
Drug and Alcohol Dependence 227 (2021) 109013

Available online 28 August 2021
0376-8716/Published by Elsevier B.V.

Analysis of genetic and clinical factors associated with 
buprenorphine response 

Richard C. Crist a,b,1, Rachel Vickers-Smith a,c,d,1, Rachel L. Kember a,b, 
Christopher T. Rentsch e,f, Heng Xu b, E. Jennifer Edelman g, Emily E. Hartwell a, 
Kyle M. Kampman a,b, Henry R. Kranzler a,b,* 
a Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States 
b Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States 
c Department of Epidemiology, University of Kentucky College of Public Health, Lexington, KY 40536, United States 
d Center on Drug and Alcohol Research, Department of Behavioral Science, University of Kentucky College of Medicine, Lexington, KY 40536, United States 
e VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT 06516, United States 
f Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK 
g Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States   

A R T I C L E  I N F O   

Keywords: 
Buprenorphine 
Genome-wide association study 
Genetics 
Treatment response 
Opioid use disorder 
Treatment predictors 

A B S T R A C T   

Background: Buprenorphine, approved for treating opioid use disorder (OUD), is not equally efficacious for all 
patients. Candidate gene studies have shown limited success in identifying genetic moderators of buprenorphine 
treatment response. 
Methods: We studied 1616 European-ancestry individuals enrolled in the Million Veteran Program, of whom 
1609 had an ICD-9/10 code consistent with OUD, a 180-day buprenorphine treatment exposure, and genome- 
wide genotype data. We conducted a genome-wide association study (GWAS) of buprenorphine treatment 
response [defined as having no opioid-positive urine drug screens (UDS) following the first prescription]. We also 
examined correlates of buprenorphine treatment response in multivariable analyses. 
Results: Although no variants reached genome-wide significance, 6 loci were nominally significant (p < 1 ×
10− 5), four of which were located near previously characterized genes: rs756770 (ADAMTSL2), rs11782370 
(SLC25A37), rs7205113 (CRISPLD2), and rs13169373 (LINC01947). A higher maximum daily buprenorphine 
dosage (aOR = 0.98; 95 %CI: 0.97, 0.995), greater number of UDS (aOR = 0.97; 95 %CI: 0.96, 0.99), and history 
of hepatitis C (HCV) infection (aOR = 0.71; 95 %CI: 0.57, 0.88) were associated with a reduced odds of 
buprenorphine response. Older age (aOR: 1.01; 95 %CI: 1.000, 1.02) was associated with increased odds of 
buprenorphine response. 
Conclusions: This study had limited statistical power to detect genetic variants associated with a complex human 
phenotype like buprenorphine treatment response. Meta-analysis of multiple data sets is needed to ensure 
adequate statistical power for a GWAS of buprenorphine treatment response. The most robust phenotypic pre-
dictor of buprenorphine treatment response was intravenous drug use, a proxy for which was HCV infection.   

1. Introduction 

Buprenorphine is one of three FDA-approved medications for treat-
ing opioid use disorder (OUD). Although treatment with buprenorphine 
is associated with substantial benefits, including decreased opioid 
overdose risk (Larochelle et al., 2018), a significant proportion of 

individuals do not achieve long-term abstinence and drop out of care 
(Mattick et al., 2014). Knowledge of the factors that predict return to 
opioid use would enable clinicians to identify at-risk patients prospec-
tively and modify treatment (e.g., by prescribing a higher dosage) to 
increase the likelihood of successful treatment. 

Demographic factors, including age, sex, race, and ethnicity, have 
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been associated with OUD treatment outcomes (Subramaniam et al., 
2011; Schuman-Olivier et al., 2014; Huhn et al., 2019; Hser et al., 2014). 
Unemployment and injection drug use, possible proxy measures for the 
presence of comorbid conditions or disease severity, have also been 
associated with a return to opioid use or dropping out of treatment 
(Stein et al., 2005; Potter et al., 2013; Dreifuss et al., 2013). Electronic 
health records (EHRs) provide a wealth of patient data that could be 
used to identify factors that influence treatment outcomes. For example, 
mood disorder diagnoses are common among individuals with OUD 
(Savant et al., 2013) and have been associated with buprenorphine 
adherence rates (Gerra et al., 2004; Litz and Leslie, 2017; Peckham et al., 
2020). EHRs also capture comorbid substance use disorders directly or 
through laboratory test results [e.g., urine drug screens (UDS)] or 
related diagnosis codes (e.g., alcohol-related cirrhosis). An important 
clinical problem among patients in treatment for OUD is the high rate of 
multi-substance use (Jones and McCance-Katz, 2019) and among pa-
tients receiving buprenorphine the use of substances other than opioids 
increases the likelihood that they will return to opioid use (Ferri et al., 
2014; Sullivan et al., 2010). 

