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Abstract

Background and Aims: Genome-wide association studies (GWAS) of opioid use disorder

(OUD) and cannabis use disorder (CUD) have lagged behind those of alcohol use disor-

der (AUD) and smoking, where many more loci have been identified. We sought to iden-

tify novel loci for substance use traits (SUTs) in both African- (AFR) and European- (EUR)

ancestry individuals to enhance our understanding of the traits’ genetic architecture.
Design: We used multi-trait analysis of GWAS (MTAG) to analyze four SUTs in EUR sub-

jects (OUD, CUD, AUD and smoking initiation [SMKinitiation]), and three SUTs in AFR

subjects (OUD, AUD and smoking trajectory [SMKtrajectory]). We conducted gene-set

and protein–protein interaction analyses and calculated polygenic risk scores (PRS) in

two independent samples.

Setting: This study was conducted in the United States.

Participants: A total of 5692 EUR and 4918 AFR individuals in the Yale-Penn sample

and 29 054 EUR and 10 265 AFR individuals in the Penn Medicine BioBank sample.

Findings: MTAG identified genome-wide significant (GWS) single nucleotide polymor-

phisms (SNPs) for all four traits in EUR: 41 SNPs in 36 loci for OUD; 74 SNPs in 60 loci for

CUD; 63 SNPs in 52 loci for AUD; and 183 SNPs in 144 loci for SMKinitiation. MTAG also

identified GWS SNPs in AFR: 2 SNPs in 2 loci for OUD; 3 SNPs in 3 loci for AUD; and

1 SNP in 1 locus for SMKtrajectory. In the Yale-Penn sample, the MTAG-derived PRS con-

sistently yielded more significant associations with both the corresponding substance use

disorder diagnosis and multiple related phenotypes than the GWAS-derived PRS.

Conclusions: Multi-trait analysis of genome-wide association studies boosted the num-

ber of loci found for substance use traits, identifying genes not previously linked to any

substance, and increased the power of polygenic risk scores. Multi-trait analysis of

genome-wide association studies can be used to identify novel associations for sub-

stance use, especially those for which the samples are smaller than those for historically

legal substances.
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INTRODUCTION

The etiology of substance use traits (SUTs) involves both environ-

mental and genetic factors, with estimates of heritability �50%.

Genome-wide association studies (GWAS) of SUTs have successfully

identified hundreds of genome-wide significant (GWS) risk variants

[1–7], providing insight into the underlying biology that influences

substance use and misuse. However, because common genetic vari-

ants have small effects on trait susceptibility, large samples are

needed to identify GWS associations, with recent GWAS of SUTs

requiring case sample sizes of over 20 000 to identify variants. Diffi-

culty in recruiting large study samples has, therefore, limited gene dis-

covery efforts [8], with variant discovery for some traits (e.g. opioid

use disorder [OUD] and cannabis use disorder [CUD]) lagging behind

that of more common SUTs such as alcohol and smoking-related

phenotypes. Furthermore, underrepresentation of non-European-

ancestry individuals has limited genetic discovery and exacerbated

health inequalities [9]. In addition to identifying relevant biology,

GWAS results are also necessary to calculate polygenic risk scores

(PRS), which may have clinical use [10]. Increasing the power of

GWAS results for SUTs in multiple ancestries will improve our under-

standing of their underlying biology and inform diagnostic and treat-

ment efforts.

Multi-trait analysis of GWAS (MTAG) was developed to boost

the statistical power of GWAS by incorporating information from

effect estimates across traits [11]. It enables the joint analysis of

multiple, genetically correlated traits, generating trait-specific esti-

mates of the effects of each single nucleotide polymorphism (SNP).

MTAG is also valuable because it can be applied to summary sta-

tistics of GWAS rather than requiring individual genotypes, addres-

sing the sample overlap often present across GWAS discovery

samples for different traits using linkage disequilibrium (LD) score

regression [11].

Because SUTs have shown high degrees of genetic correlation in

GWAS and twin and family studies [12], they are ideally suited to

MTAG. MTAG has been used to boost genetic findings for SUTs, both

for traits involving the same substance and for cross-substance traits.

