions, including Alzheimer’s and Parkinson’s disease,37

major depressive disorder (MDD),38 and substance use disor-
ders (SUD).39,40 The PET radiotracer [11C]PK11195 was the
initial first-generation radiotracer developed in the 1980s.41

However, subsequent work revealed that [11C]PK11195
exhibited modest specific to nonspecific uptake,42 spurring
the development of second-generation radiotracers with
higher specific binding, which include [11C]PBR28, [11C]
DPA713, [18F]DPA714, and [18F]FEPPA.43 However, these
improvements in specific binding revealed that the affinity of
TSPO radiotracers depends on individual expression of the
rs6971 genotype, with second-generation ligands having sub-
stantially higher affinity for the dominant allele compared to
the recessive allele. Practically, this means that homozygotes
for the minor allele must be prospectively excluded from
scans with these radiotracers since they will not exhibit spe-
cific binding, and one degree of freedom is lost in statistical
analyses to model this effect properly. More recent radio-
tracer development focused on TSPO-specific radiotracers
with high affinity for both rs6971 alleles has yielded a third-
generation radiotracer, [11C]ER176, which exhibits even
higher specific binding than second-generation radiotracers,
and high affinity for both alleles.44

Some methodological items with TSPO radiotracers bear
further mention. First, because TSPO is ubiquitously
expressed throughout the brain, there is no brain region
devoid of TSPO to serve as a gold-standard reference, and
use of pseudo-reference regions for outcome measures
requires careful validation.45,46 Second, TSPO is highly
expressed in the periphery, and parent radiotracer in plasma
can be dramatically affected by immune challenges or block-
ers.47 Thus, accounting for these effects is critical in the
quantification of TSPO radiotracers.48,49 Diverse kinetic
models have been proposed and implemented for the analy-
sis of TSPO radiotracers,50 but measurement of the metabo-
lite-corrected input function for full kinetic modeling is
generally accepted as the gold standard. These quantification
considerations add complexity to evaluating the TSPO litera-
ture and likely contribute to some of the mixed findings
reported across the field.
Neurodegenerative Disorders
Alzheimer’s Disease and Mild Cognitive Impairment
Most PET studies using TSPO radiotracers (primarily [11C]
PK11195 and [11C]PBR28) have been performed in Alz-
heimer’s disease, where neuroimmune responses have been
proposed to be initially neuroprotective and neurotoxic later
in the progression of the disease.51 The first PET study in
Alzheimer’s disease utilized [11C]PK11195 and failed to
demonstrate group differences in TSPO PET binding
between those with a diagnosis of probable Alzheimer’s dis-
ease compared to individuals who were healthy or with small
cerebral glioma.52 However, most other PET studies reported
higher TSPO levels in patients at the clinical Alzheimer's dis-
ease stage, primarily in the entorhinal cortex, temporoparie-
tal association cortex, and cingulate cortex.53�55 TSPO PET
radiotracers uptake in these brain areas correlated negatively
with glucose metabolism using PET with [18F]FDG.53�55

TSPO PET uptake correlated with poorer cognitive (episodic
memory) performance in Alzheimer’s disease,56,57 with MRI
measures of resting state functional connectivity58 and brain
white matter hyperintensities.59 The evidence for increased
TSPO PET binding in mild cognitive impairment (MCI) has
been less robust than for Alzheimer’s disease, with some
studies reporting greater TSPO binding60 and other studies
reporting no group differences when compared to controls.56

In longitudinal TSPO PET studies in MCI patients, patients
with high beta-amyloid fibril load ([11C]PiB PET) demon-
strated elevated initial TSPO binding, which significantly
declined after 2 years, despite rising beta-amyloid levels.61

This supported the hypothesis that neuroimmune activation
initially may be protective in MCI and Alzheimer’s disease.51

Interestingly, in normal aging, higher TSPO PET binding has
been found in cortical regions62,63 and the thalamus,64 which
demonstrates the importance of controlling for age in these
and other studies.

Frontotemporal Dementia
Frontotemporal dementia is a heterogeneous group of dis-
eases, and neuroimmune function plays a central role.65 PET
studies have found elevated TSPO levels in brain areas
affected by tau and beta-amyloid protein aggregation.66,67

These effects are greatest in the temporal lobe in semantic
dementia,68 the premotor cortex in nonfluent primary pro-
gressive aphasia, and the frontal and temporal poles in
behavioral variant frontotemporal dementia.37,69

Multiple Sclerosis
Multiple sclerosis is a chronic autoimmune disease of the
CNS that leads to demyelination and neurodegeneration. As
such, numerous TSPO PET studies have been conducted in
patients with multiple sclerosis. In general, [11C]PK11195
and [11C]PBR28 studies have demonstrated diffuse areas of
higher TSPO uptake involving normal-appearing white mat-
ter and possible gray matter, suggesting that TSPO PET
unmasks active lesions not revealed by MRI.70�72 Several
studies have also identified more pronounced diffuse TSPO
levels in normal-appearing white matter and normal-appear-
ing gray matter in patients with progressive multiple sclerosis
than in those with relapsing-remitting multiple sclerosis.73