Genetic variation among patients can result in differences in medi-
cation effectiveness through pharmacokinetic and/or pharmacody-
namic mechanisms. Despite growing support for a pharmacogenetic 
approach across a variety of medications (Hull et al., 2019), the litera-
ture on genetic moderators of OUD treatment effectiveness is limited 
(Meaden et al., 2020). Response to methadone among patients of Eu-
ropean ancestry has been associated with single nucleotide variation in 
DRD2, ARRB2, ALDH5A1, MYOCD, and GRM6, as well as haplotypes in 
BDNF and OPRM1 (de Cid et al., 2008; Fonseca et al., 2010, 2014; 
Crettol et al., 2008; Oneda et al., 2011; Crist et al., 2016). Buprenor-
phine effectiveness in patients has also been linked to a variable number 
of tandem repeats polymorphism (Gerra et al., 2014) in SLC6A3 and, in 
multiple studies, to OPRD1 polymorphisms. Two intronic OPRD1 single 
nucleotide polymorphisms (SNPs) predicted sublingual buprenorphine 
treatment response in European-American (EA) women (Clarke et al., 
2014). A different intronic OPRD1 SNP (rs678849) predicted bupre-
norphine treatment response in African-Americans (AA) (Crist et al., 
2013), a finding that was replicated in an independent cohort (Crist 
et al., 2019). In a third study, in which patients were treated with 
extended-release buprenorphine (Kranzler et al., 2021), rs678849 pre-
dicted efficacy in EAs, but not AAs. In summary, while these pharma-
cogenetic studies provide suggestive evidence that genetic variation 
could moderate OUD treatment response, they are based on candidate 
gene approaches in cohorts of at most a few hundred patients, limiting 
their statistical power and the generalizability of the findings. 

Here we present the first genome-wide association study (GWAS) of 
buprenorphine response in 1609 EA patients treated for OUD and 
enrolled in the Million Veteran Program (MVP). Despite the modest 
sample size for GWAS, there is evidence that statistical power is 
enhanced in the study of treatment-relevant variants relative to disease- 
related ones (Maranville and Cox, 2016). Further, a GWAS of usual 
methadone dose in a sample smaller than the one here yielded a 
genome-wide significant finding (Smith et al., 2017). We also charac-
terized the phenotype by examining the associations between measures 
of treatment outcome and EHR variables previously linked to OUD or 
OUD treatment effectiveness, including demographic measures and co-
morbid diagnoses. 

2. Materials and methods 

2.1. Participants 

MVP is a large biobank created and maintained by the US Depart-
ment of Veteran Affairs (VA) (Gaziano et al., 2016), which at the time of 
the study included EHR data on over 700,000 Veterans, a majority of 
whom also had linked genetic data. The main MVP study and the ana-
lyses described here were approved by the Central VA Institutional 

Review Board. All patients provided written informed consent to 
participate in MVP. 

We included 1616 EA Veterans enrolled in MVP and who had 1) an 
ICD-9/10 code consistent with OUD between August 2003 and 
November 2018; and 2) at least 60 consecutive days of sublingual 
buprenorphine/naloxone treatment based on EHR prescription data, 
including, but not limited to, prescriptions for the brand name medi-
cations Suboxone, Zubsolv, and Bunavail or for generic buprenorphine/ 
naloxone. The buprenorphine treatment window was defined as the time 
period from the start of the initial prescription to a) the first two-week 
period in which no buprenorphine was prescribed or b) 180 days, 
whichever was shorter. For patients who had multiple distinct periods of 
buprenorphine treatment, only the first treatment period was included 
in the analysis. 

Treatment response was measured by UDS for full opioid agonists, 
including methadone, within the treatment window. An opioid-positive 
UDS was defined as one that tested positive for one or more opioid ag-
onists. If a confirmatory test of an opioid-positive UDS returned negative 
results, the UDS was considered to be a false positive and was coded as 
opioid-negative for the purposes of treatment response. Treatment re-
sponders were defined as having no opioid-positive UDS. This definition 
of treatment response was chosen over other possible outcome mea-
surements, including the percentage of UDS positive for opioid agonists 
and treatment duration, because the distributions of these other defi-
nitions were skewed and thus did not lend themselves to GWAS (Sup-
plemental Fig. 1). 