In a meta-analysis of problematic alcohol use (PAU) [13], MTAG analy-

sis of PAU and a measure of weekly alcohol consumption [4]

increased the number of independent loci for PAU from 29 to 76.

MTAG analysis of OUD with AUD and CUD [14] increased the num-

ber of GWS loci for OUD to 18 from three in the initial GWAS meta-

analysis. Because MTAG for multiple genetically correlated SUTs

yields greater statistical and interpretive power than individual-trait

GWAS, the availability of large GWAS of alcohol- and smoking-related

traits could enhance findings from GWAS of traits with smaller accu-

mulated samples (e.g. CUD and OUD).

Here, we conduct an MTAG analysis of the largest available

GWAS for three SUTs in African-ancestry (AFR) individuals: OUD,

alcohol use disorder (AUD) and smoking trajectory (SMKtrajectory);

and four SUTs in European-ancestry (EUR) individuals: OUD, CUD,

AUD and smoking initiation (SMKinitiation). We integrated informa-

tion from the GWAS summary statistics to identify novel loci for

each SUT. We also conducted gene prioritization, gene-set and

protein–protein interaction (PPI) analyses to characterize the underly-

ing biology of the novel genes in the context of SUTs. Finally, we

generated polygenic risk scores (PRS) to examine the power

increment for each set of MTAG-GWAS summary statistics in two

independent samples.

METHODS

GWAS summary statistics

We identified available GWAS summary statistics for opioid (use dis-

order) [1], cannabis (use disorder and lifetime use) [3, 5], alcohol (use

disorder and drinks per week) [2, 4] and tobacco (smoking initiation,

Fagerström Test for Nicotine Dependence [FTND], smoking trajec-

tory) [4, 6, 7] in both AFR and EUR individuals. Other ancestries were

not included because of lack of data.

Genetic correlation

Genetic correlation (rg) measures the genetic similarity between two

different traits [15]. We calculated pairwise genetic correlations for

the SUTs within each ancestry using linkage disequilibrium score

regression (LDSC) [16] and HapMap 3 SNPs. Pre-computed EUR

linkage disequilibrium (LD) scores and weights were downloaded from

the LDSC GitHub website (https://github.com/bulik/ldsc). We com-

puted AFR LD scores and weights in Million Veteran Program (MVP)

genotype data using cov-LDSC [17].

Phenotype selection

To maximize the power of the joint analysis, for each substance we

selected the trait with the strongest genetic correlations with other

SUTs (Table S1). We selected three SUTs for MTAG analysis in AFR

samples: OUD [1], AUD [2] and SMKtrajectory [7] and four SUTs for

MTAG analysis in EUR samples: OUD [1], CUD [3], AUD [2] and

SMKinitiation [4]. Because our downstream PRS analysis used the

Yale-Penn dataset and the CUD GWAS included genotype data from

Yale-Penn subjects, we avoided sample overlap by generating sum-

mary statistics for CUD using a ‘leave-one-out’ meta-analysis that

excluded Yale-Penn subjects. All other GWAS were independent of

the Yale-Penn dataset.

Multi-trait analysis of GWAS summary statistics
(MTAG)

We used trait-specific effective sample sizes and transformed

Z-scores. SNPs present in all of the SUT summary statistics were

included in the MTAG calculation (AFR n = 2 648 506; EUR
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n = 2 888 727), which used default MTAG parameters (i.e. each SNP’s
sample size was larger than two thirds of the 90th percentile of all

SNPs’ sample sizes). We calculated maximum False Discovery Rate

(maxFDR) [11] as the upper bound of False Discovery Rate (FDR) for

each MTAG result. We used PLINK1.9 to perform clumping proce-

dures on the four MTAG results across a range of 3000 kb and

r2 > 0.1. GWS variants located within 1 Mb were merged into a single

locus. Loci were annotated with the nearest protein-coding gene

(within 1 Mb) using SNPsnap [18].