Amyotrophic Lateral Sclerosis
Increased [11C]PBR28 and [18F]DPA714 uptake has been
found in patients with amyotrophic lateral sclerosis (ALS)
in the precentral and paracentral gyri/primary motor
cortices,74,75 which are affected in ALS. Moreover, a small
study in 3 ALS patients and 6 healthy volunteers
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demonstrated elevated binding with [18F]DPA714 in the
motor cortices but no signal with the purine receptor radio-
tracers [11C]JNJ54173717.76
Parkinson’s Disease
TSPO PET studies in Parkinson’s disease have not been con-
clusive. Some studies show elevated TSPO PET binding in
Parkinson’s disease compared to controls in temporal, parie-
tal, and occipital regions77 and in the midbrain and frontal
cortex.78 However, other studies failed to demonstrate group
differences in TSPO PET in this patient population79,80

despite reduced dopamine transporter binding in the same
study.80
Other Neurodegenerative Disorders
TSPO PET studies have been performed in other neurode-
generative disorders, including dementia with Lewy-Bodies,
which have shown higher TSPO levels with [11C]
PK11195,81,82 and Huntington’s disease, for which symp-
tomatic patients show elevated TSPO PET binding compared
to controls.83,84 A recent study was also able to differentially
diagnose multiple system atrophy patients from Parkinson’s
disease patients, showing increased TSPO PET binding in the
lentiform nucleus and cerebellar white matter.79 Further, a
recent pilot study indicated elevated [11C]PBR28 binding in
chronic stroke patients compared to controls in several brain
regions outside the infarct zone, including regions with direct
neuroanatomical connections to the infarct.85
Human Immunodeficiency Virus Infection
HIV-associated cognitive impairment in HIV-infected indi-
viduals has been studied using TSPO PET using [11C]
PK11195, [11C]DPA-713, and [11C]PBR28 (Reviewed in86).
In general, the results of comparing TSPO radiotracer uptake
in people with HIV vs those in the control group have been
inconsistent, possibly due to methodological differences.
Most studies have observed no significant differences in
TSPO PET uptake in people living with HIV compared to
control participants.87�91 Compared to control participants,
one study showed a higher TSPO PET signal in the frontal
cortex of cognitively impaired people with HIV,90 while
another showed higher levels in the globus pallidus, parietal
cortex, and occipital cortex in cognitively unimpaired people
with HIV.92
Neuropsychiatric Disorders
TSPO PET imaging studies were first performed in neurologi-
cal disorders and later evaluated in psychiatric disorders.
Although the pathological mechanisms or correlates of neu-
roimmune function in neurological disorders have often
been identified, the pathophysiology in psychiatric disorders
tends to be more heterogeneous and often has overlapping
variance with healthy controls. Nevertheless, PET imaging of
TSPO in neuropsychiatry has made significant advances in
understanding the role of inflammation in several disorders,
such as MDD, schizophrenia, psychosis, and SUD.38
Major Depressive Disorder
A total of nine PET studies have investigated TSPO levels in
patients with MDD during a major depressive episode, of
which the majority reported higher TSPO binding, primarily
in the anterior cingulate cortex and prefrontal cortex93�98

(Reviewed in38,99,100). The first published study in MDD,
however, did not find group differences in [11C]PBR28 bind-
ing between those with MDD compared to controls, and in
fact, 7 out of 10 individuals with MDD showed lower [11C]
PBR28 binding in all brain regions of interest compared to
genotype-matched controls.101 One study performed a longi-
tudinal study in MDD patients only and found that high
baseline TSPO PET binding was associated with a significant
reduction in depression severity after 8 weeks of celecoxib,
an anti-inflammatory drug. Other findings related to clinical
characteristics involved greater TSPO PET binding in those
with a longer duration of untreated illness,97 and TSPO PET
binding was lower in patients receiving antidepressant treat-
ment than in unmedicated patients.96 Overall, these PET
findings support the hypothesis of elevated TSPO in MDD,
including associations with clinical characteristics in MDD
patients.