2.2. Phenotype characterization 

Potential correlates of buprenorphine treatment response were 
selected a priori. We used age at the time of the first buprenorphine 
prescription. Data on buprenorphine maximum daily dosage and UDS 
were obtained for the first 180 days of treatment. Comorbid psychiatric 
disorders and infectious diseases were considered present if there was 1 
inpatient or 2 outpatient ICD-9/10 codes for them in the EHR (Supple-
mental Tables 2 and 3). 

2.3. Statistical analysis 

Descriptive statistics included means with standard deviations and 
medians with interquartile ranges for continuous variables and fre-
quencies with percentages for categorical variables. Bivariate associa-
tions between potential correlates and buprenorphine response were 
assessed through simple logistic regressions. Variables with a p-value ≤
0.1 in bivariate analysis were included in a multivariable logistic 
regression model. A C-statistic was used to assess goodness of fit of the 
multivariable model. Analyses were performed using SAS 9.2 (Cary, NC) 
and an alpha of 0.05 was used to denote statistical significance. 

2.4. Genotyping and imputation 

Genotyping was performed using a custom Affymetrix Axiom bio-
bank array containing 723,305 SNPs. The array is enriched for markers 
of AA and Hispanic ancestry and common diseases of interest to the VA 
population (Gaziano et al., 2016). 

Samples with >2.5 % missing genotype calls or high heterozygosity 
and SNPs with high missingness or deviation from the expected allele 
frequency were removed (Hunter-Zinck et al., 2020). It is now standard 
practice to impute SNP genotype data, allowing prediction of ungen-
otyped variants to increase the number of variants available for asso-
ciation testing (Marchini and Howie, 2010). Genotypes were pre-phased 
using EAGLE v2 and imputed via Minimac4 software using the 1000 
Genomes Project phase 3 v5 reference panel (Auton et al., 2015). The 
top 30 principal components (PCs) were computed using FlashPCA on a 
dataset that included all MVP participants and an additional 2504 in-
dividuals from 1000 Genomes Phase 3. Genetically inferred ancestry, 
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derived from the PCs, and self-reported race/ancestry were unified to 
assign individuals to ancestral groups (HARE) (Fang et al., 2019). 
Within-ancestry PCs were then computed for MVP individuals within 
each ancestral group for use as covariates. 

2.5. Genome-wide association analysis 

Following imputation, 318,725 EA individuals in MVP were identi-
fied based on the HARE definition. Population-specific imputation 
quality (INFO) score was calculated, and SNPs with imputation quality 
<0.3 were excluded. A total of 1609 individuals had complete genomic 
and phenotypic information for analysis. We used imputed SNPs that 
passed quality control (minor allele frequency > 1 %, genotype call rate 
>0.95, and Hardy-Weinberg Equilibrium p < 1e-6) to test the associa-
tion of buprenorphine response using logistic regression. Covariates 
included age, sex, and the first 10 PCs. Gene-based and functional an-
alyses of GWAS results were performed using MAGMA and FUMA, 
respectively (https://fuma.ctglab.nl/) (de Leeuw et al., 2015; Watanabe 
et al., 2017). 

2.6. Data availability 

Summary statistics from the GWAS are available through dbGaP at 
accession no. phs001672.v3.p 1. 

3. Results 

3.1. Genome-wide association study of buprenorphine response 

As shown in Fig. 1, the GWAS yielded six loci that were nominally 
significantly associated with buprenorphine treatment response (p < 1 
× 10− 5), defined as continuous abstinence during buprenorphine 
treatment (Table 1). Three of the variants were located near previously 
characterized protein-coding genes: rs756770 (ADAMTSL2), 
rs11782370 (SLC25A37), and rs7205113 (CRISPLD2). A fourth variant 
(rs13169373) was located within the long intergenic non-coding RNA 
LINC01947. Two additional intergenic loci were also identified: 
rs62368105 (chr5:43970054) and rs6973474 (chr7:96804). Regional 
association plots for all nominally significant loci are provided in Sup-
plemental Fig. 2. No variants were genome-wide significant (p < 5 ×

10− 8). Analysis with MAGMA did not identify any genes significantly 
associated with buprenorphine treatment response after correction for 
multiple testing at a False Discovery Rate (FDR) of 0.05 (data not 
shown). Results for genes previously associated with OUD treatment 
response are provided in Supplemental Table 1. Functional analysis of 
the genes associated with the nominally significant variants identified in 
the GWAS was performed with FUMA (GENE2FUNC). No significant 
enrichment was observed (data not shown). 