Identification of novel variants for each SUT

Loci that were not previously GWS for any SUT were labeled as ‘novel.’
To ascertain this, we systematically evaluated whether variants identi-

fied in the MTAG analysis were previously associated with either the

primary SUT or other SUTs. First, for each lead variant, we determined

whether any nearby variant (within 1 Mb) was GWS in the initial GWAS

or in the other three contributing GWAS. We, then, determined

whether the locus had prior SUT associations using the GWAS catalog

[19] implemented in FUMA [20], annotating all lead variants with prior

associations with any SUT (not limited to the GWAS included in this

study). For completeness, we also labeled the variant with the closest

protein-coding gene (within 1 Mb) and searched the GWAS catalog [19]

for prior associations of that gene with SUTs.

Gene-set analysis

To determine whether the identified genes are involved in important

biological processes, GWS SNPs from the EUR sample were mapped

to genes by ANNOVAR [21] implemented in FUMA [20]. Next, we

curated gene-set enrichment and Gene Ontology (GO) terms using

the GO annotation database [22, 23], with gene-set enrichment

P-values adjusted using a Bonferroni correction for each test (adjust-

ment P-value <0.05).

PPI

To further investigate the relationship between the prioritized

protein-coding genes from each MTAG result in EUR, we used

STRING database v11.5 s [24] to conduct PPI analyses. For each SUT

MTAG result, we used annotated GWS genes as input to query the

PPIs in the database. PPI enrichment P-value and pairwise interaction

scores were reported by the STRING database. We used a cut-off

interaction score >0.4 to identify PPIs with high confidence.

Yale-Penn dataset

The Yale-Penn sample was recruited for genetic studies of sub-

stance use disorders (SUDs) [25]. It was deeply phenotyped using

the Semi-Structured Assessment for Drug Dependence and Alcohol-

ism (SSADDA), a comprehensive psychiatric interview schedule [26,

27]. The Yale-Penn phenome-wide association studies (PheWAS)

dataset includes 4917 unrelated AFR and 5692 unrelated EUR gen-

otyped individuals and over 650 summarized phenotypes catego-

rized into 20 substance, medical, demographic and psychiatric

sections [25].

Penn Medicine BioBank Dataset

The Penn Medicine BioBank (PMBB) is an electronic health record-

linked biobank at the University of Pennsylvania [28]. Patients at Penn

Medicine are recruited under a single umbrella institutional review

board (IRB) protocol that provides consent for blood collection, geno-

typing and access to medical records for research purposes. The

PMBB dataset includes genotype data for 10 383 AFR and 29 355

EUR individuals. International Classification of Diseases (ICD)-9 and

-10 codes were extracted from the electronic health record. Case/

control status for each substance use disorder (OUD, CUD, AUD and

TUD) was determined based on the presence or absence of relevant

ICD-9 and -10 codes (Table S2).

PRS and phenotype association test

We used PRS-continuous shrinkage (PRS-CS) [29] to generate PRS in

both the Yale-Penn [25] and PMBB datasets, pre-computed LD refer-

ence for HapMap3 SNPs in AFR and EUR samples to account for

local LD, and an optimal global shrinkage parameter learned from the

data. We generated a GWAS-based PRS and a MTAG-based PRS for

each of the SUTs in both AFR and EUR individuals. To ensure com-

parability between GWAS-based and MTAG-based PRS, only the

SNPs used in the MTAG calculation were included in PRS calculation.

Effective sample sizes were used to generate GWAS- and MTAG-

based PRS.

To compare the power of GWAS-based PRS with MTAG-based

PRS, we tested the associations of each PRS in the Yale-Penn dataset

with phenotypes in the corresponding substance section (e.g. AUD

PRS were tested with alcohol-related phenotypes). We used the Phe-

WAS package in R [30] with linear or logistic regression models as

appropriate. We used age, sex and 10 genetic principal components

(PCs) as covariates [31]. Each substance section includes Diagnostic

and Statistical Manual of Mental Disorders (DSM)-IV and DSM-5 diag-

noses for the corresponding SUD. For diagnoses, we calculated the

incremental pseudo R2 value after adding the polygenic score to the

logistic regression models. To account for multiple testing, we used a

significance P-value <0.05 divided by the number of phenotypes in

each substance.

In the PMBB dataset, we tested the associations of each PRS with

case/control status for the corresponding substance use disorder

using logistic regression in R, including sex, age and the top 10 PCs as

covariates.

MTAG OF SUBSTANCE USE TRAITS 3
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The analysis described here was not preregistered, and as such

the results should be considered exploratory.