Schizophrenia
Schizophrenia and psychosis have been studied frequently
with TSPO PET. Although one [11C]PBR28 study found
lower TSPO binding in drug-naive patients with first-episode
psychosis than in controls,102 other PET studies utilizing sec-
ond-generation TSPO ligands found elevated [11C]PBR28
binding in individuals with schizophrenia and individuals at
high risk for psychosis than in healthy controls,103 or no
group differences between patients with schizophrenia com-
pared to controls.104�107 A 2019 meta-analysis on summary
statistics of 12 studies comprising 190 patients with schizo-
phrenia and 200 healthy controls scanned with TSPO PET
(both first and second generation tracers) concluded that
TSPO radiotracers binding in schizophrenia patients was sig-
nificantly higher than in controls when BP was used as an
outcome measure (Hedge's g = 0.31), but there were no sig-
nificant group differences when volume of distribution (VT)
was used (Hedge's g = -0.22).108 Notably, a more recent
meta-analysis that used individual participant data of 208
individuals (99 patients and 109 healthy control subjects)
who were scanned with second-generation TSPO tracers
only provided strong support for lower TSPO VT in patients
than in controls.109 The discrepancy in the meta-analysis
may be due to (1) the comparison of group statistics108 vs
individual data,109 for which the latter may lead to a more
accurate estimate of effect sizes, and (2) [11C]PK11195 stud-
ies have low signal-to-noise ratio, which may have affected
meta-analysis results by.108 Plav�en-Sigray et al109 further
indicated no effects of antipsychotic medication on TSPO
PET and no associations between TSPO PET and disease
duration or symptom levels.

Obsessive-Compulsive Disorder
One study has been performed in individuals with obsessive-
compulsive disorder, which found elevated TSPO PET



218 N.R. Raval et al.
binding ([11C]PK11195) in patients with obsessive-compul-
sive disorder compared to controls, primarily in the cortico-
striatal-thalamic circuit involving the orbitofrontal cortex.110
Substance Use Disorders
SUD are patterns of symptoms that arise from the use of sub-
stances that an individual continues to use despite experienc-
ing negative consequences. SUDs are characterized by
mental, physical, and behavioral symptoms related to sub-
stance use, including loss of control, craving, tolerance, and
withdrawal. Over time and with repeated use, substance use
induces changes in the CNS that contribute to continued use
and relapse. A growing literature indicates that substance use
can, directly and indirectly, modulate neuroimmune activity
and alter neuroimmune responses.39,111,112 The impact of
substance use on the immune system and inflammatory
responses may play a role in the development of compulsive-
like behaviors underlying SUD113,114 and has been the focus
of several TSPO imaging studies.
Alcohol Use Disorder
The most studied SUD using TSPO PET imaging is alcohol.
Three clinical PET studies in alcohol use disorder (AUD)
consistently found lower [11C]PBR28 binding in patients
with AUD during early abstinence compared to non-depen-
dent controls.115�117 Hillmer et al and Kalk et al suggested
that long-term alcohol abuse may lead to diminished proin-
flammatory function.115,116 Indeed, Hillmer et al115 observed
a lower peripheral proinflammatory cytokine response to
lipopolysaccharide stimulation in patients with AUD com-
pared to healthy volunteers, suggesting that AUD is associ-
ated with diminished immune function in both the CNS and
the periphery. Kim et al117 only observed lower [11C]PBR28
binding in mixed affinity binders, and explored whether this
reflected competition of plasma cholesterol rather than
downregulation of neuroimmune activity. In healthy cells,
cholesterol binds to TSPO for transport during steroid syn-
thesis, modifying the protein’s structure.118 Plasma choles-
terol levels in both AUD and healthy control groups were
inversely correlated with [11C]PBR28 binding in the brain,117