3.2. Phenotypic characterization of buprenorphine response 

Based on unadjusted associations, age, sex, and diagnoses for HIV or 
comorbid psychiatric or substance use disorders were not associated 
with buprenorphine response (Table 2; all p > 0.05). In the multivari-
able analysis, a higher maximum daily dosage of buprenorphine (aOR =
0.98; 95 % CI: 0.97, 0.995) and a greater number of UDS (aOR = 0.98; 
95 % CI: 0.96, 0.99) were associated with significantly reduced odds of 
buprenorphine treatment response. Veterans with a history of hepatitis 
C (HCV) had 29 % reduced odds of buprenorphine response compared to 
those without HCV (aOR = 0.71; 95 % CI: 0.57, 0.88). Older age was 
significantly associated with higher odds of buprenorphine treatment 
response (aOR = 1.01; 95 % CI: 1.000, 1.02). 

4. Discussion 

Abstinence during buprenorphine treatment was nominally associ-
ated with six loci, including variants near SLC25A37, ADAMTSL2, 
CRISPLD2, and LINC01947. SLC25A37 encodes an iron transporter 
localized to the mitochondrial membrane and is upregulated in the 
nucleus accumbens of individuals addicted to heroin or cocaine 
(Albertson et al., 2004, 2006). The lead variant from this locus 
(rs11782370) is an expression quantitative trait locus (eQTL) for 
SLC25A37 in multiple tissues, as well as for ENTPD4, a gene that is ~55 
kb upstream of the SNP (GTEx Consortium, 2015). Polymorphisms in 
SLC25A37 have also been linked to major depressive disorder (Huo 
et al., 2016; Peterson et al., 2018), which may be relevant to bupre-
norphine treatment (Ghabrash et al., 2020), though depression was not 
significantly associated with treatment response in the current sample. 
ADAMTSL2 encodes a secreted glycoprotein and was associated in the 
UK Biobank data set with heaviness of smoking, a common comorbid 

Fig. 1. Manhattan plot of results from a genome-wide association study of buprenorphine response in European-ancestry individuals treated for opioid use disorder 
(n = 1609). All peaks containing lead SNPS with p < 1 × 10− 5 and mapping to previously characterized genes are labeled with the corresponding gene symbol. 
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disorder in OUD patients (Quach et al., 2020). Despite the lead variant in 
this locus (rs756770) being intronic, it is not associated with ADAMTSL2 
expression (GTEx Consortium, 2015). However, it is identified as an 
eQTL for the upstream gene REXO4 in whole blood (GTEx Consortium, 
2015). Finally, CRISPLD2 encodes a secreted anti-inflammatory protein 
that has been implicated in obesity and weight loss and LINC01947 is a 
long intergenic non-coding RNA with limited functional data (Jackson 
et al., 2019; Zhu et al., 2020). 

GWAS of psychiatric disorders generally require samples in the tens 
of thousands to identify variants of genome-wide significance (Zhou 
et al., 2020; Ripke et al., 2014; Kranzler et al., 2019). Thus, the sample in 
this GWAS of buprenorphine treatment response provided limited sta-
tistical power to detect variants associated with a complex human 
phenotype like treatment response. However, studying treatmen-
t-relevant variants may provide greater statistical power for a given 
sample size than disease-related ones (Maranville and Cox, 2016) and 
some pharmacogenomic studies have yielded genome-wide significant 
findings with smaller samples (Hou et al., 2016; Allen and Bishop, 
2019), including a study of usual methadone maintenance dose (Smith 
et al., 2017), although the traits studied may be less polygenic than OUD 
treatment outcome. Meta-analyses similar to those conducted by the 
Psychiatric Genomics Consortium or the Consortium on Lithium 

Genetics are likely required to ensure that the number of OUD patients 
treated with buprenorphine yields adequate statistical power for a 
GWAS of treatment response (Ripke et al., 2014; Hou et al., 2016). 
Together with continued recruitment and the release of additional 
genome-wide genotype data by the Million Veteran Program, we are 
aggregating samples from other studies of buprenorphine-treated pa-
tients to increase the available statistical power of meta-analyses. It may 
also be possible to use natural language processing to augment UDS data 
to exploit the growing availability of EHR data for use in GWAS of 
buprenorphine response. 