RESULTS

Genetic correlation between SUTs

Pairwise rg calculated using LDSC were significant and moderate or

high between OUD, CUD, cannabis lifetime use, AUD, drinks per

week, SMKinitiation and SMKtrajectory in EUR; and OUD, AUD and

SMKtrajectory in AFR (Figure 1, Table S1). In EUR, CUD had stronger

genetic correlations with other SUTs than cannabis lifetime use, and

AUD had stronger genetic correlations than drinks per week. FTND

was not significantly genetically correlated with CUD, cannabis life-

time use or drinks per week in EUR. There was not enough power

for CUD to compute genetic correlations with other SUTs in AFR.

We therefore selected OUD [1] (effective n = 74 635), CUD [3]

(effective n = 48 900), AUD [2] (effective n = 171 601) and SMKini-

tiation [4] (effective n = 632 802) for MTAG in EUR; and OUD [1]

(effective n = 32 240), AUD [2] (effective n = 67 686) and smoking

trajectory (SMKtrajectory; effective n = 40 736) [7] for MTAG

in AFR.

MTAG SUTs and locus discovery

The pairwise genetic correlations for the SUTs ranged from 0.45 to

0.80 in EUR and 0.61 to 0.66 in AFR, supporting the use of MTAG to

conduct a joint analysis of these traits. MTAG increased the effective

sample size and the number of independent loci identified for each

SUT, with low maxFDR values supporting the robustness of the

results (Table 1). In EUR, the number of independent loci increased

from 4 to 36 for OUD, 2 to 60 for CUD, 12 to 52 for AUD and 74 to

144 for SMKinitiation. In AFR, the number of independent loci

increased from 1 to 2 for OUD and 0 to 1 for SMKtrajectory, whereas

the number of independent loci for AUD remained the same. Among

the four sets of MTAG results in EUR (Figure 2, Tables S3–S5, S7), 20

loci were significantly associated with all four SUTs, the most signifi-

cant of which was the locus containing NCAM1, supported by two

intronic variants in complete LD (rs1940701 for OUD and AUD and

rs4479020 for CUD and SMK). Other loci associated with all four

SUTs in EUR included intronic variants in DPP4 and CADM2 and an

intergenic variant near ZNF184. In AFR no loci were associated with

all three SUTs.

Opioid use disorder (MTAG-OUD)

In EUR, of the 41 independent GWS SNPs in 36 loci (Table S3), three

were GWS in the OUD GWAS, 17 were GWS in at least one of the

other of the three SUT GWAS used for MTAG, and 30 were GWS in

other GWAS of SUTs, not limited to the GWAS included in this study.

Variants including exonic SNPs in OPRM1 and FURIN were GWS in

previous OUD GWAS [1,14]. Five GWS loci are novel (i.e. no prior

associations with OUD or any SUT). These include a variant in the 30

untranslated regions of POR, intronic variants in CNOT4 and MTMR2

and intergenic variants near TMEM170B and SNAI1. In AFR, one of

the two independent GWS SNPs in two loci (Table S3) is novel—an

intronic variant in GIHCG.

Cannabis use disorder (MTAG-CUD)

MTAG yielded 74 independent GWS SNPs in 60 genomic risk loci in

EUR (Table S4). Of the 60 loci, three were GWS in the CUD GWAS,

43 were GWS in at least one of the other three SUT GWAS used for

MTAG, and 51 were GWS in other GWAS of SUTs. We replicated

F I G U R E 1 Overview of the
analysis. The four substance use traits
(SUTs) that were used in multi-trait
analysis of genome-wide association

studies (MTAG) analysis have pairwise
genetic correlations between 0.45
and 0.80. For each SUT MTAG-
genome-wide association studies
(GWAS) result, we identified novel
loci, performed gene-set analysis,
protein–protein interaction analysis
and examined the increased
predictive power of the
corresponding polygenic risk score.

4 XU ET AL.
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previously associated loci for CUD [3], including an intergenic variant

near CLU in the same locus identified in the input CUD GWAS, an

intronic variant in GBF1, and an exonic variant in FURIN. We identified

four novel GWS loci, including three intronic variants—one each in

CNOT4, TMEM245 and MTMR2—and an intergenic variant near

TMEM170B.