supporting a role of cholesterol competition in the downre-
gulation of [11C]PBR28 binding observed in people with
AUD. Moreover, the rs6971 polymorphism was associated
with alcohol withdrawal severity and with plasma cholesterol
levels in people with AUD.119 The timing of PET scanning
after recent alcohol use seems particularly important since in
vivo and in vitro preclinical studies have indicated increased
TSPO radioligand binding ([11C]DAA1106, [3H]PK11195,
and [18F[DPA714) after acute or repeated binge drinking
alcohol administration.120�123 However, the extent to which
these responses may adapt over timescales relevant to
chronic alcohol use in people remains to be established.
More work is needed to identify conclusively the mechanistic
implications of lower TSPO in AUD.
Opioid Use Disorder
Opioids act on opioid receptors in the CNS, gastrointestinal
tract, and immune cells. Opioids contribute to immune cells'
function and innate and acquired immune responses. Previ-
ous research indicates that opioids have immunosuppressive
and immunostimulatory effects.124�126 To date, only two
preclinical TSPO PET studies have examined neuroinflam-
matory changes following opioid exposure: one in baboons
and one in rats. In baboons, acute morphine exposure
increases [18F]DPA-714 brain distribution.127 In rats, mor-
phine tolerance and withdrawal did not induce changes in
[18F]DPA-714 distribution or kinetics.128 Together, these
findings suggest that acute opioid exposure is proinflamma-
tory and chronic exposure is immunosuppressive.
Cocaine Use Disorder
Clinical and preclinical studies indicate that cocaine increases
proinflammatory and decreases anti-inflammatory
cytokines.129,130 TSPO PET studies in individuals who use
cocaine suggest that cocaine does not alter TSPO expression.
Only one PET study has examined TSPO binding in individ-
uals with cocaine use disorder using [11C]PBR28 and found
individuals with cocaine use disorder who were abstinent for
at least 14 days did not show changes in TSPO binding.131
Cannabis Use Disorder
Cannabinoids activate cannabinoid CB1 and CB2 receptors.
CB1 receptors are primarily expressed on neurons on axons
and synaptic terminals, whereas CB2 receptors are expressed
on microglial and dendritic cells and are thought to play a
role in microglial cell function in regulating immune-related
functions.132 To date, only one in vivo PET study, using
[18F]FEPPA, examined TSPO levels in people who use can-
nabis and healthy controls. The findings indicated that can-
nabis users showed higher TSPO levels than non-using
controls, and TSPO levels correlated with C-reactive protein
levels and subjective measures of stress and anxiety.133
Tobacco/Nicotine Use
Nicotine has proinflammatory and anti-inflammatory
effects,134,135 and compounds in cigarette smoke other than
nicotine may affect inflammatory processes. Two PET studies
using [11C]DAA1106 indicate that people who do not smoke
show lower TSPO levels than people who smoke, both dur-
ing satiety and after overnight abstinence.136,137 However,
findings from a recent TSPO PET study using gold-standard
quantification with [11C]PBR28 (which has greater specific
binding than [11C]DAA1206) demonstrated comparable
TSPO levels in the brains of people who do not smoke and
those who do after at least two hours of abstinence.138 Thus,
smoking tobacco cigarettes is likely not associated with
altered TSPO levels, although the extent to which this may
be true for concurrent substance use remains to be
examined.
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Monoamine Oxidase-B Imaging
Physiology
Monoamine oxidase is a flavoenzyme that resides in the outer
mitochondrial membrane.139 It catalyzes the oxidative deam-
ination of structurally diverse neurotransmitter (and other)
amines.140,141 There are two different isoforms: MAO-A and
MAO-B. Both isoforms break down catecholamines, includ-
ing tryptamine, tyramine, dopamine, epinephrine, and nor-
epinephrine.142 MAO-A is responsible for the breakdown of
serotonin, whereas MAO-B is responsible for the breakdown
of benzylamines and phenylethylamine.142 Therapeutically,
MAO-B inhibitors are used for the treatment of parkinsonism
since they are hypothesized to inhibit the breakdown of
dopamine and increase striatal dopamine.139,143 However,
some new evidence contradicts the dopamine involvement of
MAO-B inhibitors while suggesting glial g-Aminobutyric
acid (GABA) synthesis.144

MAO-B is relevant to studying neuroimmune status
because expression is increased in reactive astrocytes. Indeed,
elevated MAO-B is associated with increased expression of
the astrogliosis marker glial fibrillary acidic protein (com-
monly known as GFAP) in neuroinflammatory conditions
like Alzheimer's disease, Parkinson's disease, pulmonary
supranuclear palsy, multiple system atrophy, and
ALS.145�147 In the brain, MAO-B is found primarily in astro-
cytes and serotonergic neurons in the midbrain, although
there is some expression in dopamine-containing cells in the
substantia nigra.29,148 The high level of MAO-B expression in
the CNS and its role in monoamine metabolism and astro-
gliosis make it a target of interest for studying neuroimmune
status.
MAO-B radiotracers have been thoroughly reviewed.29

[11C]deprenyl was the first PET MAO-B imaging agent to be
used in the living human brain.149 [11C]L-deprenyl-D2 was
also used for occupancy studies with potential therapeutic
agents, which lies outside the scope of this review (see29).
However, deprenyl and its derivatives suffer from a lack of
reversibility, and there is evidence of radiometabolites that
enter the BBB.141 To improve on this, [11C]SL25.1188, an
oxazolidinone derivative, was developed as a reversible
MAO-B radioligand with improved selectivity.150 More
recently, [18F]SMBT-1 was developed from the neurofibril-
lary tangle radiotracer [18F]THK-5351 as a lead molecule
due to its high off-target affinity for MAO-B, with reasonable
selectivity for MAO-B over MAO-A and tau proteins,151,152

although off-target binding for the dopamine transporter
may pose future challenges.
Human imaging generally supports higher MAO-B avail-