We observed that maximum buprenorphine daily dosage, number of 
UDS, and HCV seropositivity were all associated with opioid use during 
treatment. A greater maximum daily buprenorphine dose and number of 
UDS are likely attributable to providers’ response to patients who 
continued to use opioids and may lack value as predictors, serving 
instead as proxy measures of relapse. HCV status is strongly associated 
with injection drug use (Armstrong et al., 2006; May et al., 2015) and is 
a valuable alternative metric, because HCV seropositivity is well 
captured in the EHR and direct information on injection drug use is not. 
Intravenous drug administration has been linked to the use of opioids 
and other substances during OUD treatment (Potter et al., 2013; Ledg-
erwood et al., 2019; Cox et al., 2013). People who inject drugs have high 

Table 1 
Nominally significant lead genetic variants associated with buprenorphine treatment response.  

SNP ID Chromosome:Position Effect Allele Nearest Gene Odds Ratio Standard Error P-Value 

rs62368105 5:43970054 G NNT/FGF10 1.9437 0.147647 6.76 × 10− 6 

rs13169373 5:166345088 T LINC01947 1.4364 0.0818052 9.54 × 10− 6 

rs6973474 7:96804 T FAM20C 1.4043 0.0762082 8.36 × 10− 6 

rs11782370 8:23370018 T SLC25A37 1.4843 0.0878757 6.97 × 10− 6 

rs756770 9:136398858 A ADAMTSL2 1.8599 0.138925 7.93 × 10− 6 

rs7205113 16:84847823 T CRISPLD2 1.6486 0.112005 8.05 × 10− 6  

Table 2 
Characteristics of the sample and associations with buprenorphine response (n = 1616).   

% (n) Treatment response (n 
= 988) 

Treatment non-response 
(n = 628) 

Unadjusted OR (95 
% CI) 

P Adjusted OR (95 
% OR) 

P 

Male 92 % (1485) 92 % (908) 92 % (577) 1.00 (0.70, 1.45) 0.99 – – 
Age – mean (SD) 45 (13.57) 46 (13.54) 45 (13.61) 

1.01 (1.00, 1.02) 0.06 1.01 (1.000, 1.02) 0.04 Age – Median (IQR) 47 (32, 57) 48 (33, 57) 46 (32, 56) 

% Opioid-positive UDS – mean (SD) 
10 % (18.29 
%) 

– 
25 % (21.87 %) 

– – – – 
% Opioid-positive UDS – Median (IQR) 

0 % (0 %, 
12.50 %) 

17 % (10 %, 33 %) 

# of UDS – mean (SD) 11 (7.63) 10 (7.50) 12 (7.71) 0.97 (0.96, 0.98) <0.01 0.98 (0.96, 0.99) <0.01 
# of UDS – Median (IQR) 9 (5, 14) 8 (4, 14) 10 (6, 15) 
Max daily dosage of buprenorphine 

(mg) – mean (SD) 17 (7.29) 16 (7.46) 17 (6.96) 
0.98 (0.96, 0.99) <0.01 0.98 (0.97, 0.995) 0.01 Max daily dosage of buprenorphine 

(mg) – Median (IQR) 16 (12, 24) 16 (10, 20) 16 (12, 24) 