Alcohol use disorder (MTAG-AUD)

We identified 63 independent GWS SNPs in 52 genomic risk loci for

AUD in EUR (Table S5). Of these, 9 loci were GWS in the AUD

GWAS, 23 were GWS in at least one of the other three SUT GWAS

used for MTAG, and 40 were GWS in other GWAS of SUTs. These

included multiple previously reported AUD-associated variants—

exonic variants in GCKR and SLC39A8, and intronic variants in ANKK1

and FTO [2]. We also identified 10 novel GWS loci, including exonic

variants in POR and SYNGAP1; intronic variants in DNM3, CSMD3,

CNOT4, LRFN5, ZNF804A and TCF20; and two intergenic variants

near TMEM170B and SORCS3. Of note, SNP rs1229984, located in

the alcohol dehydrogenase gene ADH1B, did not pass the default

MTAG quality control parameter in EUR as it was not present in at

least two thirds of the sample. Because of the well-known strong

association of rs1229984 with alcohol phenotypes [2, 13], we con-

ducted a separate analysis with a less stringent filter to include that

SNP (Table S6). In AFR, we identified three independent SNPs in two

loci, all which had prior associations with SUTs (Table S5).

Smoking initiation and trajectory (MTAG-SMK)

We identified 183 independent GWS SNPs in 144 genomic risk loci

(Table S7). Of these, 86 were GWS in the SMKinitiation GWAS, seven

were GWS in at least one of the other three SUT GWAS used for

MTAG, and 130 were GWS in other GWAS of SUTs. Eight GWS loci

were novel, including a variant within TNRC6B and seven intergenic

variants: one each near WDR12, PCDH7, ITGA1, TMEM170B, SP4,

CTDP1 and SORCS3. In AFR, one novel locus for SMKtrajectory was

identified in GIHCG (Table S7).

Gene-set analysis

Enriched gene sets were identified for all studied traits in EUR: 28 for

MTAG-OUD, 73 for MTAG-CUD, 51 for MTAG-AUD and 70 for

MTAG-SMK (Tables S8–S11). The gene-set ‘regulation of cell differ-

entiation’, which contains the novel gene POR and the opioid-specific

gene OPRM1, showed significant enrichment for OUD (PBon = 0.001).

‘Protein dimerization activity’, one of the significantly enriched gene-

sets for CUD (PBon = 3.7 × 10−9), harbors the novel genes MTMR2 and

FOXP2. For AUD, the enriched gene set ‘regulation of synapse struc-

ture or activity’ (PBon = 0.012) contains the novel genes DNM3, LRFN5

and SYNGAP1 along with DRD2. For SMK, 70 gene sets showedT
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significant enrichment, with the novel gene TNRC6B mapping to 12 of

them. Of note, the gene set ‘neuron differentiation’, which includes

NCAM1, is significantly enriched (PBon = 0.031).

Protein–protein interaction

We observed significant PPI enrichment (P < 0.05) for protein-coding

genes that were GWS for MTAG-AUD and MTAG-SMKinitiation in

EUR, whereas PPI enrichment was nonsignificant for GWS genes in

MTAG-OUD (P = 0.175) and MTAG-CUD (P = 0.175) (Tables S12–

S15). For GWS genes in MTAG-AUD, we identified high PPI for NF1

and SYNGAP1 (interaction score = 0.697), NF1 and CSMD3 (interac-

tion score = 0.42) and NCAM1 and SEMA6D (interaction

score = 0.467). For GWS genes in MTAG-SMK, TNRC6B and FOXO3,

two smoking-associated genes, showed high PPI (interaction

score = 0.9).

PRS associations with primary phenotypes

For EUR, all four MTAG-based PRS (PRSMTAG) showed stronger asso-

ciations with the primary diagnosis than the individual-trait GWAS-

based PRS (PRSGWAS) in the Yale-Penn dataset (Figure 3, Tables S16–

S19) and the PMBB dataset (Table S20). This difference was most evi-

dent for CUD, where in the Yale-Penn dataset the Bonferroni-

corrected association with DSM-IV cannabis dependence was nonsig-

nificant for PRSGWAS-CUD (OR = 1.16, P = 1.94 × 10−3), but it was

significant with PRSMTAG-CUD (OR = 1.30, P = 2.18 × 10−9). This was

replicated in the PMBB dataset, where the association with CUD was

nonsignificant for PRSGWAS-CUD (OR = 1.14, P = 0.08), but was signifi-

cant with PRSMTAG-CUD (OR = 1.29, P = 7.86 × 10−4).