ability in Alzheimer's disease, based on studies using [11C]L-
deprenyl-D2 in prodromal Alzheimer’s disease,153 and [18F]
SMBT-1 in a larger cohort of subjects across various stages of
Azhiemer’s disease.152 Higher MAO-B expression has also
been reported with [11C]L-deprenyl-D2 in patients with
ALS,154 and temporal lobe epilepsy.155,156 Studies with [11C]
SL25.1188 indicated higher MAO-B expression in patients
with MDD in the prefrontal cortex, where longer disease
duration corresponded to higher [11C]SL25.1188 VT.
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Studies with higher MAO-B binding have been attributed to
astrocytosis and have been hypothesized to increase the syn-
thesis of neurotoxic substances as well as increase the metab-
olism of non-serotonergic monoamines.29,141 On the other
hand, lower MAO-B binding using [11C]L-deprenyl-D2 has
been shown in cigarette smokers,158,159 which is hypothe-
sized to result from the occupancy of substances in cigarette
smoke on MAO-B sites. Nevertheless, overnight self-reported
abstinence from cigarettes shows that the lower MAO-B
binding persisted.160 Lower MAO-B expression was also
reported with [11C]SL25.1188 in subjects with post-trau-
matic stress disorder with comorbid MDD compared to
healthy control and post-traumatic stress disorder only
groups in a relatively small cohort.161 More research is
needed regarding the role of astrocytes in PTSD.162
Challenges
Although important findings have been reported with the
MAO-B radiotracers, the target comes with some caveats.
MAO-B expression is also not selective to astrocytes; it is also
present in serotonergic and dopaminergic neurons.148,163

The expression of MAO-B in microglia is poorly understood
and requires more work. Additionally, MAO-B radiotracers
can detect increases and decreases in MAO-B concentrations
in the brain, but they cannot distinguish between changes in
the state and/or transition of reactive astrocytes, and not all
reactive astrocytes overexpress MAO-B.29 While MAO-B
radiotracers are only surrogate markers for reactive astroglio-
sis, they nonetheless provide the best currently available
(albeit limited) tool for in vivo assessment of reactive astro-
cytes.

MAO-B is also ubiquitously expressed throughout the
brain at relatively high levels, ranging between 1 and 5 ng/g
protein.148 As a result, no true reference region exists for the
use of reference tissue methods with MAO-B PET imaging
agents. Nevertheless, reference regions to calculate the ratio
have been used for the MAO-B radiotracer: previously with
[11C]L-deprenyl-D2156 and more recently with [18F]SMBT-
1.152,164 While the cerebellum is commonly used as a refer-
ence region for studies in Alzheimer's disease populations
because it is relatively spared, the use of reference regions
with MAO-B radiotracers requires careful validation for use
in larger studies. Thus, careful study design and interpreta-
tion of the results are critical for MAO-B PET studies to pro-
vide valuable insight into astrocyte function in human
neuropathology.
Cyclooxygenases-1 and
Cyclooxygenases-2 Imaging
Physiology
COX-1 and COX-2 are rate-limiting enzymes that convert
arachidonic acid to prostaglandin H2, which is cardinal to
the activation of immune signaling processes.165 These pros-
taglandins are then converted to bioactive prostanoids that
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can ultimately produce chemokines, cytokines, and
ROS.166,167 COX-mediated prostaglandin release contributes
to neuroinflammation and neurodegenerative diseases.168

COX inhibitors like aspirin and ibuprofen have been widely
used to relieve inflammation and pain symptoms.169

COX-1 is considered constitutively expressed in nearly all
tissues, where it maintains physiological processes. In the
brain, COX-1 is primarily found in microglia with some
expression in neurons and no reported protein expression in
astrocytes.170 However, mRNA expression of COX-1 is
shown to be 15-fold higher in astrocytes than in neurons.171

Moreover, COX-1 is also involved in microglial activation,
where pharmacological inhibition or genetic deletion
decreases oxidative stress and neuronal damage.165

In contrast to COX-1, COX-2 is minimally expressed in
most tissues under normal conditions but is rapidly induced
by diverse proinflammatory stimuli, hormones, and growth
factors.172 The dynamic increase over a few hours, followed
by a similarly rapid decrease, suggests that COX-2 may pro-
vide temporal specificity for inflammatory processes.169

COX-2 is considered a proinflammatory enzyme and a chief
target for the treatment of inflammatory diseases. However,
COX-2 may further aid resolution in the later inflammatory
phase by generating an alternative set of anti-inflammatory
prostaglandins.173 Expression of COX-2 is found mainly in
neurons but also in microglia and astrocytes. COX-2 plays a
central role in synaptic activity and long-term synaptic plas-
ticity.174 Multiple studies have demonstrated that overex-
pression of COX-2 causes neurological disorders.165,169
Current Studies
Two COX-1 radiotracers have been used and evaluated in
humans: [11C]KTP-Me and [11C]PS13. [11C]KTP-Me (keto-
profen methyl ester) displayed poor affinity and a lack of
specificity, which made quantification challenging and likely
limited the ability to detect a difference in a pilot cohort of
patients with Alzheimer’s disease compared to healthy sub-
jects.175 More recently, the novel high-affinity COX-1 radio-
ligand [11C]PS13 was evaluated in healthy volunteers.176

[11C]PS13 exhibits promising radiotracer properties and is of
high interest for future work examining COX-1 in clinical
populations.
COX-2 PET imaging has been even more challenging

(Reviewed in177). Most potential radiotracers have only been
studied in models of inflammation in rodents and nonhuman
primates without being able to be applied in humans
(Reviewed in169). [11C]MC1, a high-affinity COX-2 radioli-
gand with promising nonhuman primate results, is the only
known radioligand that has been evaluated in healthy
humans.169,178