Chronic pain 96 % (1554) 96 % (952) 96 % (602) 1.14 (0.68, 1.91) 0.61 – – 
HCV 34 % (556) 32 % (313) 39 % (243) 0.74 (0.60, 0.91) <0.01 0.71 (0.57, 0.88) <0.01 
HIV 1 % (17) 1 % (9) 1 % (8) 0.71 (0.27, 1.86) 0.49 – – 
Anxiety 55 % (894) 57 % (559) 53 % (335) 1.14 (0.93, 1.39) 0.20 – – 
Depression 63 % (1014) 62 % (612) 64 % (402) 0.92 (0.74, 1.13) 0.40 – – 
PTSD 61 % (983) 61 % (605) 60 % (378) 1.05 (0.85, 1.28) 0.67 – – 
Other, non-SUD psychiatric diagnosis 88 % (1429) 89 % (875) 88 % (554) 1.03 (0.76, 1.41) 0.83 – – 
Alcohol use disorder 65 % (1058) 67 % (657) 64 % (401) 1.12 (0.91, 1.39) 0.28 – – 
Tobacco use disorder 82 % (1322) 82 % (812) 81 % (510) 1.07 (0.83, 1.38) 0.62 – – 
Cocaine use disorder 38 % (618) 37 % (365) 40 % (253) 0.87 (0.71, 1.07) 0.18 – – 
Cannabis use disorder 32 % (511) 31 % (310) 32 % (201) 0.97 (0.78, 1.20) 0.79 – – 
Stimulant use disorder 23 % (364) 23 % (227) 22 % (137) 1.07 (0.84, 1.36) 0.59 – – 
Sedative use disorder 25 % (409) 26 % (252) 25 % (157) 1.03 (0.82, 1.29) 0.82 – – 
Hallucinogen use disorder 1 % (23) 2 % (16) 1 % (7) 1.46 (0.60, 3.57) 0.41 – – 
Other SUD diagnosis 58 % (932) 57 % (565) 58 % (367) 0.95 (0.78, 1.16) 0.62 – – 
Any SUD (excluding OUD) 93 % (1505) 94 % (924) 93 % (581) 1.17 (0.79, 1.73) 0.43 – – 

Treatment response = no opioid-positive urine drug screens; Treatment non-response = at least 1 opioid-positive urine drug screen; UDS = urine drug screen; mg =
milligrams; OR = odds ratio; SD = standard deviation; IQR = interquartile range; HCV = hepatitis C; PTSD = posttraumatic stress disorder; SUD = substance use 
disorder; OUD = opioid use disorder. Adjusted logistic regression c = 0.59. 
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rates of physical and psychiatric comorbidities and endorse a greater 
need for substance use treatment (Novak and Kral, 2011). Given the 
association between heroin use and intravenous drug administration, 
this finding may also reflect differences between people who use heroin 
and those who use prescription opioids (Jones, 2018). People who use 
heroin generally have worse buprenorphine treatment outcomes, 
including spending less time in treatment and having higher rates of 
opioid-positive UDS and of HCV infection than individuals who use only 
prescription opioids (Moore et al., 2007). 

The VA is a large, nationwide medical system and standards for OUD 
treatment (e.g., inclusion criteria for buprenorphine treatment, dosage 
selection, frequency of UDS collection in buprenorphine-treated pa-
tients, methods of UDS testing) vary among VA facilities. This hetero-
geneity limited our ability to select potentially more informative 
phenotypes and identify genetic variants contributing to treatment 
response. The lack of specific information on drug use, including the 
route of administration and the type of opioids used (e.g., prescription 
vs. illicit) limited our ability to characterize the study sample pheno-
typically. The availability of this information would be useful in future 
work. Factors associated with buprenorphine response in the VA may 
not be generalizable to other healthcare systems, although future studies 
can evaluate the reliability of this phenotype in other settings. Addi-
tionally, it was a predominantly male sample and the analysis was 
limited to EA patients because of the much smaller number of 
buprenorphine-treated patients of other ancestries. Whereas our ability 
to generalize our findings to other population groups is limited, future 
studies should aim to expand the number of women and non-European- 
ancestry individuals. Further, greater uniformity in the VA approach to 
monitoring drug use among buprenorphine-treated patients would 
reduce variability in phenotyping for pharmacogenetic studies and also 
likely improve patient care. 

In conclusion, we present the first GWAS of buprenorphine treatment 
response, together with the phenotype characterization of treatment 
outcomes. Our genetic findings include variants in several addiction- 
related genes that may be associated with buprenorphine treatment 
response, though they did not meet genome-wide statistical significance. 
We also found that HCV infection was correlated with buprenorphine 
non-response, supporting previously observed associations between 
measures of injection drug use and OUD treatment outcomes. We hope 
that this study provides an impetus for the collection of diverse cohorts 
of OUD patients being treated with buprenorphine, so as to permit the 
conduct of a multi-ancestry meta-GWAS of treatment response. Such a 
collaborative approach is likely to be the only way to ensure adequate 
statistical power to identify variants contributing to buprenorphine 
treatment response and to ensure the generalizability of the findings 
across population groups and both sexes. 
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