The Yale-Penn dataset contains additional related phenotypes for

each substance. For each of the SUTs, there were more Bonferroni-

corrected significant associations with PRSMTAG than PRSGWAS (Tables

S16–S19). Notably, the number of significantly associated phenotypes

for PRSGWAS-CUD was 6, whereas for PRSMTAG-CUD it was 25. Pheno-

types that were significantly associated when using PRSMTAG-CUD

included age of first use of marijuana, the DSM-IV cannabis depen-

dence diagnosis and the DSM-5 CUD criterion count.

In addition, the incremental R2 values both for diagnoses and

related phenotypes were higher for PRSMTAG than PRSGWAS

(Table 2). The greatest improvement was between PRSMTAG-CUD and

PRSGWAS-CUD, where the incremental R2 for ‘ever used cannabis’
was 1.62% and 0.38%, respectively. Moderate improvement was also

observed for PRSMTAG-SMK compared with the well-powered

PRSGWAS-SMK.

Findings were less consistent in the AFR datasets. For OUD, nei-

ther the PRSGWAS-OUD nor the PRSMTAG-OUD showed significant asso-

ciations in the Yale-Penn dataset or the PMBB dataset. For

SMKtrajectory, the PRSGWAS-SMK performed slightly better than the

PRSMTAG-SMK in the Yale-Penn dataset, whereas the opposite was

true in the PMBB dataset. For AUD, PRSMTAG-AUD showed stronger

associations than PRSGWAS-AUD in both datasets, and there were more

Bonferroni-corrected significant associations with PRSMTAG-AUD

(n = 13) than PRSGWAS-AUD (n = 6).

F I GU R E 2 Manhattan plots of MTAG-OUD (NEffective = 176 876), MTAG-CUD (NEffective = 223 956), MTAG-AUD (NEffective = 282 208) and
MTAG-SMK (NEffective = 709 603). Dashed lines indicate genome-wide significance (P < 5 × 10−8) and yellow dots indicate genome-wide
significance single nucleotide polymorphisms. AUD, alcohol use disorder; CUD, cannabis use disorder; OUD, opioid use disorder; MTAG, multi-
trait analysis of genome-wide association studies; SMK, smoking.
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DISCUSSION

We performed a joint analysis of SUTs using MTAG, which yielded an

effective sample size up to fourfold that of the individual GWAS. This

yielded novel associated variants in loci not previously linked to any

SUT, including a novel locus in AFR associated with both OUD and

SMKtrajectory. Interestingly, one of our novel associations, CNOT4,

was recently identified in a GWAS of maximum alcohol use [32] and a

GWAS of smoking initiation [33], which supports our discovery here.

A prior MTAG analysis of PAU [13], which leveraged information from

a GWAS of drinks per week, identified 119 GWS variants. Of the

45 SNPs in EUR in common between that analysis and ours, 14 were

associated with MTAG-AUD in our sample. In our EUR MTAG-OUD

analysis, we also replicated 6 of 9 variants in common with a recent

OUD MTAG analysis of OUD, CUD and AUD [14]. Although OPRM1

was not significantly associated in the prior MTAG, our EUR MTAG-

OUD analyses identified the OPRM1 SNP rs1799971 as a lead variant,

potentially because of our inclusion of the smoking initiation GWAS

or the larger input OUD GWAS sample in our analysis.

Among the most significant risk loci for SUTs are those that

encode proteins with clear connections to the substance involved.