Finally, radiolabeled arachidonic acid (1-[11C]AA), the
substrate for both COX isoforms, has been evaluated in
healthy volunteers.179 However, metabolism of this radio-
tracer results in [11C]CO2, which readily enters the brain,
requiring additional plasma measurements and modeling for
corrections. Nonetheless, a study in Alzheimer's disease
patients found higher arachidonic acid metabolism
throughout the brain, which the authors interpreted as evi-
dence of neuroinflammation.180 Another study used 1-[11C]
AA to measure dopaminergic neurotransmission in healthy
humans by administering D1/D2 agonist apomorphine,
which increased and decreased arachidonic acid metabolism
in several brain regions.181
Challenges
Radiotracers for COX-1 and COX-2 theoretically show great
potential as radiotracer targets for imaging neuroimmune
function. Radioligand development for these targets has been
extremely challenging; however, recent reports of [11C]PS13
and [11C]MC1 show much promise. One existing challenge
is understanding the cellular localization of these respective
targets, as the current literature is mixed in this regard. None-
theless, their importance as drug targets (i.e., nonsteroidal
anti-inflammatory drugs) makes such studies of high impor-
tance. Additionally, COX-2 is one example of brain immune
targets with negligible specific binding under baseline condi-
tions, which can add complexity to tracer characterization
and potentially quantification but may provide high sensitiv-
ity for elevated COX-2 levels in the brain.
Purinergic P2X7 Imaging
Physiology
Adenosine triphosphate (ATP) is a neurotransmitter and
energy-transmitting coenzyme in eukaryotic cells.182 ATP is
a crucial mediator of neuron�glia and glia�glia communica-
tion and targets purinergic receptors expressed on glial cells
and postsynaptic neurons.183�185 Of these purinergic recep-
tors, the P2X7 receptor (previously known as P2Z) is an
ATP-activated trimeric ligand-gated cation channel found in
a variety of peripheral cell types, including hematopoietic
cells (macrophages/monocytes and lymphocytes), dendritic
cells, and many others.186 In the CNS, P2X7 expression is
found on microglia, oligodendrocytes, and Schwann cells.187

P2X7 may also be expressed on astrocytes and neurons,
though the definitive demonstration is complicated due
to the large number of P2X7 splice variants and
polymorphisms.188,189

P2X7R is considered inactive in normal physiology
because high (mM) concentrations of ATP are required for
activation and functional upregulation (Bhattacharya and
Biber, 2016),190. P2X7R is strongly linked to neuroinflamma-
tion because its activation is associated with multiple signal-
ing pathways, including the release of proinflammatory
cytokines and ROS.190,191 Thus, antagonistic actions on
P2X7R are of high interest as neuro-immunomodulatory
treatments activating brain-derived neurotrophic factor
while promoting anti-inflammatory and neuroprotective
conditions.192,193 PET imaging probes that target P2X7
receptors could therefore aid in the development of P2X7
drugs.194
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Current Studies With P2X7 Radiotracers
Although multiple radiotracers for the P2X7 target are avail-
able, they have not been widely utilized in clinical
studies.195,196 The first P2X7 radiotracer to be evaluated in
humans was [11C]GSK1482160, which exhibited poor brain
uptake and was only suitable for imaging other potential
organs.197 [11C]JNJ-54173717 demonstrated excellent pre-
clinical efficacy and readily crossed the BBB in humans.198

The radiotracers was found to quantify P2X7 levels effectively
in the human brain. However, no significant differences in
[11C]JNJ-54173717 brain uptake were reported comparing
Parkinson's disease patients198 and patients with ALS76 com-
pared with control. [18F]JNJ64413739 also demonstrated
good pharmacokinetics in healthy subjects but high variance,
hypothesized due to a genotype effect.199 [11C]SMW139
exhibited good pharmacokinetics and quantifiable uptake,
with significantly higher VT estimates in multiple sclerosis
patients compared to healthy controls in all brain regions
studied.200 Nevertheless, radiotracers specific for P2X7 either
exhibit limited brain uptake or have shown modest success
in detecting group differences in neuroimmune-related con-
ditions.
Challenges
P2X7 radiotracers were initially developed to aid P2X7 drug
development. However, the dynamic range of this target in
conditions with altered neuroimmune state is not well
known and is likely limited due to the high concentrations of
drug or endogenous agonist required for activation. Thus,
these radiotracers may provide better tools to examine target
engagement and drug response rather than biological state.
In addition, the possible effect of genetic polymorphisms on
receptor expression levels or radiotracer binding characteris-
tics is currently unclear. However, a number of human
genetic investigations have hypothesized the highly polymor-
phic P2X7 gene for mood disorders, and several mutations
have been related to the modification of P2X7 channel activ-
ity in vitro.186,199,201 Therefore, it is necessary to study
whether P2X7R polymorphisms may also contribute to the
variability of baseline P2X7 expression. Another disadvan-
tage, similar to other neuroimmune targets, is a lack of a
suitable brain reference region, which would allow the non-
invasive assessment of P2X7 abundance in different brain
regions.
iNOS and ROS Imaging
Physiology
The high metabolic demands of the brain result in strict regu-
lation of oxygen.202 Inflammatory processes bound to
changes in oxygen regulation that occur in response to brain
injury also represent excellent targets for neuroinflammation
molecular probes. The electron transport chain supporting
ATP synthesis constantly produces ROS and reactive nitro-
gen species (ROS/RNS).203 Under normal conditions, ROS/
RNS do not accumulate; however, a buildup of oxygen free
radicals has been implicated in many types of brain injuries,
including strokes, trauma, and neurodegenerative
disease.204,205 This mechanism of pathogenesis has also been
hypothesized in addiction.206 Specifically, ROS localizes to
mitochondria (represented as red triangles in Fig. 1). Several
probes targeting ROS have been developed,207�210 and these
probes have shown promise in robust preclinical models
of cardiotoxicity via anthracycline chemotherapy
injury.208,209,211 However, few have shown promise in the
brain, and no translational studies in human subjects have
yet been published.210,212

There is strong evidence linking ROS regulation with the
inducible isoform of nitric oxide synthase (iNOS).213,214

Nitric oxide synthase (NOS) has three principal isoforms:
eNOS (endothelial), nNOS (neuronal), and iNOS
(inducible).205,215,216 iNOS is expressed in the cytosol of
activated neurons, astrocytes, and microglia (noted as yellow
triangles in Fig. 1).215 CNS expression of iNOS is tightly reg-
ulated and not normally present. iNOS expression is consid-
ered specific to inflammation, albeit occurring in both acute
and chronic settings.
Current Studies With iNOS Radiotracers
To this point, two translational studies have used the iNOS
targeting PET radiotracer [18F]NOS. In patients who had
undergone heart transplant, [18F]NOS PET cardiac imaging
revealed that radiotracers binding correlated with iNOS
immunohistochemistry of tissue obtained via endomyocar-
dial biopsy and predicted organ rejection.217 In healthy vol-
unteers, Huang et al unilaterally induced a limited region of
endotoxic pulmonary injury and showed that [18F]NOS PET
lung imaging correlated with NOS immunohistochemistry of
tissue acquired via bronchoscopy.218
Challenges
In order to extend the use of [18F]NOS PET to imaging neuro-
inflammation and neuroimmune responses, several important
challenges need to be recognized. First, [18F]NOS has rela-
tively rapid kinetics (i.e., it quickly binds and then unbinds
from the target).217,218 Consequently, PET studies using [18F]
NOS require precise coordination and execution, including
careful analysis of radiotracers metabolism to best inform
kinetic modeling. While it selectively binds to iNOS relative
to nNOS and eNOS, the role of these other NOS isoforms
needs to be considered in states of elevated neuroinflamma-
tion. However, with such attention to detail, the application
of [18F]NOS to neuroinflammation remains promising.
Other Upcoming Targets
Colony Stimulating Factor 1 Imaging
Colony stimulating factor 1 receptor (CSF1R) is a cell surface
tyrosine kinase receptor that regulates the activation and
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survival of macrophages and macrophage-like cells.219

CSF1R is activated by the cytokines CSF1 and interleukin-
34220 to control the production, differentiation, and function
of macrophages.221 In the healthy brain, CSF1R is expressed
solely in microglia, making it an attractive target as a micro-
glia-specific PET biomarker.222

CSF1 radiotracer development has been ongoing since it
was discovered to be expressed exclusively on microglia in
the brain. Notable radiotracers with promising preclinical
data include [11C]CPPC,223 [11C]GW2580,224 [11C]
NCGG401.225 Very recently, [11C]CPPC was evaluated in a
small cohort of healthy humans.226 [11C]CPPC's kinetics and
Table 1 A Summary of the Human Radiotracers Evaluated for PET Im
Their Physiological Function

Target Protein
Radiotracer(s)
Evaluated in Humans Expressio

Translocator
protein 18 kDa

[11C]PK-11195 Microglia >

(TSPO) [11C]PBR-28 Astrocytes
[18F]FEPPA Neurons >
[11C]DPA-713 Endothelial
[18F]DPA-714
[11C]ER1766

Nitric oxide synthase:
inducible

[18F]NOS Microglia >

(iNOS) Astrocytes
Neurons >

Monoamine Oxidase-B [11C]L-deprenyl Astrocyte >

(MAO-B) [11C]L-deprenyl-D2 Serotonin n
[11C]SL25.1188
[18F]SMBT-1 Dopamine n

Cyclooxygenase-1 [11C]KTP-Me Microglia >

(COX-1) [11C]PS13 Neurons >
Astrocytes

Cyclooxygenase-2 [11C]MC1 All neurons
(COX-2)