This includes the μ-opioid receptor for OUD [34], various nicotinic

F I GU R E 3 Comparison of GWAS-based PRS and MTAG-based PRS. Red and blue dots in each plot represent the GWAS-based PRS and
MTAG-based PRS, respectively. Vertical dashed lines indicate significance threshold after Bonferroni correction. GWAS, genome-wide association
studies; MTAG, multi-trait analysis of GWAS; PRS, polygenic risk scores.
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cholinergic receptor subunits for smoking initiation [4] and alcohol

metabolizing enzymes for alcohol consumption and AUD [35]. How-

ever, beyond the substance-specific proteins that directly interact

with the drug a wide range of biological mechanisms are common to

all addictive behaviors—these include reward pathways, learning and

memory, withdrawal and other functions [36]. We, therefore,

expected that the greater statistical power of MTAG would reveal

novel genes with associations to multiple substances based on com-

mon mechanisms of risk (i.e. an addiction factor) [37, 38]. In fact, 5 of

19 novel loci identified in our EUR analysis were significantly associ-

ated with two or more substances. The use of multiple substances is

common and has been associated with poorer treatment outcomes in

individuals with SUDs [39]. These shared genes may represent targets

for therapies aimed at treating co-occurring SUDs.

Patients with SUDs also have higher rates of comorbid psychiatric

disorders than the general population [40] PheWAS using electronic

health record (EHR) data have shown associations between PRS for

SUTs and non-substance use psychiatric diagnostic codes [13], sug-

gesting genetic overlap between them. Consistent with this hypothe-

sis, 9 of 19 novel genes identified in our EUR MTAG analysis were

significant in GWAS of depression or schizophrenia [41–45]. Further-

more, several of the novel genes (SYNGAP1, ZNF804A, CSMD3,

DNM3, LRFN5, TCF20 and TNRC6B) have been previously associated

with neurodevelopmental disorders [46–52]. Mutations in SYNGAP1

reduce protein activity, leading to impaired synaptic plasticity, a key

factor in brain development [46]. Autism patients have lower expres-

sion of ZFN804A in the anterior cingulate gyrus [47], and CSMD4 has

been identified as a risk gene for autism spectrum disorder [48]. Our

results suggest a connection between SUTs and neurodevelopmental

disorders.

We functionally annotated the EUR GWS loci in all four SUTs to

explore plausible underlying biological processes. We found that asso-

ciations for AUD were enriched in genes (including CNOT4) involved

in regulating synaptic structure and activity, an enrichment not

previously observed in the AUD GWAS [2]. In addition, we find evi-

dence for neuronal differentiation in smoking initiation, in line with

findings in the original GWAS [4]. In the PPI analysis, we observed sig-

nificantly enriched protein interaction networks for MTAG-AUD and

MTAG-SMK. In addition, we observed multiple interactions between

novel genes identified by MTAG and previously identified SUT-

associated genes, which provide biological support for the MTAG

results.

In PRS analyses, the PRSMTAG outperformed the PRSGWAS for all

SUTs in EUR, but only for AUD in AFR. This was evident for the CUD

PRS, where in EUR the PRSMTAG was significantly associated with the

diagnosis, whereas the PRSGWAS was not. As PRS for many traits are

being considered as potential biomarkers for disorders [53], the use of

MTAG may yield more powerful PRS without having to recruit larger

samples for GWAS.

Our study has some limitations. Careful evaluation is required to

assess the broader impact of MTAG-based PRS on phenotypic associ-

ations beyond the primary phenotype. A loss of specificity may result

from the inclusion of multiple genetically correlated traits, potentially

confounding PheWAS of MTAG-PRS. Because of smaller sample sizes

for GWAS of tobacco use disorder, we selected GWAS for smoking

traits that reflect tobacco use more generally, in contrast to the selec-

tion of substance use disorder for our other traits. Finally, although

we included data for AFR individuals, the smaller sample size meant

that our results were less conclusive, and we were unable to include a

GWAS of cannabis use in this population. Future GWAS should priori-

tize recruitment of non-European datasets.

In summary, in an MTAG analysis of SUTs we identified 19 novel

loci in EUR and 1 in AFR, and, in two independent datasets, found that

the associations of PRSMTAG with relevant traits were more significant

than with PRSGWAS. As the size of GWAS samples continues to

increase, MTAG analyses could provide a complementary method to

leverage more powerful GWAS to boost the findings of risk variants

for genetically correlated traits, particularly where case ascertainment

is more challenging, thereby enhancing our understanding of the biol-

ogy underlying these phenotypes and its clinical applicability.
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