Purinergic P2£ 7
receptors

[18F]JNJ-64413739 Microglia >

(P2X7) [18F]JNJ-54173717 Astrocytes
[11C]SMW-139

Colony-stimulating
factor 1 receptor

[11C]CPPC Microglia

(CSF1)

Sphingosine-1-phosphate
receptor 1

[11C]CS1P1 Astrocytes>
Microglia

(S1PR1) Neurons>
Endothelial

Purinergic P2Y12 receptors None Microglia
(P2Y12)

*Reviews specific to the topic are currently unavailable.
brain uptake were suitable, however[11C]CPPC has limited
sensitivity to low-density CSF1R regions in the healthy ani-
mal brain227 and can only detect them after a challenge with
lipopolysaccharide.223 Nonetheless, CSF1 is a highly promis-
ing microglia-specific target for neuroimmune imaging.
Sphingosine-1-Phosphate Receptor 1
Imaging
Sphingosine-1-phosphate receptor 1 (S1PR1) is a G-protein
coupled receptor activated by S1P, a sphingolipid that
aging of Neuroimmune Responses That Target Proteins and

n in Cells Physiological Function Reviews

Receptor participates in mitochon-
drial physiological processes like
metabolism and cellular bioener-
getics, mitochondrial respiration,
cholesterol transport and ste-
roidogenesis, immunomodula-
tion, porphyrin transport, and
heme biosynthesis.

14,99,245�247

>

>

cells

Located in the cytosol. Expression
specific inflammation

*

>

>

> Oxidative deamination of structur-
ally diverse neurotransmitter
amines

29,141,248

eurons and

eurons
Rate-limiting enzyme that controls
the arachidonic acid metabolism
pathway during “housekeeping”/
normal conditions

165

Rate-limiting enzyme that controls
the arachidonic acid metabolism
pathway during proinflammatory
function

165

> Receptor activity mediates cell
proliferation and death, as well
as the formation of reactive
oxygen and nitrogen species

196,195

Receptor for colony stimulating
factor 1, which controls
macrophage production,
differentiation, and function

233,*

>

>

Receptor regulates microglial
activation in brain injury

233,*

cells
Receptors mediate patrolling
microglia and coordinate
neuronal activity with microglia
operation

242
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promotes cellular survival and potently regulates immune
responses in the brain.228 Activation of S1PR1 induces an
anti-inflammatory phenotype in the brain's immune sys-
tem229 while inhibiting S1PR1 attenuates proinflammatory
chemokine release.230 Interestingly, proinflammatory condi-
tions functionally upregulate S1PR1,230,231 likely as a com-
pensatory mechanism. As a result, S1PR1 provides a valuable
biomarker for assessing proinflammatory and anti-inflamma-
tory neuroimmune responses.
S1PR1 is ubiquitously found throughout the brain, with

high expression in gray matter and little to no expression in
white matter.232 The high Bmax value indicates that S1PR1 is
an ideal target for PET radioligands with sufficiently high
estimates of specific binding.232 Although initially challeng-
ing,233 PET radioligands, [11C]CS1P1 and [18F]FS1P1, tar-
geting S1PR1 with high selectivity and specificity, have been
evaluated in nonhuman primates and preliminarily in
humans.232,234,235 These promising radiotracers exhibit high
target affinity and brain penetration, but quantification may
be limited by slower kinetic properties, particularly for the
C-11 labeled compound. However, alternative F-18 labeled
compounds with faster kinetic properties have been evalu-
ated in rodents and nonhuman primates.236,237
Purinergic P2Y12 Imaging
Purinergic P2Y12 receptor (P2Y12R) is a G-protein coupled
receptor predominantly expressed on brain microglia.238�240

Interestingly, there is selective downregulation of P2Y12R
expression on proinflammatory microglia and its upregula-
tion on anti-inflammatory microglia.241 Over the past
20 years, many high-affinity P2Y12 ligands have been devel-
oped, but none have yet demonstrated that they are suitable
for studying or controlling its function in the brain.242 Unfor-
tunately, these radiotracers either do not cross the BBB or
have negligible uptake,242 and efforts to develop a radiotracer
that addresses these limitations are ongoing.243,244 Since
P2Y12R is expressed exclusively on microglia and is linked
to the elusive anti-inflammatory M2 phenotype, there is cur-
rently a high interest in developing a radiotracer specific for
P2Y12R.
Outlook and Conclusion
PET neuroimaging holds the unique potential for invaluable
measurements of brain immune targets in neurodegenerative
and neuropsychiatric conditions. While novel radiotracer
development for such targets poses significant challenges,
there is much promise for many diverse, complementary tar-
gets. Future advancements in this vein will advance scientific
understanding of brain immune mechanisms that contribute
to the development and progression of such conditions,
which can ultimately help improve public health outcomes.
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